Resume

SLOBODAN VUCETIC

Department of Computer and Information Sciences

Temple University, 304A SERC

1925 N. 12th St., Philadelphia, PA 19122, USA

Office phone: (215)204-5535


RESEARCH INTERESTS

Machine Learning and Artificial Intelligence (Deep Learning, Representation Learning, Human-in-the-loop ML Systems, Natural Language Processing, Structured Learning, Spatial-Temporal Data Analysis, Online Learning, Sequential Pattern Mining, Hierarchical Bayes Models, Clustering, Feature Selection, Dimensionality Reduction, Label Ranking, Semi-Supervised Learning, Multi-Task Learning, Multi-Label Learning, Multi-Instance Learning, Multi-Source Learning, Support Vector Machines, Boosting, Regularization, Biased Data, Missing and Corrupted Data, Class Imbalance)

Data Science Applications (Medical Informatics, Remote Sensing, Intelligent Transportation Systems, Epidemiology, Computational Advertising, Crowdsourcing, Collaborative Filtering, Industrial Informatics, Financial Engineering, Power Systems, Precision Agriculture)

Big Data (Learning on a Budget, Scalability, Sampling, Indexing, Distributed Learning, Data Intensive and Cloud Computing)

Bioinformatics (Protein Function and Structure Prediction, Genomics, Drug Discovery)

Data Visualization, Convex Optimization, Data Compression, Algorithms, Nonlinear Systems, Signal Processing


TEACHING INTERESTS

Undergraduate and graduate courses related to Machine Learning, Data Science, Bioinformatics, Artificial Intelligence, Algorithms, Data Structures, Programming, Databases


EDUCATION

Ph.D., Electrical Engineering, Washington State University, 2001 

M.S., Electrical Engineering, University of Novi Sad, 1997

B.S., Electrical Engineering, University of Novi Sad, 1994 


APPOINTMENTS

(2018 – now) Director of the Center for Cognitive Computing, College of Science and Technology, Temple University.

(2017 – now) Professor at the Department of Computer and Information Sciences Department, College of Science and Technology, Temple University.

(2016 – 2018) Interim Chair at the Department of Computer and Information Sciences Department, College of Science and Technology, Temple University.

(2015 – 2016) Vice Chair at the Department of Computer and Information Sciences Department, College of Science and Technology, Temple University.

(2008 – 2017) Associate Professor at the Department of Computer and Information Sciences Department, College of Science and Technology, Temple University.

(2002 – 2008) Assistant Professor at the Computer and Information Sciences Department, College of Science and Technology, Temple University.

(2001 – 2002) Visiting Assistant Professor at the Center for Information Sciences and Technology, Temple University.


AWARDS AND ACCOMPLISHMENTS

·       Recipient of NSF CAREER Award, 2006.

·       Outstanding paper at IJCAI 2013: Best paper in the AI and Computational Sustainability Track.

·       Team leader of a 3-member team that was among the top ranked teams (among 60 teams) in gene/protein function prediction at the Second Critical Assessment of Function Annotations (CAFA 2013-14).

·       Team leader of a 4-member team that was among the top ranked teams (among 45 teams) in gene/protein function prediction at the First Critical Assessment of Function Annotations (CAFA 2010-12).

·       Member of a 5-member team that achieved the highest accuracy in protein disorder prediction at 5th, 6th, and 7th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP) in 2002, 2004, 2006.


TEACHING EXPERIENCE

·       CIS 3715 Principles of Data Science (Undergraduate Course): 2015, 2017, 2018, 2019

·       CIS 5526 Machine Learning (Graduate Course): 2002, 2003, 2007, 2008, 2009, 2010, 2011, 2013 2014, 2015, 2018, 2019  

·       CIS 1166 Mathematical Concepts in Computing I (Undergraduate Course): 2015

·       CIS 2166 Mathematical Concepts in Computing II (Undergraduate Course): 2012, 2015

·       CIS 1001 Introduction to CIS (1 credit Undergraduate Course): 2009, 2010, 2012, 2013

·       CIS 3223 Algorithms and Data Structures (Undergraduate Course): 2008

·       CIS 071 Introduction to Computing and Computer Programming (Undergraduate Course): 2006, 2007  

·       CIS 611 Data Management (Graduate Course): 2006

·       CIS 595 Bioinformatics (Graduate Course): 2005

·       CIS 616 Data Management (Graduate Course): 2005

·       CIS 527 Data Warehousing, Filtering, and Mining (Graduate Course): 2004

·       CIS 525 Neural Computation (Graduate Course): 2004

·       CIS 595 Bioinformatics (Graduate Course): 2003

·       CIS 670 Advanced Topics in Database Systems (Graduate Course): 2002

·       Program Design and Development, Visual BASIC Programming, Electrical Circuits Laboratory, Electronics (Undergraduate Courses)

·       Fundamentals of Electrical Engineering (Undergraduate Course)


FUNDING

Current 

·       Kumar, S., Levy, R., Vucetic, S., Carnevale, V., Townsend, J. (2019 – 2024), “GCR: Understanding Epistasis: the Key for Genotype to Phenotype Mapping,” National Science Foundation.

·       Henry, K., Vucetic, S., Stroup, A. (2016 – 2020), “Incorporating Residential Histories into Space-Time Models for Health Geographic Analysis”, National Science Foundation.

·       Vucetic, S. (2016 – 2019) “SBIR Phase II: Using Data Mining to Optimally Customize Therapy for Individuals with Autism”, National Science Foundation.

·       Kant, K., Wu, J., Vucetic, S. (2015 – 2019), “BDD: Dynamic Evolution of Smart-Phone Based Emergency Communications Network”, National Science Foundation.

Past 

·       Egleston, B. (PI), Vucetic, S. (PI), Bleicher, R. (Co-I) (2015 – 2018) “R21: Deep Learning for Representation of Codes Used for SEER-Medicare Claims Research”, National Institutes of Health.

·       Vucetic, S. (PI), Obradovic, Z. (Co-PI) (2011 – 2016) “III Small: A Discriminative Modeling Framework for Mining of Spatio-Temporal Data in Remote Sensing”, National Science Foundation.

·       Vucetic, S. (PI) (2015 – 2015) “SBIR Phase I: Using Data Mining to Optimally Customize Therapy for Individuals with Autism”, National Science Foundation.

·       Vucetic, S. (2013 – 2014) “Computational Advertising”, Yahoo! Labs.

·       Vucetic, S. (2010 – 2012) “Machine Learning for Distributed Fault Diagnosis”, ExxonMobil Research and Engineering Company.

·       Vucetic, S., (2006 – 2012) “CAREER: Memory-Constrained Predictive Data Mining,” National Science Foundation.

·       Obradovic, Z., Vucetic, S., Z. Li (2006 – 2011) “Collaborative Research: Data Mining Support for Retrieval and Analysis of Geophysical Parameters,” National Science Foundation.

·       Bai, L., Vucetic, S. (2009 – 2010) “MOSAIC: Multi-agent-based Oil-refinery System Analysis and Intelligent Control” ExxonMobil Research and Engineering Company.

·       Obradovic, Z. and Vucetic. S. (2004 – 2008) “Applications of Bioinformatics Data Analysis to Cardiovascular and Cancer Research,” Pennsylvania Department of Health.

·       Soprano, D.R., Soprano, K.J., Obradovic, Z., Vucetic, S. (2005 – 2009) “PBX and Retinoic Acid-Dependent Differentiation,” National Institutes of Health.

·       Obradovic, Z. and Vucetic, S. (2002 – 2006) “ITR/SMALL/Scientific Frontiers: Task-Specific Data Reduction and Mining in Spatial-Temporal Domains,” National Science Foundation, Grant 0219736.

·       Obradovic, Z. and Vucetic, S. (2004 – 2004) “Research Infrastructure and Expertise for Gene Expression Data Analysis,” The Pennsylvania Department of Health.

·       Vucetic, S. (2003 – 2004) “Bioinformatics Approach to Protein Disorder Characterization,” Pennsylvania Department of Health.

·       Wolfgang, P., Lakaemper, R., Megalooikonomou, V., Obradovic, Z., and Vucetic, S. (2003 – 2004) “Visualization and Analysis of Commercial Flight Data,” Lockheed Martin Corp.


PUBLICATIONS

Journal publications

1.     Shapovalov, M., Vucetic, S., Dunbrack, R.L., A New Clustering and Nomenclature for Beta Turns Derived from High-Resolution Protein Structures, PLoS Computational Biology, 15 (3), 2019.

2.     Vucetic, S., Chanda, A.K., Zhang, S., Bai, T., Maiti, A., Faculty Citation Measures are Highly Correlated with Peer Assessment of Computer Science Doctoral Programs, Communications of the ACM, 2018.

3.     Bai, T., Chanda, A.K., Egleston, B.L., Vucetic, S., EHR Phenotyping via Jointly Embedding Medical Concepts and Words into a Unified Vector Space, BMC Medical Informatics and Decision Making, 2018.

4.         Jiang, Y., et al. “An expanded evaluation of protein function prediction methods shows an improvement in accuracy.” Genome biology 17.1, 184, 2016.

5.         Djuric, N., Kansakar, L., Vucetic, S., Semi-Supervised Combination of Experts for Aerosol Optical Depth Estimation, Artificial Intelligence Journal, Vol. 230, pp. 1-13, 2016.

6.         Zhang, K., Lan, L., Kwok, T.J., Vucetic, S., Parvim, B., Large Scale Semi-Supervised Learning via Sparse Nonparametric Prototype Model, IEEE Transactions on Neural Networks and Learning Systems, Vol. 26 (3), pp. 444-457, 2015.

7.         Djuric, N., Radosavljevic, V., Obradovic, Z., Vucetic, S., Gaussian Conditional Random Fields for Aggregation of Operational Aerosol Retrievals, IEEE Geoscience and Remote Sensing Letters, Vol. 12, no. 4, pp. 761-765, 2014.

8.         Djuric, N., Lan, L., Vucetic, S., Wang, Z., BudgetedSVM: A Toolbox for Scalable SVM Approximations, Journal of Machine Learning Research, Vol. 14, pp.3813−3817, 2013.

9.         Grbovic M., Li W., Subrahmanya N. A., Usadi A. K., Vucetic, S., Cold Start Approach for Data Driven Fault Detection, IEEE Transactions on Industrial Informatics, Vol. 9(4), pp. 2264 – 2273, 2013.

10.     Lan, L., Vucetic, S., Multi-task Feature Selection in Microarray Data by Binary Integer Programming, BMC Bioinformatics, Vol. 7(Suppl 7):S5, 2013.

11.     Grbovic, M., Djuric, N., Guo, S., Vucetic, S., Supervised Clustering of Label Ranking Data using Label Preference Information, Machine Learning Journal, Vol. 93 (2-3), pp 191-225, 2013.

12.     Grbovic M., Vucetic S., Decentralized Estimation using Distortion Sensitive Learning Vector Quantization, Pattern Recognition Letters, Vol. 34 (9), pp. 963–969, 2013.

13.     Lan, L., Djuric, N., Guo, Y., Vucetic, S., MS-kNN: Protein Function Prediction by Integrating Multiple Data Sources, BMC Bioinformatics, Vol. 14 (suppl. 3):S8, 2013.

14.     Radivojac, P., Clark, W. T., …, Toppo, S., Lan, L., Djuric, N., Guo, Y., Vucetic, S., Bairoch, A., Linial, M., Babbitt, P. C., et al., A Large-scale Evaluation of Computational Protein Function Prediction, Nature Methods, Vol. 10(3), pp. 221-229, 2013.

15.     Wang, Z., Crammer, K., Vucetic, S., Breaking the Curse of Kernelization: Budgeted Stochastic Gradient Descent for Large-Scale SVM Training, Journal of Machine Learning Research, Vol. 13, pp. 3103−3131, 2012.

16.     Grbovic M., Weichang L., Peng X., Usadi A. K., Vucetic S., Decentralized Fault Detection and Diagnosis via Sparse PCA based Decomposition and Maximum Entropy Decision Fusion, Journal of Process Control, Vol. 22, pp. 738– 750, 2012.

17.     Coric, V., Djuric, N., Vucetic, S., Traffic State Estimation from Aggregated Measurements using Signal Reconstruction Techniques, Transportation Research Record: Journal of the Transportation Research Board, Traffic Flow Theory and Characteristics, no. 2315, pp. 121-130, 2012.

18.     Wang, Z., Lan, L. Vucetic, S., Mixture Model for Multiple Instance Regression and Applications in Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, Vol. 50 (6), pp. 2226 – 2237, 2012.

19.     Ristovski, K., Vucetic, S., Obradovic, Z., Uncertainty Analysis of Neural Network-Based Aerosol Retrieval, IEEE Transactions on Geoscience and Remote Sensing, Vol. 50 (2), pp. 409-414, 2012, 2012.

20.     Djuric, N., Radosavljevic, V., Coric, V., Vucetic, S., Travel Speed Forecasting by Means of Continuous Conditional Random Fields, Transportation Research Record: Journal of the Transportation Research Board, Network Modeling 2011, pp. 131-139, 2011.

21.     Lan, L., Vucetic, S., Improving Accuracy of Microarray Classification by a Simple Multi-Task Feature Selection Filter, International Journal of Data Mining and Bioinformatics, Vol. 5 (2), pp. 189-208, 2011.

22.     Wang, Z., Vucetic, S., Online Training on a Budget of Support Vector Machines using Twin Prototypes, Statistical Analysis and Data Mining Journal, Vol 3 (3), pp. 149-169, 2010.

23.     Radosavljevic, V., Vucetic, S., Obradovic, Z., A Data Mining Technique for Aerosol Retrieval Across Multiple Accuracy Measures, IEEE Geoscience and Remote Sensing Letters, Vol 7 (2), pp. 411 – 415, 2010.

24.     Uversky, V.N., Oldfield, C.J., Midic, U., Xie, H., Xue, B., Vucetic, S., Iakoucheva, L.M., Obradovic, Z., Dunker, A.K., Unfoldomics of Human Diseases: Linking Protein Intrinsic Disorder with Diseases, BMC Genomics, 10(Suppl 1):S7, 2009.

25.     Vucetic, S., Han, B., Mi, W., Li, Z., Obradovic, Z., A Data Mining Approach for the Validation of Aerosol Retrievals, IEEE Geoscience and Remote Sensing Letters, 5 (1), 113-117, 2008.

26.     Krynetskaia, N., Xie, H., Vucetic, S., Obradovic, Z., Krynetskiy, E., High Mobility Group Protein B1 is an Activator of Apoptotic Response to Antimetabolite Drugs, Molecular Pharmacology, 73, 260-269, 2008.

27.     Xie, H., Vucetic, S., Iakoucheva, L.M., Oldfield, C.J., Dunker, A.K., Uversky, V.N., Obradovic, Z., Functional Anthology of Intrinsic Disorder. I. Biological Processes and Functions of Proteins with Long Disordered Regions, Journal of Proteome Research, 6 (5), 1882 -1898, 2007. 

28.     Vucetic, S., Xie, H., Iakoucheva, L.M., Oldfield, C.J., Dunker, A.K., Obradovic, Z., Uversky, V.N., Anthology of Intrinsic Disorder. II. Cellular Components, Domains, Technical Terms, Developmental Processes and Coding Sequence Diversities Correlated with Long Disordered Regions, Journal of Proteome Research, 6 (5), 1899 -1916, 2007. 

29.     Xie, H., Vucetic, S., Iakoucheva, L.M., Oldfield, C.J., Dunker, A.K., Obradovic, Z., Uversky, V.N., Functional Anthology of Intrinsic Disorder. III. Ligands, Postranslational Modifications and Diseases Associated with Intrinsically Disordered Proteins, Journal of Proteome Research, 6 (5), 1917 -1932, 2007.

30.     Han, B., Obradovic, Z., Hu, Z.Z., Wu, C. H., Vucetic, S., Substring Selection for Biomedical Document Classification, Bioinformatics, Vol. 22 (17), pp. 2136-2142, 2006. 

31.     Han, B., Vucetic, S., Braverman, A., Obradovic, Z., A Statistical Complement to Deterministic Algorithms for the Retrieval of Aerosol Optical Thickness from Radiance Data, Engineering Applications of Artificial Intelligence, Vol. 19, No. 7, pp. 787-795, 2006.

32.     Peng, K., Radivojac, P., Vucetic, S., Dunker A.K, Obradovic, Z., Length-Dependent Prediction of Protein Intrinsic Disorder, BMC Bioinformatics, vol. 7 (1), 208, 2006.

33.     Radivojac, P., Vucetic, S., O’Connor, T.R., Uversky, V.N., Obradovic, Z., Dunker, A.K., Calmodulin Signaling: Analysis and Prediction of a Disorder-Dependent Molecular Recognition, Proteins: Structure, Function, and Bioinformatics, vol. 63(2), pp. 398-410, 2006.

34.     Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Dunker A.K, Exploiting Heterogeneous Sequence Properties Improves Prediction of Protein Disorder, Proteins: Structure, Function, and Bioinformatics, Vol 61, Suppl 7, pp.176-82, 2005.

35.     Vucetic, S., Obradovic, Z., Collaborative Filtering Using a Regression-Based Approach, Knowledge and Information Systems, Vol. 7, No. 1, pp. 1-22, 2005.

36.     Peng, K., Vucetic, S., Radivojac, P., Brown, CJ, Dunker, AK., Obradovic, Z., Optimizing Long Intrinsic Disorder Predictors with Protein Evolutionary Information, Journal of Bioinformatics and Computational Biology, Vol 3, No. 1, pp. 35-60, 2005.

37.     Vucetic, S., Obradovic, Z., Vacic, V., Radivojac, P., Peng, K., Iakoucheva, L.M., Lawson, J.D., Brown, C.J., Sikes, J.G., Newton, C., Dunker, A.K., DisProt: A Database of Protein Disorder, Bioinformatics, Vol. 21, No. 1, pp. xx-xx, 2005.

38.     Radivojac, P., Obradovic, Z., Smith, D.K., Zhu, G., Vucetic, S., Brown, C.J., Lawson, J.D., Dunker, A.K., Protein Flexibility and Intrinsic Disorder, Protein Science, Vol. 13 No. 1, pp. 71-80, 2004.

39.     Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Brown C., Dunker A.K, Prediction of Intrinsic Protein Disorder, Proteins: Structure, Function and Genetics, Special Issue on CASP5, Vol. 53, Suppl 6, pp. 566-72, 2003.

40.     Vucetic, S., Brown C., Dunker A.K and Obradovic, Z., Flavors of Protein Disorder, Proteins: Structure, Function and Genetics, Vol. 52, pp. 573-584, 2003.

41.     Vucetic, S., Tomsovic, K. and Obradovic, Z., Discovering Price-Load Relationships in California’s Electricity Market, IEEE Transactions on Power Systems, Vol. 16, No. 2, pp. 280-286, 2001.

42.     Vucetic, S., Fiez, T. and Obradovic, Z., Examination of the Influence of Data Aggregation and Sampling Density on Spatial Estimation, Water Resources Research, Vol. 36, No. 12, pp. 3721-3731, 2000.

Conference publications

43.  Sondur, S, Kant, K, Vucetic, S., Storage on the Edge: Evaluating Cloud Backed Edge Storage in Cyberphysical Systems, 16th International Conference on Mobile Ad-hoc and Smart Systems (MASS), Monterey, CA, 2019.

44.  Zhang, S., He, L., Dragut, E., Vucetic, S., How to Invest my Time: Lessons from Human-in-the-Loop Entity Extraction, 25th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining (KDD), Anchorage, AK, 2019.

45.  Maiti, A., Vucetic, S., Spatial Aggregation Facilitates Discovery of Spatial Topics, 57th Annual Meeting of the Association for Computational Linguistics (ACL), Florence, Italy, 2019.

46.  Bai, T., Egleston, B.L., Bleicher, R., Vucetic, S., Medical Concept Representation Learning from Multi-Source Data, 28th International Joint Conf. on Artificial Intelligence (IJCAI), Macao, China, 2019.

47.  Bai, T., Vucetic, S., Improving Medical Code Prediction from Clinical Text via Incorporating Online Knowledge Sources, The World Wide Web Conference (WWW), 72-82, San Francisco, CA, 2019.

48.  Zhang, S., Pal, A., Kant, K., Vucetic, S., Enhancing Disaster Situational Awareness via Automated Summary Dissemination of Social Media Content, 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UEA, 2018.

49.  Zhang, S., He, L., Vucetic, S., Dragut, E., Regular Expression Guided Entity Mention Mining from Noisy Web Data, Conference on Empirical Methods in Natural Language Processing (EMNLP), Brussels, Belgium, 2018.

50.  Bai, T., Zhang, S., Egleston, B.L., Vucetic, S., Interpretable Representation Learning for Healthcare via Capturing Disease Progression through Time, 24th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD), London, UK, 2018.

51.  Bai, T., Chanda, A.K., Egleston, B.L., Vucetic, S., Joint Learning of Representations of Medical Concepts and Words from EHR Data, 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, 2017.

52.     Zhang, S., Vucetic, S., Semi-supervised Discovery of Informative Tweets During the Emerging Disasters, In Workshop Social Web for Disaster Management, Indianapolis, USA, Oct. 2016.

53.     41.   Zhang, S., Vucetic, S., Sampling Bias in LinkedIn: A Case Study, 25th International World Wide Web Conference (WWW), Montreal, Canada, 2016.

54.     Han, C., Zhang, S., Ghalwash, M., Vucetic, S., Obradovic, Z., Joint Learning of Representation and Structure for Sparse Regression on Graphs, 16th SIAM Conference on Data Mining (SDM), Miami, FL, 2016.

55.     Djuric, N., Grbovic, M., Vucetic, S., ParkAssistant: An Algorithm for Guiding a Car to a Parking Spot, Transportation Research Board 95th Annual Meeting (TRB), Washington, D.C., USA, 2016.

56.     Radosavljevic, V., Vucetic, S., Obradovic, Z., Neural Gaussian Conditional Random Fields, Machine Learning and Knowledge Discovery in Databases (ECML), Nancy, France, 2014.

57.     Lan, L., Malbasa, V., Vucetic, S., Spatial Scan for Disease Mapping on a Mobile Population, 28th AAAI Conference on Artificial Intelligence (AAAI), Quebec City, Canada, 2014.

58.     Djuric, N., Grbovic, M., Radosavljevic, V., Bhamidipati, N., Vucetic, S., Non-linear Label Ranking for Large-scale Prediction of Long-Term User Interests, 28th AAAI Conference on Artificial Intelligence (AAAI), Quebec City, Canada, 2014.

59.     Coric, V., Djuric, N., Vucetic, S., Frugal Traffic Monitoring with Autonomous Participatory Sensing, SIAM Conference on Data Mining (SDM), Philadelphia, PA, 2014.

60.     Grbovic M., Vucetic S., Generating Ad Targeting Rules using Sparse Principal Component Analysis with Constraints, International World Wide Web Conference (WWW), 2014.

61.     Djuric, N., Vucetic, S., Efficient Visualization of Large-scale Data Tables through Reordering and Entropy Minimization, IEEE International Conference on Data Mining (ICDM), Dallas, TX, 2013.

62.     Djuric, N., Grbovic, M., Vucetic, S., Distributed Confidence-Weighted Classification on MapReduce, 2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA, October 6-9, 2013.

63.     Djuric, N., Kansakar, L., Vucetic, S., Semi-Supervised Learning for Integration of Aerosol Predictions from Multiple Satellite Instruments, 23rd International Joint Conference on Artificial Intelligence (IJCAI),, Beijing, China, 2013. (Outstanding IJCAI paper: the best paper in the AI and Computational Sustainability Track)

64.     Grbovic, M., Djuric, N., Vucetic, S., Multi-prototype Label Ranking with Novel Pairwise to Total Rank Aggregation, 23rd International Joint Conference on Artificial Intelligence (IJCAI), Beijing, China, 2013.

65.     Ristovski, K., Radosavljevic, V., Vucetic, S., Obradovic, Z., Continuous Conditional Random Fields for Efficient Regression in Large Fully Connected Graphs, 27th AAAI Conference on Artificial Intelligence (AAAI), Bellevue, WA, 2013.

66.     Grbovic M., Dance. C., Vucetic S., Sparse Principal Component Analysis with Constraints, 26th AAAI Conference on Artificial Intelligence (AAAI), Toronto, CA, 2012.

67.     Djuric. N., Grbovic M., Vucetic S., Convex Kernelized Sorting, 26th AAAI Conference on Artificial Intelligence (AAAI), Toronto, CA, 2012.

68.     Grbovic, M., Djuric N., Vucetic S., Supervised Clustering of Label Ranking Data, SIAM Conf. on Data Mining (SDM), Anaheim, CA, 2012 (Best of SDM 2012: a top 10 paper).

69.     Quan, H., Milicic, A., Vucetic, S., Wu, J., A Connectivity-Based Popularity Prediction Approach for Social Networks, IEEE International Conference on Communications (ICC), Ottawa, CA, 2012.

70.     Coric, V., Wang, Z., Vucetic, S., Traffic Speed Forecasting by Mixture of Experts, IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, D.C., 2011.

71.     Grbovic, M., Vucetic, S., Tracking Concept Change with Incremental Boosting by Minimization of the  Evolving Exponential Loss, European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens, Greece, 2011.

72.     Wang, Z., Djuric, N., Crammer, K. Vucetic, S., Trading Representability for Scalability: Adaptive Multi-Hyperplane Machine for Nonlinear Classification, 17th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD), San Diego, CA, 2011.

73.     Malbasa, V., Vucetic., S., Spatially Regularized Logistic Regression for Disease Mapping on Large Moving Population, 17th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD), San Diego, CA, 2011.

74.     Grbovic, M., Vucetic, S., Li, W., Xu, P., Usadi, A.K., A Boosting Method for Process Fault Detection with Detection Delay Reduction and Label Denoising, KDD4Service: Data Mining for Service and Maintenance Workshop, at the 17th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD), San Diego, CA, 2011.

75.     Lan, L., Djuric, N., Guo, Y., Vucetic, S., Protein Function Prediction by Integrating Different Data Sources, Automated Function Prediction SIG 2011 featuring the CAFA Challenge: Critical Assessment of Function Annotations (AFP/CAFA 2011), Vienna, Austria, 2011.

76.     Lan, L., Shi, H., Wang, Z., Vucetic, S., An Active Learning Algorithm Based on Parzen Window Classification, JMLR W&C Proc. Workshop on Active Learning and Experimental Design (2010 AISTATS Active Learning Challenge), 2010.

77.     Djuric, N., Vucetic, S., Random Kernel Perceptron on ATTiny2313 Microcontroller, 4th International Workshop on Knowledge Discovery from Sensor Data (SensorKDD), at the 16th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD), Washington, D.C., 2010.

78.     Wang, Z., Crammer, K., Vucetic, S., “Multi-Class Pegasos on a Budget, Proc. Int. Conf. on Machine Learning (ICML), Haifa, Israel, 2010.

79.     Radosavljevic, V., Vucetic., S., Obradovic, Z., Continuous Conditional Random Fields for Regression in Remote Sensing, Proc. European Conference on Artificial Intelligence (ECAI), Lisbon, Portugal, 2010.

80.     Wang, Z., Vucetic, S., Online Passive-Aggressive Algorithms on a Budget, JMLR W&C Proc. Int. Conf. on Artificial Intelligence and Statistics (AISTATS),  Sardinia,  Italy, 2010.

81.     Wang, Z., Vucetic, S., Fast Online Training of Ramp Loss Support Vector Machines, IEEE Int’l Conf. on Data Mining  (ICDM), Miami, FL, 2009.

82.     Grbovic, M., Vucetic, S., Regression Learning Vector Quantization, IEEE Int’l Conf. on Data Mining  (ICDM), Miami, FL, 2009.

83.     Das, D., Obradovic, Z., Vucetic, S., Active Selection of Sensor Sites in Remote Sensing Applications, IEEE Int’l Conf. on Data Mining  (ICDM), Miami, FL, 2009.

84.     Lan, L., Vucetic, S., A Multi-Task Feature Selection Filter for Microarray Classification, IEEE Int’l Conf. on Bioinformatics and Biomedicine (BIBM), Washington, D.C., 2009.

85.     Radosavljevic, V., Vucetic, S., Obradovic, Z., Reduction of Ground-Based Sensor Sites for Spatio-Temporal Analysis of Aerosols, 3rd International Workshop on Knowledge Discovery from Sensor Data (SensorKDD), at the 15th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD), Paris, France, 2009.

86.     Grbovic, M., Vucetic, S., Learning Vector Quantization with Adaptive Prototype Addition and Removal, Proc. Int’l Joint Conf. on Neural Networks (IJCNN), Atlanta, GA, 2009.

87.     Wang, Z., Vucetic, S., Tighter Perceptron with Improved Dual Use of Cached Data for Model Representation and Validation, Proc. Int’l Joint Conf. on Neural Networks (IJCNN), Atlanta, GA, 2009.

88.     Wang, Z., Vucetic, S., Twin Vector Machines for Online Learning on a Budget, 2009 SIAM Conf. on Data Mining (SDM), Sparks, NV, 2009.

89.     Vucetic, S., Coric, V., Wang, Z., Compressed Kernel Perceptrons, Data Compression Conference (DCC), Snowbird, UT, 2009.

90.     Grbovic, M., Vucetic, S., Decentralized Estimation Using Learning Vector Quantization, Data Compression Conference (DCC), Snowbird, UT, 2009.

91.     Das, D., Radosavljevic, V., Vucetic, S., Obradovic, Z. Reducing Need for Collocated Ground and Satellite based Observations in Statistical Aerosol Optical Depth Estimation, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, 2008.

92.     Wang, Z., Radosavljevic, V., Han, B., Obradovic, Z., Vucetic, S., Aerosol Optical Depth Prediction from Satellite Observations by Multiple Instance Regression, Proc. 2008 SIAM Conf. on Data Mining (SDM), Atlanta, GA, 2008.

93.     Radosavljevic, V., Vucetic, S., Obradovic, Z., Spatio-Temporal Partitioning for Improving Aerosol Prediction Accuracy, Proc. 2008 SIAM Conf. on Data Mining (SDM), Atlanta, GA, 2008.

94.     Radosavljevic, V., Vucetic, S., Obradovic, Z., Aerosol Optical Depth Retrieval by Neural Networks Ensemble with Adaptive Cost Function, 10th Int’l Conf. on Engineering Applications of Neural Networks (EANN), Thessaloniki, Greece, 2007. 

95.     Malbasa, V., Vucetic, S., A Reservoir Sampling Algorithm with Adaptive Estimation of Conditional Expectation, Proc. Int’l Joint Conf. on Neural Networks (IJCNN), Orlando, FL, 2007.

96.     Vucetic, S,. Sun, H., Aggregation of Location Attributes for Prediction of Infection Risk, Workshop on Spatial Data Mining: Consolidation and Renewed Bearing, at the 2006 SIAM Conference on Data Mining (SDM), Bethesda, MD, 2006. 

97.     Han,B., Obradovic, Z., Li, Z., Vucetic, S., Data Mining Support for Improvement of MODIS Aerosol Retrievals, IEEE International Geoscience and Remote Sensing Symposium 2006 (IGARSS), Denver, CO, 2006.

98.     Vucetic, S., A Fast Algorithm for Lossless Compression of Data Tables by Reordering, Data Compression Conference (DCC), Snowbird, Utah, 2006.

99.     Han, B., Vucetic, S., Braverman, A., Obradovic, Z., Construction of an Accurate Geospatial Predictor by Fusion of Global and Local Models, The 8th Int’l Conf. on Information Fusion, Philadelphia, PA, 2005.

100. Xu, Q., Han, B., Li, Y., Braverman, A., Obradovic, Z., Vucetic, S., Improving Aerosol Retrieval Performance by Integrating AERONET, MISR, and MODIS Data Products, The 8th Int’l Conf. on Information Fusion, Philadelphia, PA, 2005.

101. Han, B., Vucetic, S., Braverman, A., Obradovic, Z., Integration of Deterministic and Statistical Algorithms for Aerosol Retrieval, The 9th Int’l Conf. on Engineering Applications of Neural Networks (EANN), Lille, France, 2005.

102. Vucetic , S., Accuracy-Optimized Quantization for High-Dimensional Data Fusion, Data Compression Conference (DCC), Snowbird, Utah, 2005.

103. Peng, K., Vucetic, S., Obradovic, Z., Correcting Sampling Bias in Structural Genomics through Iterative Selection of Underrepresented Targets, 2005 SIAM Conf. on Data Mining (SDM), Newport Beach, CA, 2005.

104. Peng, K., Obradovic, Z., Vucetic, S., Towards Efficient Learning of Neural Network Ensembles from Arbitrarily Large Datasets, 16th European Conference on Artificial Intelligence (ECAI), Valencia, Spain, 2004.

105. Radivojac, P., Obradovic, Z., Dunker, AK, Vucetic, S., Characterization of Permutation tests for feature selection, 15th European Conference on Machine Learning (ECML), 2004.

106. Peng, K., Obradovic, Z., Vucetic, S., Exploring Bias in the Protein Data Bank Using Contrast Classifiers, Pacific Symposium on Biocomputing (PSB), Hawaii, 2004.

107. Peng, K., Vucetic, S., Han, B., Xie, X., Obradovic, Z., Exploiting Unlabeled Data for Improving Accuracy of Predictive Data Mining, Third IEEE Int’l Conf. on Data Mining (ICDM), Melbourne, FL, 2003.

108. Han, B., Vucetic, S., and Obradovic, Z.,  Reranking Medline Citations By Relevance To a Difficult Biological Query,” Proc. IASTED Int’l Conf. Neural Networks and Computational Intelligence, Cancun, Mexico, 2003.

109. Vucetic, S., Pokrajac, D., Xie H. and Obradovic, Z., Detection of Underrepresented Biological Sequences Using Class-Conditional Distribution Models, Proc. 2003 SIAM Conf. on Data Mining (SDM), San Francisco, CA, 2003.

110. Dunker, A.K., Brown. C.J, Lawson, J.D., Iakoucheva-Sebat, L.M., Vucetic, S. and Obradovic, Z.,  The Protein Trinity: Structure/Function Relationships that Include Intrinsic Disorder, Proc. 2002 Miami Nature Biotechnology Winter Symp., The Scientific Word, 2(S2), 49-50, 2002.

111. Vucetic, S. and Obradovic, Z., Classification on Data with Biased Class Distribution, 12th European Conference on Machine Learning (ECML), pp. 527-538, Freiburg, Germany, 2001.

112. Vucetic, S., Radivojac, P., Dunker, K., Brown, C., Obradovic, Z., Methods for Improving Protein Disorder Prediction, Int’l Joint Conf. on Neural Networks (IJCNN), pp. 2718-2723, Washington D.C, 2001.

113. Vucetic, S. and Obradovic, Z., A Regression-Based Approach for Scaling-Up Personalized Recommender Systems in E-Commerce, Workshop on Web Mining for E-Commerce, at the Sixth ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining (KDD), Boston, MA, 2000.

114. Vucetic, S. and Obradovic, Z., Discovering Homogeneous Regions in Spatial Data through Competition, Proc. 17th Int’l. Conf. on Machine Learning (ICML), pp. 1091-1098, Stanford, CA, 2000.

115. Vucetic, S. and Obradovic, Z., Performance Controlled Data Reduction for Knowledge Discovery in Distributed Databases, Proc. Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD), Computer Science Editorial 3, Springer-Verlag, pp. 29-39, Kyoto, Japan, 2000.

116. Vucetic, S. and Obradovic, Z. A Constructive Competitive Regression Method for Analysis and Modeling of Non-stationary Time Series, Proc. The First Int’l Workshop on Computational Intelligence in Economics and Finance, at the Fifth Joint Int’l Conf. on Information Science, vol. 2, pp. 978-981, Atlantic City, NJ, 2000.

117. Vucetic, S., Fiez, T. and Obradovic, Z. A Data Partitioning Scheme for Spatial Regression, Proc. IEEE/INNS Int’l Conf. on Neural Neural Networks (IJCNN), Washington D.C., 1999.

118. Pokrajac, D., Lazarevic, A., Vucetic, S., Fiez T. and Obradovic Z., Image Processing in Precision Agriculture, Proc. IEEE Int’l Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Services, vol. 2, pp. 616-619, Nis, Serbia, 1999.

119. Vucetic, S., Senk, V. On the Branching Process Analysis of the Average Number of Computations of the Stack Algorithm, Proc. XLI Yugoslav Conf. on ETRAN, Zlatibor, 1997.

120. Radivojac, P., Vucetic, S. An Improved Trellis Code Search Procedure for Speech Compression, Proc. XLI Yugoslav Conf. on ETRAN, Zlatibor, 1997.

Book chapters

121. Djuric, N., Grbovic, M., Vucetic, S., Distributed Confidence-Weighted Classification on Big Data Platforms, In V. Govindaraju, V. Raghavan, C. R. Rao (Editors), “Handbook of Statistics: Big Data Analytics”, vol. 33, Elsevier, 2015.

122. Xie, H., Obradovic, Z., Vucetic, S., Mining of Microarray, Proteomics, and Clinical Data for Improved Identification of Chronic Fatigue Syndrome, Chapter 9 in McConnell, P, Lim, S., and A.J. Cuticchia, Methods of Micorarray Data Analysis VI. (Scotts Valley, California: CreateSpace Publishing, 2009), pp. 119-127.

123. Xie, H., Midic, U., Vucetic, S., Obradovic, Z., Algorithmic Methods for the Analysis of Gene Expression Data, In A. Nayak and I. Stojmenovic, Editors, Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems, John Wiley & Sons, Inc, 2008.

124. Han, B., Obradovic, Z., Vucetic, S., Using Statistical Methods to Improve Efficiency and Accuracy of Aerosol Retrievals, in Advances in Applied and Computational Mathematics, Vol 2, Nova Science Publisher, 2008.

125. Peng, K., Obradovic, Z., Vucetic, S., Supervised Learning Under Sample Selection Bias from Protein Structure Databases, in Advances in Applied and Computational Mathematics, Nova Science Publisher, 2006.

126. Obradovic, Vucetic, S., Challenges in Scientific Data Mining: Heterogeneous, Biased and Large Samples, In H. Kargupta, A. Joshi, K. Sivakumar, Y. Yesha, Editors, Data Mining: Next Generation Challenges and Future Directions, AAAI/MIT Press,  pp. 381-401, 2004.

Other publications

127. Grbovic, M., Djuric, N., Vucetic, S., Learning from Pairwise Preference Data using Gaussian Mixture Model, Preference Learning Workshop, European Conference on Artificial Intelligence (ECAI), Montpellier, France, 2012.

128. Obradovic, Z., Das, D., Radosavljevic, V., Ristovski, K., Vucetic, S., Spatio-Temporal Characterization of Aerosols through Active Use of Data from Multiple Sensors, Proc. International Society for Photogrammetry and Remote Sensing (ISPRS) Technical Commission VII Symposium, Vienna, Austria, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2010.

129. Ristovski, K., Vucetic, S., Obradovic, Z. Evaluation of a Neural Networks based Approach for Aerosol Optical Depth Retrieval and Uncertainty Estimation, Proc. Int’l Conf. on Space Technology, Thessaloniki, Greece, Aug. 2009

130. Obradovic, Z, Han, B., Xu, Q., Li, Y., Braverman, A., Li, Z., Vucetic, S., Data Mining Support for Aerosol Retrieval and Analysis – Project Summary, Second NASA Data Mining Workshop, Pasadena, CA, 2006.

131. Emilia L. Oleszak, Xiaoying Zhang, Wan-Lu Lin, S. Lu, J. Robert Chang, Alexander Tsygankov, Christos D. Katsetos, Agustin Legido, Huntley Hardison, Meena Bhattacharje, Glenn Rudner, Dimitri S. Monos, Kang Peng, Slobadan Vucetic, Zoran Obradovic, Sibylle Herzog, Karl Bechter, Chris D. Platsoucas, Immunopathology of Multiple Sclerosis and Psychoses, 9th Psychoimmunology Conference: Neuropsychoimmunology, Gunzburg, Germany, 2007. (Poster)

132. Vucetic, S., Substring Selection for Biomedical Document Classification, ACM First International Workshop on Text Mining in Bioinformatics, 2006. (Invited Talk)

133. Hu, Z.Z., Liu, H., Han, B., Huang, H., Mazumder, R., Yuan, X., Obradovic, Z., Vijay-Shanker, K., Vucetic, S., Wu, C.H., Literature Mining at the Protein Information Resource (PIR), International Conference on Intelligent Systems for Molecular Biology, Fortaleza, Brazil, August, 2006. (Poster)

134. Ruggieri, M., Braverman, A., Obradovic, Z., Patel, D., Vucetic, S., Xie, H., Regulation of Bladder Gene Expression by Outlet Obstruction, Denervation and Urinary Diversion Revealed by Microarray Analysis, 35th Annual Meeting of the International Continence Society, #510, Montréal, Canada, 2005. (Poster)

135. Xie, H., Vucetic, S., Sun, H., Hegde, P., Obradovic, Z., Characterization of Gene Functional Expression Profiles of Plasmodium Falciparum, Critical Assessment of Microarray Data Analysis, Durham, NC, 2004 (Poster)

136. Obradovic, Z., Vucetic, S., Peng, K, Han, B., Data Mining for Efficient and Accurate Large Scale Retrieval of Geophysical Parameters, Eos Trans. AGU, 85(47), Fall Meet. Suppl, Abstract NG34A-01, 2004. (Invited Talk)

137. Vucetic, S., Brown, C. J., Dunker, A.K. and Obradovic, Z., Discovering Flavors of Intrinsically Disordered Regions, 15th Symposium of the Protein Society, Philadelphia, PA, 2001. (Poster)

138. Drossu, R., Fiez, T., Lazarevic, A., Pokrajac, D., Vucetic, S., Obradovic, Z., Use of Terrain Analysis in Yield Map Interpretation, 1st Int. Conf. on Geographical Information Systems in Agriculture and Forestry, Orlando, FL, 1998. (Poster)


STUDENT ADVISING:

Current Ph.D. students

Aniruddha Maiti, Maxim Shapovalov, Ashis Chanda, Saman Anayati, Ziyu Yang, Sandro Hauri, Sai Shi, Tamara katic, Piyush Borole, Beth Garrison.

Graduated Ph.D. students

Zhuang Wang, Vuk Malbasa, Mihajlo Grbovic, Liang Lan, Nemanja Djuric, Vladimir Coric, Shanshan Zhang, Tian Bai

Ph.D. Committee Member

Min Xiao, Xin Li, Jelena Stojanovic, Djordje Gligorijevic, Peiyi Li, Jesse Glass, Athanasia Polychronopoulou, Dusan Ramljak, Zhuo Deng, Amir Harati, Le Shu, Debasish Das, Uros Midic, Mohamed Ghalwash, Kosta Ristovski, Vladan Radosavljevic, Peng Zhang, Quiang Liu, Qifang Xu, Nagesh Adluru, Hongbo Xie, Bo Han, Kang Peng, Roland Miezaninko, Predrag Radivojac.

Master’s Thesis

Lakesh Kansakar, Yi Jia, Hao Sun, Pooja Hegde, Swetha Nandyala, Vladimir Vacic.


PROFESSIONAL ACTIVITIES:

Program committee member:

·            International Conference on Machine Learning (ICML), 2013, 2014, 2015, 2016. 2017, 2018, 2019.

·            International Conference on Artificial Intelligence in Statistics (AISTATS), 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019.

·            ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD), 2011, 2013, 2014, 2015, 2016, 2017, 2018, 2019.

·            International Joint Conference on Artificial Intelligence (IJCAI), 2015, 2016, 2018, 2019.

·            Annual Meeting of the Association for Computational Linguistics (ACL), 2019.

·            Empirical Methods in Natural Language Processing Conference (EMNLP), 2019.

·            The World Wide Web Conference (WWW), 2018, 2019.

·            IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2008, 2009, 2010, 2012, 2013, 2014, 2015, 2016, 2017, 2019.

·            Conference on Information and Knowledge Management (CIKM), 2016, 2018, 2019.

·            (reviewer) International Conference on Intelligent Systems for Molecular Biology (ISMB), 2006, 2007, 2019.

·            (reviewer) Neural Information Processing Systems (NIPS), 2009, 2014, 2015, 2016, 2017, 2018.

·            AAAI Conference on Artificial Intelligence (AAAI), 2015, 2016, 2017, 2018.

·            IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018.

·            SIAM International Conference on Data Mining (SDM), 2009, 2011, 2012, 2014 (Local Chair).

·            Transportation Research Board, 2011, 2012, 2016.

·            International Conference on Information Visualization Theory and Applications (IVAPP), 2014, 2015.

·            International Conference on knowledge Discovery and information retrieval (KDIR), 2014.

·            IEEE International Conference on Big Data, 2013.

·            ACM Conference on Bioinformatics, Computational Biology and Biomedicine (BCB), 2011.

·            Pacific Symposium on Biocomputing (PSB), 2006, 2007, 2008.

·            Invited Session Organizer, Interface 2007.

·            IEEE 21st International Conference on Advanced Information Networking and Applications, 2007.

·            NSF Panel Member – Grant proposal review for CISE Directorate 2004, 2006, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018.

Reviewer for:

IEEE Transactions Knowledge and Data Engineering, IEEE Transactions on Neural Networks, Journal of Artificial Intelligence Research, IEEE Transactions on Power Systems, IEEE Transactions on Systems, Man and Cybernetics, IEEE/ACM Transactions on Computational Biology and Bioinformatics, Machine Learning Journal, Bioinformatics, PLOS Computational Biology, PLOS One, BMC Structural Biology, Information Systems, Knowledge and Data Engineering, Kentucky Initiative – Grant proposal review, Best Technological Innovation Award, Serbian Science Foundation – Grant proposal review,Croatian Science Foundation – Grant proposal review, Qatar Science Foundation – proposal review.