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A B S T R A C T

The primary goal of a time-to-event estimation model is to accurately infer the occurrence time of a target event.
Most existing studies focus on developing new models to effectively utilize the information in the censored
observations. In this paper, we propose a model to tackle the time-to-event estimation problem from a com-
pletely different perspective. Our model relaxes a fundamental constraint that the target variable, time, is a
univariate number which satisfies a partial order. Instead, the proposed model interprets each event occurrence
time as a time concept with a vector representation. We hypothesize that the model will be more accurate and
interpretable by capturing (1) the relationships between features and time concept vectors and (2) the re-
lationships among time concept vectors. We also propose a scalable framework to simultaneously learn the
model parameters and time concept vectors. Rigorous experiments and analysis have been conducted in medical
event prediction task on seven gene expression datasets. The results demonstrate the efficiency and effectiveness
of the proposed model. Furthermore, similarity information among time concept vectors helped in identifying
time regimes, thus leading to a potential knowledge discovery related to the human cancer considered in our
experiments.

1. Introduction

The primary goal of a time-to-event estimation model is to accu-
rately infer the occurrence time of a target event. Time-to-event data
analysis has been an active research topic due to its tremendous ap-
plication values in a variety of disciplines including biology, healthcare,
engineering, economics, and sociology [1]. Time-to-event estimation is
also called survival analysis [2], reliability analysis, duration modeling,
and event history analysis. The most unique characteristic of the time-
to-event estimation problem is the presence of censored examples in the
data. A censored example is an example whose event occurrence time is
unobserved due to observation window limits or losing track during the
observation window. The most common censoring cases are left cen-
soring and right censoring. In the left censoring case, the event occurs
before the beginning (left edge) of the observation window; similarly,
in the right censoring case, the event occurs after the end (right edge) of
the observation window. In this paper, we only consider the right
censoring case.

Because of the uniqueness of the time-to-event data, most existing
models focus on developing algorithms for effectively extracting in-
formation from the censored examples. Recently, machine learning

methods have been adopted for time-to-event modeling [3], for in-
stance, Survival Tree Models [4–6], Support Vector Machine for cen-
sored data [7–9], Random Survival Forest [10], and Survival Boosting
Trees [11]. Highly innovative new approaches have been proposed; for
example, active learning [12], transfer learning [13], multi-task sur-
vival analysis [14,15], deep survival analysis [16] and adversarial
learning [17].

In this paper, we approach the time-to-event estimation problem
from a different perspective. In a conventional time-to-event problem
formulation, the target variable time is univariate and satisfies a partial
order; i.e., if < <t t t1 2 3, then <t t t t2 1 3 1. In our model, instead of
directly using time as the target variable, we propose to treat each
discretized event occurrence time as a concept with a vector re-
presentation (called a time concept vector), and use the vector re-
presentation to replace time as the target. Our hypothesis is that an
event occurrence time should be treated as a word/concept which
carries an abstract meaning. Therefore, instead of univariate numbers,
multidimensional vectors are more suitable for capturing the simila-
rities among the concepts representing the event occurrence times. By
effectively exploiting the relations between features and time concepts,
we can obtain a more accurate model for time-to-event estimation.
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Furthermore, the similarity among time concept vectors may reveal
information for knowledge discovery; for example, time regime iden-
tification. The high-level idea of the proposed model is illustrated in
Fig. 1. In the figure, each example is represented by a dot in a 2D
feature space, each time concept is represented by a dot in a 3D vector
space, and each event occurrence time is represented in a 1D time space
(time line). Instead of learning a model to directly assign each example
an event occurrence time (i.e. 2 ), the proposed model assigns
each example a time concept (i.e. 2 3), and then the actual event
time is inferred by the known concept-time correspondence. Because
the time concept vector of an event occurrence time is unknown a priori,
we developed a framework to learn the model parameters and the time
concept vectors jointly. The contributions of our paper are summarized
as follows:

• We propose a new time-to-event estimation model which indirectly
infers event occurrence times via time concept vectors.
• We develop an efficient framework to learn model parameters and
time concept vectors jointly.
• We conduct rigorous experiments to demonstrate the effectiveness,
interpretability, and scalability of the proposed model.

2. Related work

The time-to-event model (or survival analysis model) is one of the
most fruitful research topics in statistics. For a comprehensive survey
on this topic, one can refer to [3] and references therein. In this section,
we will briefly summarize some of the most widely used models.

The Cox proportional hazard model [18] is one of the earliest and
one of the most influential models in the topic of survival analysis. The
Cox model is considered as a semi-parametric model because no as-
sumptions are made about the nature or shape of the baseline hazard
function [19]. The parameters in the Cox model are determined by
optimizing a partial likelihood function. Models which use the partial
likelihood as the optimization objective are considered as Cox-based
models. The basic formulation of the Cox model is highly subject to
overfitting in high-dimensional data. To address this shortcoming,
variants of the Cox model based on different regularizations are pro-
posed; for example, LASSO-Cox [20], is a Cox-based model with an
L1-norm regularization, and EN-Cox [21] is a Cox-based model with the
elastic net regularization. One of the drawbacks of the Cox-based
models is that they do not infer the event occurring time; instead, they
infer a hazard score, which is usually used for ranking. In contrast, the
proposed model directly infers the time vector which relates to an exact
event occurring time.

Parametric models are another class of widely used survival analysis
models. In parametric models, the event occurrence time is usually
assumed to satisfy an underlying distribution of which the density,

survivorship, hazard and cumulative hazard functions are easy to de-
rive. The model parameters are then determined by optimizing a like-
lihood function based on the given data. Some popular choices of the
underlying distributions include Logistic, Weibull, Log-Gaussian, and
Log–Logistic [22]. The assumption about the underlying distribution
may potentially limit the performance of the model. On the other hand,
the proposed model does not have any assumption on the distribution
of the target, and thus it is more flexible to capture to characteristics
from data, leading to better performance.

The time-to-event problem is similar to the traditional regression
problem in the sense that the target variable is continuous. However,
the traditional regression model cannot be directly applied to the time-
to-event problem due to the existence of censored examples. The Tobit
model [23] is one of the earliest linear regression models which in-
corporate the censored examples in the optimization objective. The
Buckley-James (BJ) regression model [24] handles the censored data by
using an auxiliary Kaplan-Meier estimator [25]. The variant, BJ-EN, is
proposed in [26] for high-dimensional data. One of the significant
drawbacks of the regression-based models is that they tend to implicitly
assume the target variable, the event occurring time, is normally dis-
tributed. The models are usually learned by minimizing a norm-based
loss function. This assumption may limit the performance of the model.
The proposed model does not assume the target variable distributions
and thus avoids this drawback.

Machine learning techniques are adopted for time-to-event estima-
tion problems [3]. A survival tree model was proposed in [4], in which
the Wasserstin metric was used estimate the homogeneity and as the
choice of splitting criterion. Support vector machines (SVM) were also
adopted for survival analysis. In [7], an SVM-based model was pro-
posed for censored data by using an updated asymmetirc loss function.
In [8], an SVM-based model was proposed using a health index a proxy
for the censored time. In [9], an SVM-based model was proposed to
incorporate ranking and regression to solve the time-to-event estima-
tion problem. Ensemble models were also adopted to solve the time-to-
event estimation problem. In [10], a random survival forest was pro-
posed to use survival trees [4] as week learners. In [11], a boosting
algorithm was proposed to incorporate censored data. An active reg-
ularized cox regression model was proposed [12] to use an active
learning algorithm to incorporate the Cox model by using a dis-
criminative gradient sampling strategy. A transfer learning survival
analysis model was proposed [13] to improve the Cox PH model by
transferring knowledge from the source domain to the target domain in
the context of survival analysis. The above models aim to improve the
performance by mimicking different formulations in model archi-
tectures, loss function and regularizations. Recently, representation
learning has been adopted for time-to-event estimation. In [16], a
hierarchical generative approach to survival analysis in the context of
the Electronic Health Records was proposed. In [17], a time-to-event
model as proposed to focus on the estimation of time-to-event dis-
tributions by using generative adversarial approach. These two ap-
proaches tackle the time-to-event estimation task from the input re-
presentation learning perspective. The Multi-task learning method for
survival analysis (MTLSA) [14] tackles the problem from an output
representation approach by introducing an indicator matrix and
learning a binary code (with special structures) for the multitask ob-
jective. While the proposed approach is similar to MTLSA in the sense
that both are learning the model parameters and output representations
simultaneously, in contrast to learning a special binary code, the pro-
posed approach learns a distributed representation [27] for each event
time point. Along with proper regularizations in the model parameters
and time vectors, the proposed model is more capable of capturing the
characteristics of the data so potentially is more accurate.

Fig. 1. The proposed model first determines the corresponding time concept of
each example and then infers the event occurrence time.
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3. Method

3.1. Notations

In this paper, scalar variables are denoted by letters (e.g., t and N),
vector variables are represented by boldface letters (e.g., x), matrix
variables are represented by boldface uppercase letters (e.g., V). The j-
th column vector and the i-th row vector of V are denoted by Vj: and Vi:,
respectively. We list the main symbols used in our subsequent deriva-
tions in Table 1.

3.2. Problem formulation

In the time-to-event model learning, each example in the dataset is
represented by a triplet, (x sy, ,i i i) with i n{1, 2, , } being the index
of the example and n being the number of examples. Within each tri-
plet, xi

m denotes an m-dimensional feature vector, yi denotes
the last observation time, and s {0, 1}i denotes the status of the ex-
ample at its last observation time. If =s 1i , the target event occurs at
time yi and subsequent observations are not necessary. If =s 0i , the
target event has not occurred up to time yi, and subsequent observations
are not available; thus, we call this example censored, and the event
may occur at anytime >t yi. The symbol, = t t t{ , , , }1 2 | | with

<| | , denotes the set of all possible event occurrence times. In this
context, the time-to-event task is to learn a probabilistic model,

xp y( | , ),

with model parameter, .

3.3. Objective Function Formulation

3.3.1. Time-to-event probability
In our model, we compute the time-to-event probability, i.e., the

probability that “the target event occurs at time tj”, by

= = =

=

=

x xp y t p y t W V( | , ) ( | , , )
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x

j j
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exp( || || )
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with model parameter = W V{ , }, where ×W d m denotes the linear
transformation matrix which maps a vector from the m-dimensional
feature space to the d-dimensional time concept vector space;

×V d | | denotes a matrix whose j-th column vector, Vj: , is the vector
representation of the event occurrence time, tj with =j 1, 2, , | |;||·||2
is the L-2 norm.

When an example is censored, the target event’s exact occurrence
time is unknown, therefore (1) is not appropriate for calculating the
time-to-event probability. Instead, because we know the censoring time
and the fact that the event has not occurred up to that time, we can
model the probability of “the target event will occur after time tj” by
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3.3.2. Optimization objective
For notation simplicity, qi, defined by (2), is used to denote the

event probability for the i-th example if it is censored, otherwise, pi,
defined by (1), is used to denote the event probability for the i-th ex-
ample. Using the short-hand notations, pi and qi, the negative log-
likelihood based on the dataset can be written as

= = + =
=

s p s qW V( , ) ( ( 1)log ( 0)log ),
i

n

i i i i
1

where (·) is an indicator function whose returned value is 1 if the
condition is met, otherwise 0. It is important to note that the negative
log-likelihood is a function of both the linear transformation matrix, W,
and the time concept vector matrix V ; therefore, minimizing the ne-
gative log-likelihood could provide an optimal solution for our model.
To avoid overfitting and to enhance the generalization of the model, we
apply several regularization terms (note: detailed discussions on the
regularization terms are provided in the following section) and propose
to solve the following minimization problem:

= +

+ +

F W V W V W

V VD

minimize ( , ) ( , ) || ||

|| || || || ,F

W V,
1 2,1

2 2
23

(3)

in which, ||·||2,1 denotes the L2,1-norm, ||·|| denotes the nuclear norm,
||·||F denotes the Frobenius norm, and { , , }1 2 3 are the trade-off
parameters. The definition of the matrix, D, will be given in the fol-
lowing section.

3.3.3. Regularization
The L2,1-norm is known for inducing column sparsity. Therefore, in

addition to preventing overfitting, the L2,1-norm regularizer also acts as
a feature-selection mechanism. In practice, especially in the time-to-
event estimation tasks in the medical domain, the feature vectors are
often very high-dimensional. Being able to select the most relevant
features can not only improve the performance but also enhance the
interpretability of the model.

The nuclear norm is a low-rank matrix inducing regularizer. It has a
high utility value in our model. First, because the time concept vector
dimensionality is unknown in our optimization algorithm, we intend to
over-estimate the dimensionality in initialization. Having a low-rank
inducing regularizer could help determine the effective dimensionality.
Second, the nuclear norm regularizer may help generate structures in
the time concept vector space; i.e., similar time concepts vectors reside
in the same linear subspace.

The Frobenius norm is used to enhance the temporal smoothness
among time concept vectors. The time concept vectors corresponding to
two consecutive time points are similar, and thus the cumulative dif-
ferences of all consecutive time points should be small. The cumulative
difference square is represented by

=
=

+V V VD|| || || || ,
j

j j F
1

| | 1

: : 1 2
2 2

where the matrix ×D | | (| | 1) with the (i j, )-th element being

=
=
= +D

i j
i j

1,
1, 1

0, otherwise.
ij

Table 1
Notations and definitions.

Notation Definition

n The number of examples in a dataset
m The dimensionality of a feature vector
d The dimensionality of a time vector

= t t t t{ , , , , , }j1 2 | | , the set of distinct time points in the dataset
xi m The feature vector of the i-th instance
yi The last observation time of the i-th example

s {0, 1}i The status of the i-th example in its last observation (0: no event; 1:
event)

×V d | | A matrix whose j-th column vector, V j d: , is the concept vector
of time point, t j

×W d m A linear transformation matrix
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3.4. Optimization

There are two challenges to optimize our proposed objective func-
tion: first, the objective function is non-smooth; therefore, conventional
gradient-based approaches (e.g. conjugate gradient methods) are not
applicable; second, multiple variables (i.e. W and V) are required to
optimize, and their terms are not separable.

To address these challenges in this optimization problem, we pro-
pose an iterative proximal algorithm. In our proposed algorithm, we
formulate two non-smooth sub-problems: in the first sub-problem, the
time concept vector matrix, V , is treated as a constant, and a proximal
algorithm is applied to solve the optimal W; in the second problem the
linear transformation matrix, W, is treated as a constant, and a prox-
imal algorithm is applied to solve the optimal V . Then these two sub-
problems are solved repeatedly until the overall objective converges. As
the procedures for solving these two sub-problems are similar, we will
give a detailed description on solving the first sub-problem, and a si-
milar procedure can be used to solve the second sub-problem.

3.4.1. Sub-Problem 1: solving W, with V as a constant
By treating V as a constant, the original optimization problem with

objective function (3) is reduced to

= +F W W Wmin ( ) ( ) || || .
W

1 1 2,1 (4)

It is important to note that the objective function F W( )1 is convex be-
cause its first term (a log-softmax function) and second term (a norm)
are both convex. However, this problem is challenging due to the non-
smoothness in the L2,1-norm regularization. To solve this problem, we
make use of an auxiliary function

= +
+ +

Q trW W W W W W
W W W

( , ) ( ) (( ) ( ))
|| || || || .L

F2
2

1 2,1 (5)

Proposition 1. Let L( ) denote the Lipschitz constant of W( ), then for
any L L( ), we have

F QW W W( ) ( , ).1

This is straightforward to prove based on the convexity and the
smoothness of W( ) and the definition of the Lipschitz constant. It is
also straightforward to verify

= =Q F Q FW W W W W W( , ) ( ) and ( , ) ( ).1 1

Therefore, letting =W Wt and

=+ QW W Wargmin ( , ),t t
W

1 (6)

we arrive at the following relations:

=+ +F Q Q FW W W W W W( ) ( , ) ( , ) ( ).t t t t t t
1

1 1
1

Namely, (6) can be used as an updating rule for optimizing the objective
function, F W( )1 . By completing the square in (5), we can find that (6) is
equivalent to

=
+

=

+W
W W W W

W W

argmin || ( ( ))|| || ||

prox ( ( ))

t

L t
L

t
F

t
L

t

W

1

2
1 2

1 2,1

||·||
1

L
1 2,1 (7)

where prox ||·||L
1 2,1

is the proximal operator [28] of ||·||L 2,1
1 . Knowing the

analytical form of the proximal operator for the scaled L2,1-norm,
||·||2,1, being

= + jA A
A

prox ( ) (1
|| ||

) , ,j
j

||·|| :
: 2

2,1 (8)

and combining (7) and (8), we obtain the updating rule for + jW ,j
t
:

1

=+

+

W

W W( ( )) (1 ) ,
j

t

t
L

t
j

L W W

:
1

1
:

|| ( ( )) ||t
L

t j

1
1

: 2 (9)

where =+ max(·) (·,0). The procedure for solving sub-Problem 1 is de-
scribed in Algorithm 1.

Algorithm 1. Sub-Problem 1: solving W, while treating V as a constant

1: initialize W0

2: t 0
3: do

4: + + jW W W( ( )) (1 ) ,j
t j

t
L

t j
L t

L
t jW W

:
1 :

1
:

1
|| ( 1 ( )): ||2

5: t++
6: while <t andnotmax_iter converge
7: Return W

3.4.2. Sub-Problem 2: solving V , with W as a constant
By treating W as a constant, the original optimization problem with

objective function (3) is reduced to

= + +F V V V VDmin ( ) ( ) || ||
2

|| || .F
W

2 2
3 2

(10)

Following the derivations as in solving sub-Problem 1, we arrive at the
updating rule of V in a proximal operator form:

= ++
L

V V V V DDprox ( 1 ( ( ) )).t
L

t t t1
||·|| 32 (11)

The proximal operator of a scaled nuclear norm [28], ||·|| , is

=A U A Rprox ( ) diag(prox ( ( ))) ,||·|| ||·||1 (12)

where A( ) denotes the vector of singular values of a matrix, A;
{U A R, diag( ( )), } is the singular value composition of A, and

= + +a a 1 a 1prox ( ) ( ) ( )||·||1 (13)

is the proximal operator for the scaled vector L1-norm. The symbol, 1,
denotes a one-vector with an appropriate dimension. Combining ()()()
(11)–(13), the updating rule of V can be written as

=+
+ +1 1

L L
V U V V Rdiag(( ( ) ) ( ( ) ) ) ,t 1 2 2

(14)

where {U V R, diag( ( )), T} is the singular value decomposition of
+V V V DD( ( ) )t

L
t t1

3 . The procedure of solving sub-Problem 2 is
given in Algorithm 2.

Algorithm 2. Sub-Problem 2: solving V , while treating W as a constant

1: initialize V0

2: t 0
3: do

4: +SVDU V R V V V DD{ , diag( ( )), } ( ( ( ) ))t
L

t t1
3

5: =+ + +1 1V U V V Rdiag(( ( ) ) ( ( ) ) )t
L L

1 2 2

6: t++
7: while <t andnotmax_iter converge
8: Return V

To solve the optimization problem with the objective function (3)
involving both variables W and V , we propose to use Algorithm 3, in
which sub-Problems 1 and sub-Problem 2 are solved iteratively until a
convergence is reached.
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Algorithm 3. An iterative proximal algorithm for solving (3)

1: initialize W0 and V0

2: repeat
3: Solve sub-Problem 1 using Algorithm 1
4: Solve sub-Problem 2 using Algorithm 2
5: untilconverge
6: Return W and V

4. Experiments

In this section, we describe our conducted experiments on the
proposed model. The first experiment focuses on demonstrating the
effectiveness of the proposed model by comparing the performance
with those from state-of-the-art models on several benchmark datasets
for the time-to-event estimation tasks. In the second experiment, we
visualize the learned time concept vectors and show a few interesting
observations. The third experiment focuses on empirically character-
izing the scalability of the proposed model by running on a number of
synthetic learning tasks in different settings.

4.1. Setup

The proposed model is implemented in Python 3.6.6 based on the
Numpy package. We also use the Autograd package for computing the
derivatives; i.e., W( )t in (7) and V( )t in (11). The code runs on a
workstation with an Intel Core i7 CPU 4 GHz and 32 GB of RAM. Each of
the hyper-parameters { , , }1 2 3 were determined by grid searches in
values {0, 0.1, 1.0} using cross-validation within the training set. The
time concept vector dimensionality, d, is set to =d 5| |, where is the
set of event times in the training set. One should notice that parameter d
is a number greater or equal to the effective dimension of the time
vectors, and the effective dimension should be less or equal to | |;
therefore, in our experiments, setting =d 5| | is rather arbitrary be-
cause the effective dimensionality of the time concept vector will be
automatically determined by the regularizations.

4.2. Experiment #1: comparisons to state-of-the-art models on benchmark
datasets

In this experiment, we compare the performance, in terms of the
concordance index, of the proposed model with the state-of-the-art
baseline models on several benchmark datasets for the time-to-event
estimation tasks.

4.2.1. Datasets
The 7 benchmark datasets used in this experiment are publicly

available for download. Details information of the datasets and the task
descriptions are provided as follows:

• Van de Vijvers Microarray Breast Cancer data (VDV)[29] contains
4,707 gene expression values on 78 (44 censored) breast cancer
patients for predicting occurrence of death in terms of year, up to
13 years.
• Gene-expression profiles of lung adenocarcinoma (Lung) [30] contains
7,129 gene expression values on 86 (62 censored) early-stage lung
adenocarcinoma patients for predicting occurrence of death in terms
of month, up to 110months.
• Mantle Cell Lymphoma (MCL)[31] contains 8,810 gene expression
values on 92 (28 censored) MCL patients for predicting occurrence
of death in terms of year, up to 14 years.

• Norway/Stanford breast cancer data (NSBCD) [32] contains 549 gene
expression values on 115 (77 censored) breast cancer women for
predicting occurrence of death in terms of month, up to 188months.
• Adult myeloid leukemia (AML)[33] contains 6,283 gene expression
values on 116 (77 censored) AML patients for predicting occurrence
of death in terms of month, up to 54months.
• Diffuse Large B-Cell Lymphoma (DLBCL) [34] contains 7,399 gene
expression values on 240 (102 censored) DLBCL patients for pre-
dicting occurrence time of death in terms of year, up to 21 years.
• Dutch Breast Cancer Data (DBCD) [35] contains 4,919 gene expres-
sion values on 295 (216 censored) breast cancer women for pre-
dicting occurrence time of death in terms of year, up to 18 years.

The 7 benchmark datasets are summarized in Table 2. To have a fair
comparisons to the baseline models, we adopt the evaluation settings in
[14], in which 5-fold cross-validation is used when the number of ex-
amples is greater than 150 and 3-fold cross-validation otherwise.

4.2.2. Baseline models
Based on the popularity and accessibility, we compared our pro-

posed model to 16 baseline models.
Cox based models. The Cox proportional hazards model [18] is the

most commonly used survival analysis model. Besides the basic for-
mulation, the L1-norm regularized variant, LASSO- Cox [20], and the
elastic net regularized variant, EN-Cox [21], are also widely used.

Censored regression models. Standard likelihood function estimation
incorporates censored examples [22]. Based on the assumptions of the
underlying distributions, it has four variants: Weibull, Logistic, Log-
Logistic, and Log-Gaussian.

Linear models. Tobit model [23] is an extension of linear regression
that incorporates censored examples with parameters estimated by the
maximum likelihood method rather than using least squares error.
Buckley-James regression [26] (BJ-EN), is a linear model which in-
corporates censored examples by estimating the censored value using
the Kaplan-Meier estimator [25] with elastic net regularization.

Pairwise ranking based models. Boosting concordance index [36]
(Boost-CI) is a gradient boosting algorithm to optimize the smoothened
version of the concordance index.

Multi-task learning models. MTLSA is multi-task formulation tailored
for handling censored examples [14] by introducing an indication table
and a non-negative non-increasing list structure constraint.

Others. SurvGB [11] is a gradient boosting model for survival ana-
lysis. SurvSVM-Linear [37] is a rank and regression based SVM adoption
for survival analysis using a linear kernel. SurvSVM-RBF [38] is an ef-
ficient SVM-based survival analysis model using the radial basis func-
tion kernel. BJ-Neural is a 2-layer neural network with Rectified Linear
Unit Activation functions to optimize an objective of Buckley-James
regression [26].

4.2.3. Performance metric
Due to the presence of censored examples, concordance index (CI or

Table 2
Summaries of the 7 benchmark datasets (ordered by # example).

Dataset example size censored size feature size No. of distinct time

VDV 78 44 4705 13
Lung 86 62 7129 110
MCL 92 28 8810 14
NSBCD 115 77 549 188
AML 116 49 6283 54
DLBCL 240 102 7399 21
DBCD 295 216 4919 18
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c-index) [39] is used to evaluate the performance of time-to-event es-
timation models. The CI of a model, g, is defined as [40]:

= >
= >

x xg
num

g gCI( ) 1 ( ( ) ( )),
s y y

j i
1i j i

where (·) is an indication function, and num is a normalization factor
such that CI(g) 1, and CI(g) = 1 is the best possible performance.

4.2.4. Comparisons
The results of SurvSVMs and SurvGB are obtained by using the

functions in the Scikit-Survival package. The result of BJ-Neural is ob-
tained by using the Scikit-Learning package. Results of the other baseline
models are adopted from [14]. To avoid the sampling bias introduced in
the random splits in the cross-validations, experiments are performed 5
times for each dataset-approach pair, and the means and the standard
deviations are calculated over the repeats. Because such a procedure is
not explicitly stated in [14], we assume that its reported results have
eliminated the sampling bias, and thus the performance across all the
baseline methods and datasets can be compared in a fair manner. The
mean CIs and corresponding standard deviations of all baseline models
and the proposed model on the benchmark datasets are shown in
Table 3, with the best performing method highlighted in boldface.

Because the datasets in the experiments are different (as shown in
Table 2), the performance in their corresponding tasks are not com-
mensurable; therefore, a one-side Sign Test [41] is conducted to test the
null hypothesis: the proposed method and the baseline method perform the
same. Table 4 shows the pairwise comparison of the proposed method
and each of the baseline methods. Column 2 shows the number of wins
that the proposed method obtains in 7 benchmark datasets; column 3
shows the p-values of the Sign Test; column 4 and column 5 show
whether the null hypothesis can be rejected if the significance level are
set to 0.05 and 0.1, respectively. Although the Sign Test is suitable for

comparing model performances across multiple tasks/datasets, it is also
known to be weak [42]. Therefore, if the significance level is set to
0.05, the p-values show that the proposed method does not statistically
outperform MTLSA, SurvSVM-Linear, and SurvSVM-RBF; if the sig-
nificance level is set to 0.1, the proposed method statistically outper-
forms all the baseline methods.

The comparison results suggest that representing each discretized
event occurrence time as a concept with a vector representation and
using the time vectors as the proxies to the event occurring time are

Table 3
Concordance Indices (CIs) and corresponding standard deviations of all the models; The ranking of a model among all compared models in each dataset is included.
The highest ranked method in each dataset is highlighted with boldface.

VDV Lung MCL NSBCD AML DLBCL DBCD

CoxPH 0.597 (7) 0.516 (13) 0.577 (11) 0.441 (12) 0.552 (8) 0.455 (13) 0.554 (11)
± 0.011 ± 0.133 ± 0.059 ± 0.059 ± 0.068 ± 0.072 ± 0.123

CoxLasso 0.648 (4) 0.670 (3) 0.682 (8) 0.591 (10) 0.600 (4) 0.634 (4) 0.688 (8)
± 0.028 ± 0.091 ± 0.07 ± 0.109 ± 0.031 ± 0.042 ± 0.043

CoxEN 0.642 (5) 0.665 (4) 0.673 (9) 0.605 (9) 0.572 (6) 0.649 (3) 0.721 (4)
± 0.068 ± 0.07 ± 0.073 ± 0.1 ± 0.06 ± 0.039 ± 0.031

Logistic 0.528 (8) 0.571 (11) 0.483 (12) 0.379 (13) 0.454 (15) 0.484 (12) 0.491 (13)
± 0.14 ± 0.094 ± 0.068 ± 0.02 ± 0.077 ± 0.05 ± 0.087

Weibull 0.316 (16) 0.429 (15) 0.474 (14) 0.305 (15) 0.529 (12) 0.251 (16) 0.456 (16)
± 0.132 ± 0.01 ± 0.075 ± 0.153 ± 0.055 ± 0.063 ± 0.105

Log-Gaussian 0.521 (10) 0.412 (16) 0.256 (16) 0.444 (11) 0.405 (16) 0.317 (15) 0.488 (14)
± 0.165 ± 0.075 ± 0.072 ± 0.054 ± 0.065 ± 0.091 ± 0.055

Log–Logistic 0.527 (9) 0.592 (9) 0.480 (13) 0.238 (16) 0.468 (14) 0.425 (14) 0.526 (12)
± 0.107 ± 0.066 ± 0.072 ± 0.05 ± 0.08 ± 0.124 ± 0.023

Tobit 0.519 (11) 0.469 (14) 0.459 (15) 0.373 (14) 0.473 (13) 0.497 (11) 0.487 (15)
± 0.158 ± 0.136 ± 0.032 ± 0.021 ± 0.076 ± 0.053 ± 0.076

BJ-EN 0.608 (6) 0.665 (4) 0.723 (3) 0.622 (8) 0.650 (3) 0.629 (5) 0.709 (6)
± 0.065 ± 0.132 ± 0.11 ± 0.092 ± 0.059 ± 0.073 ± 0.039

Boost-CI 0.665 (3) 0.571 (11) 0.705 (5) 0.626 (7) 0.582 (5) 0.608 (7) 0.710 (5)
± 0.059 ± 0.093 ± 0.096 ± 0.083 ± 0.05 ± 0.03 ± 0.043

MTLSA 0.701 (1) 0.633 (8) 0.727 (2) 0.682 (3) 0.715 (2) 0.653 (2) 0.758 (2)
± 0.033 ± 0.075 ± 0.096 ± 0.045 ± 0.049 ± 0.071 ± 0.03

SurvGB 0.509 (12) 0.586 (10) 0.650 (10) 0.634 (5) 0.539 (11) 0.564 (10) 0.665 (10)
± 0.085 ± 0.07 ± 0.048 ± 0.089 ± 0.051 ± 0.056 ± 0.043

SurvSVM-Linear 0.481 (14) 0.706 (1) 0.719 (4) 0.647 (4) 0.552 (8) 0.599 (8) 0.709 (6)
± 0.055 ± 0.075 ± 0.059 ± 0.052 ± 0.044 ± 0.039 ± 0.027

SurvSVM-RBF 0.491 (13) 0.656 (6) 0.704 (6) 0.725 (1) 0.566 (7) 0.611 (6) 0.753 (3)
± 0.05 ± 0.053 ± 0.063 ± 0.04 ± 0.029 ± 0.025 ± 0.033

BJ-Neural 0.467 (15) 0.643 (7) 0.687 (7) 0.628 (6) 0.542 (10) 0.579 (9) 0.679 (9)
± 0.073 ± 0.066 ± 0.075 ± 0.042 ± 0.047 ± 0.037 ± 0.038

Proposed 0.681 (2) 0.685 (2) 0.742 (1) 0.712 (2) 0.719 (1) 0.669 (1) 0.759 (1)
± 0.128 ± 0.035 ± 0.038 ± 0.032 ± 0.042 ± 0.068 ± 0.081

Table 4
The pairwise comparison of the proposed method and each of the baseline
methods. Column 2 shows the number of wins that the proposed method ob-
tains in 7 benchmark datasets; column 3 shows the p-values of the Sign Test;
column 4 and column 5 show whether the null hypothesis, the proposed method
and the baseline methods perform the same, can be rejected if the significance
level are set to 0.05 and 0.1, respectively.

Proposed method
Wins

Sign Test p-
value

p-val <
0.05

p-val <
0.1

CoxPH 7 0.0078 YES YES
CoxLasso 7 0.0078 YES YES
CoxEN 7 0.0078 YES YES
Logistic 7 0.0078 YES YES
Weibull 7 0.0078 YES YES

Log-Gaussian 7 0.0078 YES YES
Log–Logistic 7 0.0078 YES YES

Tobit 7 0.0078 YES YES
BJ-EN 7 0.0078 YES YES
Boost-CI 7 0.0078 YES YES
MTLSA 6 0.0625 NO YES
SurvGB 7 0.0078 YES YES

SurvSVM-Linear 6 0.0625 NO YES
SurvSVM-RBF 6 0.0625 NO YES
BJ-Neural 7 0.0078 YES YES
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helpful for the time-to-event tasks. By effectively exploiting the rela-
tions between features and time concepts, one can obtain a more ac-
curate model for time-to-event estimation.

4.3. Experiment #2: regimes identification by visualizing the learned time
concept vectors

The proposed learning framework does not only learn the model
parameters (i.e. matrix W) but also learns the time concept vectors (i.e.
column vectors in matrix, V). In this experiment, we visualize the
learned time concept vectors and point out some interesting findings
based on cluster formations. To generate time concept vectors, we apply
the proposed model to each of the benchmark datasets using all avail-
able examples within a dataset. Using the best hyper-parameter settings
found in Experiment #1. After each learning process is finished, the
learned time concept vectors, which are high-dimensional, are pro-
jected on to a 2-dimensional space using t-SNE [43] for visualization. In
each of the 2-dimensional scatter plots in Fig. 2, the 2D projected time
concept vectors are indicated by their corresponding event occurrence
times. The two axes in the 2D plot usually have no specific meanings,
but the projections using t-SNE preserve the time concept vector dis-
tribution; in other words, time concept vectors that are in the same
manifold in the high-dimensional space will be projected to the same
cluster in the low-dimensional space.

Clusters can be easily identified in each scatter plot. For example,
three major clusters can be identified in the Lung dataset (Fig. 2)b and
two clusters can be identified in the AML dataset (Fig. 2e). The cluster
formations reveal the time regime information. For example, in the
AML dataset, one cluster consists of event occurrence time points 1–10,

and another cluster consists of time points 11 and above; this may
suggest that when a patient is estimated to have a survival time in-
between 1month and 10months, they are not likely to achieve a
complete remission, or are likely to suffer fatal complications of
therapy. If a patient is estimated to have a survival time 11months or
above, the patient is more likely to achieve a durable complete remis-
sion. Another interesting finding is that early occurrence time concepts
are able to form a cluster with the late occurrence time concepts. For
example, in the plot of the DBCD time concepts, the early time concepts
(0, 1, 2) are in the same cluster as late occurrence time concepts (11 and
above), and time concepts 3–10 form a second cluster. Clinical ex-
perience bears this out: some patients will present critically ill, with
most known prognostic factors not in their favor, yet they survive and
achieve a durable complete remission.

4.4. Experiment #3: model scalability evaluation on synthetic datasets

We empirically evaluate the scalability of the proposed model with
respect to the number of examples (n), the number of features (m), the
number of possible event times (T), and the dimensionality of the time
concept vector space (d). In this experiment, we synthetically generate
n 3-tuples =x sy{ , , }i i i i

n
1. Each elements in xi

m is generated by using a
uniform distribution in the open interval of (-1, 1); the event occurrence
time, y T{1, 2, , }i , are generated by using a discrete uniform dis-
tribution between one and the number of possible event occurrence
times, namely, = = = = = =P y P y P y T( 1) ( 2) ( )i i i T

1 ; and the event
status, s {0, 1}i are generated by a Bernoulli distribution with mean
0.5, namely = = = =P s P s( 0) ( 1) 0.5i i . Multiple runs are conducted for

Fig. 2. 2D scatter plots of the learned time concept vectors in the benchmark datasets. The numbers in each plot indicate the corresponding time concepts, and their
cluster formations may help in revealing time regimes.
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each (n m T d, , , ) setting; however, because the learning time variations
of the runs within the same setting are very small, the error bars
(standard deviations) of each point in the plots in Fig. 3 are not obvious.
Each curve in Fig. 3a shows the learning time of the model as the
number of examples (n) takes {100, 200, 500, 600} while m T, , and d
remain constant. Each curve in Fig. 3b shows the learning time of the
model as the number of features (m) takes {1000, 2000, 4000, 5000}
while n d, , and T remain constant. Each curve in Fig. 3c shows the
learning time of the model as the number of possible event times (T)
takes {25, 50, 75, 100} while n m, , and d remain constant. Each curve
in Fig. 3d shows the learning time of the model as the time concept
dimensionality (d) takes {100, 150, 200, 250} while n m, , and T remain
constant. These figures demonstrate that the learning time of the pro-
posed model is approximately linear with respect to n m T, , , and d.
Therefore, the time complexity of the proposed algorithm is approxi-
mately nmTd( ). That means, in each sub-figure, the slope of the top
(red) curve is approximately 50 times as the slope of the bottom (blue)
curve, and thus the bottom (blue) curve looks very “flat”.

5. Conclusion

In this study, we propose a new model for the time-to-event esti-
mation problem. In the proposed model, instead of using the actual
time points, time concept vectors are used as the target. A scalable
optimization framework is also developed to learn the model para-
meters and time concept vectors jointly. Empirical results show that the
proposed model is effective and efficient. It yields results consistent
with clinical observation. Using this methodology may reveal pre-
viously unrecognized associations between specific clinical character-
istics and survival, generating hypotheses to drive further prospective
investigation.
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