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Abstract—Leveraging temporal observations to predict a pa-
tient’s health state at a future period is a very challenging
task. Providing such a prediction early and accurately allows
for designing a more successful treatment that starts before a
disease completely develops. Information for this kind of early
diagnosis could be extracted by use of temporal data mining
methods for handling complex multivariate time series. However,
physicians usually prefer to use interpretable models that can be
easily explained, rather than relying on more complex black-box
approaches. In this study, a temporal data mining method is pro-
posed for extracting interpretable patterns from multivariate time
series data, which can be used to assist in providing interpretable
early diagnosis. The problem is formulated as an optimization-
based binary classification task addressed in three steps. First,
the time series data is transformed into a binary matrix represen-
tation suitable for application of classification methods. Second, a
novel convex-concave optimization problem is defined to extract
multivariate patterns from the constructed binary matrix. Then,
a mixed integer discrete optimization formulation is provided to
reduce the dimensionality and extract interpretable multivariate
patterns. Finally, those interpretable multivariate patterns are
used for early classification in challenging clinical applications. In
the conducted experiments on two human viral infection datasets
and a larger myocardial infarction dataset, the proposed method
was more accurate and provided classifications earlier than three
alternative state-of-the-art methods.

Keywords—early classification; multivariate time series; early
diagnosis; interpretability; pattern extraction;

I. INTRODUCTION

Providing correct and timely diagnosis saves lives [1].
The severity of many life-threatening diseases can be greatly
reduced by administering treatment before the diseases have
fully manifested. In addition, early diagnosis may also result
in less-intensive therapy, less time spent recovering, and lower
cost of treatment. However, making accurate early diagnoses is
a challenging problem. Many diseases (such as primary thyroid
lymphoma, Alzheimer disease, acute lymphoblastic leukemia
[2]) have heterogeneous presentations where a variety of
genetic defects cause the same disease, which conventional
diagnostic criteria often fail to recognize. The quality of
diagnosis can be significantly improved by using the infor-
mation from multivariate data collected from the patient over
time. However, utilization of those complex high-dimensional
temporal data to support clinical decisions is still not fully
implemented since physicians lack the tools to extract relevant
clinical information in a timely manner. Extracting useful early
temporal patterns and building accurate predictive models on
such data provides a great challenge for the data mining
community.

To successfully implement a data mining method in appli-
cations related to medical decisions, it is necessary to consider
some specific requirements. In medical applications, one of
the most desirable properties of a data mining method is
interpretability. Physicians tend to prefer methods where it is
clear exactly which factors were used to make a particular
prediction [3]. Moreover, physicians prefer to have a concise
list of temporal patterns to predict patients’ health. For exam-
ple, as noted by [4], ”the occurrence of hypotension episodes
taking place during dialysis treatments when arterial blood
pressure decreases, the organism reacts with an increase in
the heart rate, which then goes back to normal values as
soon as blood pressure increases”. Therefore, interpretable
methods are much more convincing than “black-box” methods,
especially when only a few key factors are used, and each of
them is meaningful.

Another important aspect to consider is the need for
predictions to be provided as early as possible. The patient
is observed for few time points and then as soon as the
match between the patient’s data and any of the extracted
patterns is found, the decision is provided immediately so that
the physician can take an appropriate diagnosis and save the
patient’s life.

In this work, we develop an optimization-based approach
for extracting multivariate Interpretable Patterns for Early
Diagnostics (IPED) of time series data that provides the
predictions. The contributions of our paper are the following:

• We formulate and solve a novel convex-concave opti-
mization problem to a extract large set of patterns from
multivariate time series data. Our method allows the
patterns to appear at different time points in different
dimensions and to be of different lengths.

• We formulate and solve a novel discrete optimization
problem to extract a few key patterns from previously
extracted large set of patterns. The dimension of each
of these key patterns is less than the dimension of
the observed multivariate time series. Therefore, the
method is able to identify the relevant dimensions in
larger dimensional series.

• We show that easily interpretable key patterns can be
used for accurate early classification.

II. METHODOLOGY

We start in this section by highlighting the framework of
our IPED method and then explaining each part of the method
in detail in the following sections.
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Fig. 1. IPED framework. (a) Transformation of N -variate time series observations on M subjects into a binary matrix using shapelets. The columns are the
shapelets and the rows are the subjects. The elements of the matrix indicate the presence of the shapelet in the subject. Each group (different color) contains
all shapelets extracted from a single dimension. (b)Extraction of a full-dimensional shapelet from the binary matrix such that only one univariate shapelet from
each group is extracted. (c) Extraction of key shapelets (fewer dimensional shapelet) from the full-dimensional shapelet.

A. Method Sketch

First, let us introduce the notations we use throughout the
paper. Let D = {(Ti, yi); i = 1 . . .M} be a dataset of M
patients where Ti is a multivariate time series of observations
for the i-th patient and yi is a binary class label describing a
status of this patient at the end of an observation period (e.g. 0
- healthy, 1 - sick). For simplicity of representation, we assume
that each time series is of length L (this is not necessary in
our method). Let N be the number of dimensions of the time
series. T j

i is the jth dimension of the time series Ti where
j = {1, . . . , N}.

A recent study notes “transforming the data is the simplest
way of achieving improvement in problems where the discrimi-
nating features are based on similarity in change and similarity
in shape” [5]. Following this principle, we extract all time
series subsequences of different lengths from each dimension
of the multivariate time series. These subsequences are called
univariate shapelets (or simply shapelets). The shapelet is used
for discriminating between groups of time series. Therefore,
we compute a distance threshold for each shapelet to maximize
the information gain [6]. Using the shapelets, we construct a
binary matrix (Figure (1a)) where each element of the matrix
indicates the presence of the shapelet (column) in the subject
time series (row) based on the shapelet’s distance threshold.
The shapelets are organized into N groups such that each
group contains all shapelets extracted from one dimension.

Next, for each class we extract a multivariate shapelet
from the binary matrix such that only one shapelet from each
group is extracted (Figure (1b)). We call the extracted multi-
variate shapelet a full-dimensional shapelet since it contains
a representative from each dimension of the observed time
series. The problem of extracting a full-dimensional shapelet
that maximizes the accuracy is formalized as an optimization
problem, which is solved using convex-concave procedure [7].

As humans are able to estimate relatedness of only a
few variables at a time [8], and some variables of the time
series might be irrelevant for early classification, we extract
key shapelets from the full-dimensional shapelet (Figure (1c)).
We formalize this problem as a mixed integer optimization
problem. Clearly, the resulting dimension of the key shapelet
is less than or equal to the dimension of the observed time
series. Then, we repeat that process to extract several full-

dimensional shapelets and key shapelets for each class.

Finally, we use all the extracted key shapelets, as a
representative for the class, for early classification. In early
classification context, the objective is to observe the patient
for a few time points and then compare the observed time
series of the patient with the extracted key shapelets. If there
is a match between the shapelet and the observed time series,
the prediction is done. Otherwise, we observe the patients for
more time points until a match is found.

We call our method, an optimization-based approach for In-
terpretable Pattern extraction for Early Diagnostics (IPED). We
address the problem in three steps. In following Section II-B
we transform this problem into binary matrix presentation. We
use such representation in Section II-C to develop a convex-
concave optimization method that extracts discriminative mul-
tidimensional patterns. From multidimensional patterns we
extract a few key patterns by novel discrete optimization
method presented in Section II-D. Finally, in Section II-E we
show how key patterns can be used for early classification.

B. Problem Transformation to a Binary Matrix Representation

Let Sj
ikl = T j

i [k, . . . , k+l−1] be a contiguous subsequence

of the time series T j
i of length l that starts at time point k.

These subsequences are patterns of interest called univariate
shapelets (or simply shapelets) [6]. An effective method to
extract all shapelets is described in [9], [10]. This method
iterates over all dimensions j of all M time series, and for each
subject univariate time series T j

i it extracts all subsequences

Sj
ikl (shapelets) of length l that start at the kth time point. In

other words, the method extracts all univariate shapelets from
the time series dataset. Each shapelet will be referred to as
Sj
ikl which means the subsequence of length l that is extracted

from jth dimension of the time series Ti from the start position
k.

Our objective is to extract a few key shapelets and to use
them for discriminating between classes. The discriminative
shapelets are those that are present in the time series of one
class but not in time series of another. Therefore, we transform
our problem into a problem of selecting patterns from binary
matrix which indicate presence of shapelets in time series. The
transformation process is summarized in Algorithm 1.
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Fig. 2. In this example, the shapelet S2
534 (short red line) of length 4, is

extracted from the 2nd dimension of the time series T5, of length 15, from
the starting position 3. dist is an array of distances dm between the shapelet
S2
534 and the 2nd dimension of each time series Tm : m = {1, 2, . . . ,M}.

Note that the distance between S2
534 and T 2

5 is zero because the shapelet is
extracted from T 2

5 .

For each extracted shapelet Sj
ikl we compute the distance

between the shapelet and jth-dimension of each of M mul-
tidimensional time series in the dataset using the function
ComputeDist. The distance between Sj

ikl and time series T j

is defined as the minimum distance between Sj
ikl and each

subsequence of length l from T j . The function ComputeDist
returns an array dist of length M where the mth-element
represents the distance between the shapelet Sj

ikl and the time
series T j

m (Figure (2)). Next, we need to determine threshold

djikl on distances such that if the distance is less than threshold
we say that the shapelet is present in the time series and
vice versa. For each shapelet we compute threshold so that
it maximizes the separation of the dataset into two classes
by maximizing information gain [6] (an ideally discriminative
shapelet is the one that is present in all time series of one class
but not in any time series of another class).

Note that for a shapelet Sj
ikl that is extracted from j-th

dimension we only determine its presence in j-th dimension
of time series of all patients. We say that a shapelet Sj

ikl is

present in (covers) the time series T j if distance between Sj
ikl

and T j is less than a threshold djikl.

Algorithm 1 Transformation of N -dimensional Time Series

Input: A training dataset D of M N -dimensional time
series; minL; maxL (user parametersfor minimum and
maximum shapelet’s length)
Output: A binary matrix F where rows represent subjects
and columns represent shapelets
for j = 1 to N do {each dimension}

for i = 1 to M do {each subject time series}
for l = minL to maxL do {each shapelet’s length}

for k = 1 to L− l + 1 do {each start position}
dist = ComputeDist(Sj

ikl, D)
Compute distance threshold djikl
Construct column feature F j

ikl
end for

end for
end for

end for

Consequently, we construct a binary vector F j
ikl which

depicts the presence of the shapelet Sj
ikl in all training subjects

(e.g. a column in Figure (1)). The mth element in the vector
F j
ikl equals 1 if the distance between the shapelet Sj

ikl and the
time series T j

m is less than the shapelet’s distance threshold

djikl. Otherwise, it is 0. We call binary vector F j
ikl the profile of

the shapelet Sj
ikl [11]. For example, each column in Figure (1a)

represents a univariate shapelet profile.

Algorithm 1 returns a binary matrix F of size M×R where
M is the number of subjects and R is the number of shapelets,

where R = NM
∑maxL

k=minL k(L− k+1). The columns of the
matrix F are partitioned into N groups such that each group
j contains all extracted shapelets from the dimension j as in
Figure (1a).

C. Extracting Full-dimensional Shapelets

The binary matrix F contains profiles for all shapelets
from all dimensions of the time series. Having in mind the
need for interpretability, for each class, our objective is to
retain exactly one “class representative” univariate shapelet
from each dimension of multivariate time series such that
classification accuracy is maximized. The naı̈ve approach to
extract such representative shapelets is to look at each dimen-
sion separately and extract the shapelet which maximizes the
accuracy (or minimizes classification loss) within the observed
group. However, with this approach the possible interactions
among shapelets from different groups are not taken into
account.

We propose a novel method that simultaneously finds
exactly one representative shapelet in each group. In order
to mathematically define the problem that we are solving, let
us assume that we have N groups of shapelets, where Rj

is the number of shapelets in group j, j = {1, . . . , N}. We

then assign weight wj
i to each shapelet i = {1, . . . , Rj} in

group j which measures the importance of the shapelet in
the classification. If we do not impose any restrictions on
weights W = {wj

i }, the optimal weights can be found by
minimization of logistic loss over M subjects in the training
data. The objective becomes minimization of logistic loss L1

with respect to the weights W .

minimize
W

M∑
m=1

log(1 +

Im︷ ︸︸ ︷
e−ym·

∑N
j=1

∑Rj

i=1(w
j
i ·fj

im))

︸ ︷︷ ︸
L1

(1)

where f j
i represents the profile of the shapelet i from the group

j, i.e. one column in the binary matrix F in Figure (1). f j
im

represents the mth component of f j
i and ym is the label for

the mth subject.

To be able to identify exactly one shapelet within each
group we solve the following optimization problem with
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constraints on the weights W

minimize
W

L1 (2a)

subject to 0 ≤ wj
i ≤ 1, ∀i, j, (2b)

Rj∑
i=1

wj
i = 1, ∀j, (2c)

max
i=1...Rj

wj
i = 1, ∀j. (2d)

Equation (2b) indicates that all weights are bounded. The
lower bound has to be 0 as we are interested only to extract
representative shapelets for the positive class. The upper bound
can be any positive real number. For simplicity we set the
upper bound to 1. We need to impose this upper bound to
be able to assure that exactly one weight within a group
is not 0 and all other weights in the same group are equal
to 0 by (2c) and (2d). Equation (2c) restricts weights to be
normalized making sum of all weights within a group to be
equal to 1. When (2c) is used together with (2d), which says
that maximum weight within a group has to be equal to 1, we
achieve that exactly one wj

i within a group j is 1 while all
other weights within a group j have to be 0.

The constrained optimization problem (2) is hard to solve
since the max function is not differentiable. To be able to
apply standard convex apparatus, we propose a transformation
of (2) into a new optimization problem in which we: 1) relax
hard equality constraints by introducing penalized terms in the
objective function and 2) approximate the max function with
convex differentiable log-sum-exp function. The objective
function with relaxed hard equality constraints becomes:

minimize
W

L1 + C1 ·

L2︷ ︸︸ ︷
N∑
j=1

(

Rj∑
i=1

wj
i − 1)2

+ C2 ·
N∑
j=1

(1− max
i=1...Rj

wj
i ) (3a)

subject to 0 ≤ wj
i ≤ 1, ∀i, j. (3b)

where we set the penalization parameters C1 and C2 to some
values (C1 = C2 = 0.1 in our experiments). The intuition
behind these penalization terms is that we would like to
penalize the difference between sum of weights and 1, as well
as maximum weight in each group and 1. We use quadratic
penalty in the first term, as the sum of weights can be both
greater or less than 1. We do not need quadratic penalty in
the second term, as max

i=1...Rj
wj

i is always less than or equal

to 1 because of constraint (3b). For that reason, we need to
penalize the difference between 1 and max of weights without
the need for squaring the term.

To get a differentiable optimization function we need to
approximate max with a smooth function. We start with the
following lower bound for the max function [12]

max
i=1..Rj

wj
i ≥ log(

Rj∑
i=1

ew
j
i )− logRj . (4)

Then we have

1− max
i=1..Rj

wj
i ≤ 1− log(

Rj∑
i=1

ew
j
i ) + logRj .

︸ ︷︷ ︸
Mj

(5)

This means that the second penalization term is upper bounded
with smooth log-sum-exp function. Penalizing the right hand
side of (5) assures that the maximum is close to 1. If we
combine (5) and (3) we get an optimization problem:

minimize
W

L1 + C1 · L2 + C2 · L3 (6a)

subject to 0 ≤ wj
i ≤ 1, ∀i, j. (6b)

where L3 =
∑N

j=1Mj . The objective function (6a) is convex-
concave. L1 and L2 are convex while L3 is concave as it is
equal to negative convex log-sum-exp function. Therefore,
we can apply the convex-concave procedure (CCCP) [7], [13]
to find the global optimal solution. The application of CCCP
to find optimal solution is shown in Algorithm 2. The term

Algorithm 2 Extract Full-Dimensional Shapelet

Initialize W 0

repeat

W t+1 = argmin
W

J︷ ︸︸ ︷
L1 + C1 · L2 + C2 ·W ·

(
dL3

dW

)
W=W t

until Convergence of W {W t+1 −W t ≤ 0.01}

(dL3/dW )W=W t is the derivative of L3 at the point W t. The
advantage of CCCP is that no additional hyper-parameters are
needed. Furthermore, each update is a convex minimization
problem and can be solved using classical and efficient convex
apparatus.

Since we now have a smooth, differentiable objective func-
tion J with only inequality constraints, we can use the trust-
region-reflective algorithm for solving the problem [14]. In
order to quickly solve the problem we compute first derivatives
of the objective function with respect to the weights W , and
approximate Hessian with diagonal matrix [15] as follows

∂J
∂wj

i

=

M∑
m=1

Im · (−ym · f j
im)

1 + Im + 2 · C1 · (
Rj∑
i=1

wj
i − 1)

− C2 ·
(

expw
j
i∑Rj

i=1 exp
wj

i

)
W=W t

, (7)

∂2J
∂wj

i ∂w
j
i

=
M∑

m=1

Im
(1 + Im)2

· (ym · f j
im)2 + 2 · C1. (8)

D. Extracting Key Shapelets

As humans are able to perceive only a few variables
at a time [8], using the full-dimensional shapelets for early
classification has several drawbacks, evidenced by our ex-
periments reported in Section III-D. First, if the number of
the dimensions of the time series is high, then it would be
implausible for all components of the shapelet to cover all
dimensions of the time series. This will affect the earliness of
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the method and the decision of the classification would come
late, if it comes at all. Second, if some of the dimensions are
irrelevant to the target, then these irrelevant dimensions will
be subsequently inherited to the full-dimensional shapelet and
would affect the overall accuracy of the method. Therefore,
we propose a method to extract automatically, for each class,
discriminating representative key shapelets by extracting all
relevant dimensions from the full-dimensional shapelet.

Let’s simplify the idea of the key shapelet with the fol-
lowing example. Assume that we have 8 subjects where the
class labels of the subjects are defined in y. Suppose we have
extracted a large dimensional (3-dimension) shapelet S with
its profile Ŝ as representative for the positive class (as in
Figure (1b)). We would like S to have maximum coverage
for the positive class and minimum coverage for the negative
class (that is present in all time series of the positive class but
not in the time series of the negative class).

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
−1
−1
−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ŝ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 0 1
1 1 1
1 1 1
0 1 1
0 0 0
0 1 0
1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ŝ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1
1 1
1 1
0 1
0 0
0 0
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The full-dimensional shapelet S covers a time series if each
component of S covers the corresponding dimension of the
time series. Since the first row of Ŝ has three ones, it means
that each component of the shapelet S covers the correspond-
ing dimension of the time series for subject 1. Therefore, the
shapelet S covers the first subject. The same for the 3rd and
4th subjects. The shapelet S does not cover the 2nd subject
because the 2nd component does not cover the corresponding
dimension of the time series of the 2nd subject. Then, S
has positive coverage 75% (covers 3/4 of the subjects in the

positive class). It is clear from the second column in Ŝ that the
2nd component in S is noisy because it is represented three
times in the positive class and two times in the negative class
(1st, 3rd, 4th, 5th and 7th subjects).

Obviously, we can extract a key shapelet S′ with only
two components from S. S′ has better positive coverage than
S because it covers all positive subjects and does not cover
any negative subject. Sometimes we can extract multiple key
shapelets from one full-dimensional shapelet.

A recent paper proposed a novel mixed integer optimization
approach for extracting interpretable compact rules for the
classification task [16], [17]. Thus, we adapt the approach
to selecting several key shapelets from a full-dimensional
shapelet. Here we review the method along with our modi-
fications.

It is worth mentioning that we could minimize the logistic
loss with L1 and L2 regularization terms (elastic net) instead
of using the integer discrete optimization problem because
the penalized logistic regression is much faster. However,
properties of penalized logistic regression are not suitable for
early classification which we will explain later in this section
why elastic net does not work for our application. However,
the results when applying penalized logistic regression to

our datasets were worse than using a novel mixed integer
optimization approach (Section III-F).

Let b ∈ {0, 1}N be a binary vector that encodes the
presence of the N components in the key shapelet. For
example, S′ is encoded by the binary vector b = [101] which
means that only the first and third components are in the key
shapelet S′. Let xi be defined as

xi =

{
1 if S′ covers the subject i,
0 otherwise.

The problem of selecting a key shapelet from the full-
dimensional shapelet S can then be formulated as the following
optimization problem

maximize
b,x

∑
i+

xi −R1

∑
i−

xi −R2

N∑
j=1

bj (9a)

subject to xi ≤ 1 + (Sij − 1)bj , ∀i, j, (9b)

xi ≥ 1 + (Si − 1N)T b, ∀i, (9c)

N∑
j=1

bj ≥ B, (9d)

bj ∈ {0, 1}, (9e)

0 ≤ xi ≤ 1. (9f)

where 1N is an N -dimensional column vector of all ones
and i = {1 . . .M}, j = {1 . . . N} unless otherwise stated.
i+ are indices for all positive subjects and i− are indices for
all negative subjects. R1, R2, and B are parameters that will
be discussed later.

The first term of the objective function (9a) corresponds
to maximizing the coverage of the shapelet for the positive
class while the second term ensures that the shapelet is not
represented in the negative class. The last term controls the
sparsity of the multivariate shapelet. So, if there are several
optimal solutions that maximize the coverage for the positive
class and minimize the coverage in the negative class, we
choose the one that has less components. R1 and R2 control
the weights for those terms and have been set as R1 = 10
to emphasize the importance of non-coverage for the negative
class, and R2 = 0.1

MN as was set previously [16].

For the constraint (9b), we have two cases for bj . If bj = 0
then the constraint is just xi ≤ 1 which has no effect. If
bj = 1 then the constraint becomes xi ≤ Sij which means that
xi = 0 if the subject i is not covered by the component j. The
constraint (9c) explains the case when the subject i is covered
by the component j. Therefore, the constraints (9b) and (9c)
combined ensure that xi = 1 if and only if all the components
of the shapelet cover all the corresponding dimensions of
the subject i (this is the main reason why this approach
outperformed the elastic net approach in early classification.
Elastic net allows some components of the shapelets to be zero.
Although it seems to be an advantage for elastic net, it did not
work in early classification context).

The constraint (9d) determines the minimum number of
components of the multivariate shapelet. Complex shapelets
(high values of B) increase the accuracy performance of the
method because B dimensions of the time series would be
covered. However, this might affect the earliness. Therefore,
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Algorithm 3 Extract Key Shapelets

Input: full-dimensional shapelet profile Ŝ
Output: List of key shapelets
while PosCoverage(S′) ≥ CovThreshold do

S′ = Solve problem (9)
Add S′ to Solutions
Add new constraint (10)

end while
Rank Solutions

the multivariate shapelet can not be neither too simple nor
too complex. In Section III-C, we study the sensitivity of the
method on the model complexity parameter B.

By solving the problem (9), we obtain one key shapelet.
Sometimes, there are several optimal key shapelets that could
be extracted from the same full-dimensional shapelet. There-
fore, we need to resolve the problem (9) to obtain more key
shapelets. However, we need to make sure that the second time
we solve the problem, we will not get one of the previous
solutions. So, each time we solve (9) we add the following
constraint

1−
∑

j:b∗j=0

bj −
∑

j:b∗j=1

(1− bj) ≤ 0, (10)

where b∗ is the previous solution. The constraint (10) ensures
that the new solution does not equal to the previous solution.
So, the final key shapelets would have different components.

Therefore, we initially solve problem (9) and get an optimal
solution. Then we add a new constraint (10) and resolve the
problem (9) to get a new optimal key shapelet. We repeat this
process by solving (9) until the solution has positive coverage
(number of positive subjects covered by the shapelet using
function PosCoverage) less than a threshold or we exceed a
certain number of iterations. After we extract all key shapelets,
we rank them such that the first ranked shapelet has maximum
positive coverage. The process is shown in Algorithm 3.

Up to this point we have extracted several key shapelets
that cover subjects in the positive class. We can iterate this
procedure (extracting a full-dimensional shapelet followed by
extracting key shapelet) for additional I iterations. Having
in mind the need for interpretability and selecting only key
shapelets as well as the need to avoid overfitting with too
complex model [18], we consider I = 2 iterations. We then
flip the labels of the subjects and do the same process again
by iteratively extracting a full-dimensional shapelet and then
key shapelets for the other class. The whole IPED procedure
is summarized in Algorithm 4.

E. Key Shapelets for Early Classification

After running Algorithm 4, we end up with several key
shapelets for each class. For a time series with unknown
label, the IPED method initially reads minL (minimum length
of any shapelet which is user parameter) time stamps from
the test time series. First, the highest-ranked key shapelet
is considered. If any of the components of the key shapelet
covers the corresponding dimension of the current stream of
the test multivariate time series, we mark the component of the
shapelet that covers the time series. Recall that the component

Algorithm 4 IPED

Input: A time series dataset D.
Transform D into binary matrix (Algorithm 1)
for c = 1 to C do

Consider c as the positive class
for i = 1 to I do

Extract full-dimensional shapelet (Algorithm 2)
Extract key shapelets (Algorithm 3)

end for
end for

of the shapelet covers a time series if the distance between the
time series and the component of the shapelet is less than the
distance threshold of the component. If all components of the
shapelet are marked, then the time series is classified as the
class of the shapelet and the process stops. Otherwise, next key
shapelet from the ranked list is considered and the process is
repeated. If none of the shapelets cover the current stream of
the test time series, the method reads one more time stamp and
continues classifying the time series. If the method reaches the
end of the time series and none of the shapelets cover it, the
method marks the time series as an unclassified subject.

We note that the components of the multivariate shapelets
may classify the time series at different time points. So, one
component of the multivariate shapelet may cover the time
series at time point t1 and the other component may cover the
time series at t2 where t2 > t1. However, the final decision is
made only when all components cover the time series, which
is the last time point t2. Therefore, the test time series could
be classified after reading a number of time points greater than
the shapelet’s length.

III. EXPERIMENTAL RESULTS

The IPED method is applicable in any context where
interpretable early classification is desired. In order to compare
IPED to the state-of-the-art method for interpretable early
classification [19], [20] and for time series classification [18],
we show the accuracy and earliness performance of IPED on
three challenging medical datasets. A brief description of the
data is shown in Table I. A description for the methods we
compare to is provided in Section IV.

We used datasets for blood gene expression from human vi-
ral studies with influenza A (H3N2) and live rhinovirus (HRV)
to distinguish individuals with symptomatic acute respiratory
infections from uninfected individuals [21]. Since the dataset
has relatively small number of patients, we apply leave one
out cross validations.

PTB [22] is an ECG database available at the Physionet
website1 [23]. In this application, we are interested in distin-
guishing between ECG signals of individuals with myocardial
infarction (368 records) and those of healthy controls (80
records). The dataset consists of records of the conventional
12 leads ECGs together with the 3 Frank lead ECGs. Since
the dataset is imbalanced, we report the accuracy as the
average between sensitivity and specificity. 20 patients (10

1http://www.physionet.org/physiobank/database/ptbdb
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TABLE I. DATASETS DESCRIPTIONS. THE NUMBER BETWEEB

PARANTHESE ARE THE NUMBER OF SUBJECTS IN EACH CLASS.

H3N2 HRV PTB

Number of Subjects 17(9/8) 20(10/10) 448(368/80)

Time Series Length 16 14 3200

Number of dimensions 23 26 15

from each class) are used as training data (to simulate the real-
life scenario where a small number of temporal observation are
provided) and 428 patients are used for tests.

A. Experimental Setup and Evaluation Measures

We compare our method to 3 alternative methods. Logical
Shapelet (LS) [18], Early Distinctive Shapelet for Classifica-
tion (EDSC) [20], and Multivariate Shapelet Detection (MSD)
[19] (see Section IV for descriptions of these methods). LS is
designed for classification of univariate time series and EDSC
for early classification of univariate time series. Therefore, we
applied both methods on two settings: 1) on each variable of
the dataset separately. 2) on a new variable that is constructed
by concatenating all the variables in the dataset. We report the
one that gives the best result. However, LS is not designed for
early classification, therefore, it utilizes the full time series
of the test data. The MSD method is designed for early
classification of multivariate time series so it is applicable
directly to our datasets.

The coverage threshold used in Algorithm 3 to retrieve
more key shapelets is set to be 50% of the training class
subjects, to ensure that more training subjects are covered and
to allow for variability among subjects. The maxIter is set to
5 to limit the computational time. For the MSD method, the
parameters are optimized using internal cross validations.

We report the following measures:

1) Coverage which is the percentage of subjects who
were classified. LS has always 100% coverage be-
cause it utilizes the full time series.

2) Accuracy which is computed as the average between
sensitivity and specificity. For early classification
methods (IPED, MSD and EDSC) the accuracy is
computed with respect to the coverage.

3) Earliness which is the fraction of the time points used
in the test. LS has always 100% earliness because it
utilizes the full time series.

4) Full Accuracy since we report the coverage and the
accuracy, it might not be easy to directly compare
the methods. For example, if one method has better
accuracy and less coverage and the second has better
coverage and less accuracy, it is not clear which one
is better. Therefore, for those examples not covered
by the method, the method classifies them using the
majority of examples in the training data or randomly
in case of a tie.

All the evaluation measures have the property “higher is
better” except the earliness. In order to preserve this property
and to simplify the presentation of the results, we report 100-
Earliness.
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Fig. 3. The effectiveness of the IPED method is illustrated on a single patient
from H3N2. Four genes for a symptomatic test subject were observed over 16
time points. Two genes are informative for early classification (red and blue)
while the other two gene are non-informative. The key shapelet covers the
subject at 12 the time point. We add displacement in the gene expression to
make the visualization easier.

B. Interpretability of IPED

To show the benefit of extracting a key shapelet and to
explain some features of the IPED method, we show a real case
from the H3N2 dataset. We used two-dimensional shapelets
just for simplicity of the presentations. The experiments in
Section III-C show that a 3-dimensional shapelet is more
reasonable for our application.

In Figure (3), we show four genes observed over time for
the same symptomatic subject. The red and blue genes are
informative because we have jump in the gene expression,
while the other two genes are non-informative.

The IPED method is interpretable because the key shapelet
is interpreted as “symptomatic subject is identified when we
observe high increase in the red gene accompanied with high
increase in the blue gene”.

We use this example to explain how IPED overcomes the
issues presented in the MSD method. First, the IPED method
has extracted a key shapelet which contains only the two
informative genes. This shows that the key shapelet is more
accurate than the full-dimensional shapelet, as in the case
of the MSD method, because it contains only the relevant
dimensions. Second, each component of the key shapelet is of
different length and the onset of each component is different.
For instance, the 1st component of the shapelet covers the
corresponding dimension of the subject time series at the 11th

time point while the 2nd component covers the corresponding
dimension at the 12th time point when the decision is made.

C. Model Complexity

As mentioned in Section II-D, the parameter B determines
the complexity of the multivariate shapelet. We assessed the
sensitivity of IPED to the parameter B. For each value of B,
we compute the evaluation measures. The results are shown in
Figure (4).

As expected, when increasing the number of components
of the shapelet, the accuracy of the model increases but the
the coverage decreases and the classification decisions are
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Fig. 4. The sensitivity of the model complexity B on H3N2 (left) and HRV
(right) datasets.

provided later. Since our objective is to provide the classifica-
tion as early as possible and to maintain comparable accuracy
performance, we use B = 3 in the remaining experiments for
all datasets to guard against overfitting and not to use different
values of B for different datasets.

D. Evaluation of IPED

In a recent article [19], experiments on viral infection
datasets (Table 1) provided evidence that MSD was more
accurate than 1-nearest neighbor (1NN) on the full time series.
Therefore, here we compare IPED to MSD, LS and EDSC on
the 3 datasets described earlier using the four aforementioned
evaluation measures.

As shown in Figure (5), our IPED method has better
performance than the alternative MSD method on the PTB
dataset. In addition, IPED outperforms all other classifiers and
provides the classification much earlier, using approximately
half of the time series.

For the viral infection datasets, IPED has comparable
results with the MSD method. For univariate classifiers, LS
and EDSC, the results obtained by concatenating all variables
are worse than the results obtained on one variable. It shows
that LS and EDSC are not appropriate for multivariate time
series. LS is the most accurate of the classifiers. However, LS
provides the classification at the end of the time series while
IPED provides comparable results even earlier.

Since the early classification is important in the medical
domain, we have shown that on a longer time series datasets
such as PTB, the classification was provided using only half
of the time series, which could have significant impact by
providing treatment to the patient at an earlier time. In addition,
the classification accuracy of IPED was comparable to or even
better than those classifiers that use the full time series.

E. Runtime Complexity Analysis

The IPED method has three steps to extract key shapelets
from the time series data. The first step is the shapelets
extraction. This step is performed using exhaustive search to
extract all univariate shapelets from all dimensions of the time
series data. In our experiments on the PTB dataset (the largest
dataset in our experiments), the shapelet extraction step took
less than a minute. However, there are some recent works to
speed up the process of that step [9], [10]. We did not use
them because it is not the main point of our paper.

TABLE II. EVALUATION OF DIFFERENT OPTIMIZATIONS TO EXTRACT

THE KEY SHAPELETS. EN IS THE ELASTIC NET APPROACH. None IS THE

METHOD WITHOUT THE SECOND OPTIMIZATION. COV IS THE COVERAGE,
ACC IS THE ACCURACY, AND EAR IS THE EARLINESS.

Cov Acc 100-Ear

H3N2

IPED 100 82.35 47.8

EN 21.2 80.0 5.4

None 17.6 60 4.5

HRV

IPED 85.0 80.6 47.2

EN 19.0 54.3 9.5

None 1 10 0.4

PTB

IPED 100 89.78 47.43

EN 25 70.2 60.2

None 1.17 90.2 4.2

The second step of the IPED method is extraction of a full-
dimensional shapelet by solving a convex-concave problem.
This is the most time-consuming part of the method because
it requires solving a convex optimization on a dataset that
is constructed using all extracted univariate shapelets. On
the PTB dataaset, it took about 15 minutes to solve the
optimization problem.

The third step is the extraction of the key shapelets from the
full dimensional shapelet. This part is very fast (2-3 seconds)
because the dimension of the input data to the problem is the
same as the number of dimensions of the original time series
(which in our case was 15-26). Therefore, the most time is
consumed to apply the second step of the method. However,
this is only for training the model, which is done offline.

Using the extracted key shapelets for early classification
(which is done online), is a very fast operation, because the
number of extracted shapelets is small. In our case, the early
classification of the test time series for each patient takes less
than a second to classify the patient.

F. Evaluation of the Second Optimization

To evaluate the importance of our mixed integer optimiza-
tion formalization, we conducted two experiments. First, we
removed the second optimization completely and kept only the
first optimization, which we call “None”. In the second exper-
iment, we replaced the mixed integer optimization with the
penalized (elastic net) logistic loss as the objective function,
which we call “EN”. The results are shown in Table II. Using
the mixed integer programming as the second optimization in
the IPED method outperformed all other alternatives because
EN and None have very low coverage which affects the overall
accuracy.

IV. RELATED WORK

Multivariate time series classification has been widely
analyzed in a context of learning a hypothesis to discriminate
between groups of time series [24]–[26]. Time series shapelets,
introduced by [6], were initially proposed for univariate time
series where the objective is to extract time series subsequences
which are in some sense maximally representative of a class.
The time series shapelet concept has gained a lot of attention
in the last few years because of its simplicity, interpretability
and accuracy. However, the shapelet representation has limited
expressiveness for the time series. This problem has been
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(a) PTB (b) H3N2 (c) HRV

Fig. 5. Comparison between IPED and the alternative methods on three datasets. LS and EDSC methods are applied to each variables separately and to a new
variable that is constructed by concatenating all the variables, and the best result is reported. Sensitivity, specificity and the 100-earliness are reported for each
method (the higher is the better). LS is the Logical Shapelet method. EDSC is the Early Ddistinctive Shapelet for early Classification of univarite time series.
MSD is the Multivariate Shapelet Detectiom method. IPED is our proposed method. LS utilizes the full time series so that the 100-earliness for the LS method
is zero.

addressed by considering combination (conjunction and dis-
junction) of shapelets which are called logical shapelet [18]. As
noted by [18], for the sake of simplicity and to guard against
over fitting with too complex a model, they only consider two
cases, only AND, and only OR combinations. Although the
method has been shown to be more accurate than other time
series classification techniques, it is not proposed for early
classification.

Early classification methods have been developed recently
[27]. A method called ECTS (Early Classification on Time
Series) has been proposed to tackle the problem of early
prediction on time series data. ECST uses a novel concept
of MPL (Minimum Prediction Length) and effective 1-nearest
neighbor (1NN) classification method which makes prediction
early and at the same time retains an accuracy comparable
to that of a 1NN classifier using the full-length time series.
Although ECTS has made good progress, it only provides
classification results without extracting and summarizing pat-
terns from training data. The classification results may not
be satisfactorily interpretable and thus end users may not be
able to gain deep insights from and be convinced by the
classification results. This problem has been addressed by
extracting shapelets for early classification [20]. The method,
which is called EDSC (Early Distinctive Shapelet Classifica-
tion), extracts local shapelets, which distinctly manifest the
target class locally and effectively use them for interpretable
early classification. Although very effective for univariate time
series, EDSC is not applicable for multivariate time series.

A method called hybrid HMM/SVM was proposed for
early classification of multivariate time series [28], [29]. The
method uses HMMs to examine all segments from the original
time series and generate likelihood of the membership of the
pattern which is then passed to SVM to decided the probability
of the class membership of the time series. Although the
method was shown to be an accurate method, it does not
provide interpretable results which limits the application of the
method by the clinical practitioners. More recently, a method
called Multivariate Shapelet Detection (MSD) was proposed
for early classification of multivariate time series, which ap-
pears to be more accurate than several alternative methods
when evaluated on various benchmark clinical multivariate
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Fig. 6. Example of a 3-dimensional shapelet extracted from a 3-dimensional
time series of length 35. The components of the 3-dimensional shapelets have
the same start position at the 20th time point and the same length 5.

time series [19]. The method extracts all multivariate shapelets
from the training data and effectively use them for early
classification. However, the multivariate shapelet is extracted
such that it has one component from each variable in the
time series. For instance, the extracted multivariate shapelet
from a 3-dimensional time series has 3 components (univariate
shapelets) as in Figure (6). Each component is extracted from
one variable. To control computational complexity in MSD, the
components of the multivariate shapelet are extracted such that
they have the same starting position. Therefore, all components
have to appear at the same time which we believe affects
the efficiency of MSD. So, the method would not be able
to capture a multivariate shapelet such that one component
appears at time point t1 and the other component appears at
time point t2.

In our approach we relaxed that condition so that our
method is able to extract multivariate shapelets such that
the components of the shapelets may appear at different
time points and can be of different length. In addition, our
IPED method extracts key shapelets, which have much fewer
dimensions than the original time series. That contributes more
to the interpretability of the IPED method.
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V. CONCLUSION

We proposed an optimization-based method for building
predictive models on multivariate time series data and mining
relevant temporal interpretable patterns for early classification
(IPED). The IPED method starts with transforming the multi-
variate time series data into a binary matrix representation over
the span of all extracted shapelets from all the dimensions of
the time series. Then, the matrix is used to build predictive
models via solving the proposed optimization formulations.
The IPED method extracts a full-dimensional shapelet for each
class from the binary matrix by solving a convex-concave
optimization problem. Then, IPED extracts key shapelets for
each class by solving a mixed integer optimization problem.
The extracted key shapelets are low-dimensional shapelets.
These key shapelets are then used for early interpretable
classification. We are able to make our results interpretable
by using only a few patterns from the observed time series
data.

Our IPED method addresses three issues in the state-of-
the-art MSD method. First, the components of the multivariate
shapelet do not have the constraints of the same starting time
point and are not required to be of the same length. Therefore,
the onset of each pattern could be different, which simulates a
real life scenario. Second, the extracted multivariate shapelet
contains only the relevant dimensions of the observed multi-
variate time series data. On several medical datasets, we have
shown that IPED outperformed the MSD method and other
alternative methods for univariate time series data. One of the
shortcomings of IPED is that it assumes the time series are
sampled at regular time points. We can mitigate this issue by
including the time span of each shapelet in the computation.
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