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ABSTRACT 
 
We propose partitioning-based methods to facilitate the classification of 3-D binary image data sets of regions of interest 
(ROIs) with highly non-uniform distributions. The first method is based on recursive dynamic partitioning of a 3-D 
volume into a number of 3-D hyper-rectangles. For each hyper-rectangle, we consider, as a potential attribute, the 
number of voxels (volume elements) that belong to ROIs. A hyper-rectangle is partitioned only if the corresponding 
attribute does not have high discriminative power, determined by statistical tests, but it is still sufficiently large for 
further splitting. The final discriminative hyper-rectangles form new attributes that are further employed in neural 
network classification models. The second method is based on maximum likelihood employing non-spatial (k-means) 
and spatial DBSCAN clustering algorithms to estimate the parameters of the underlying distributions. The proposed 
methods were experimentally evaluated on mixtures of Gaussian distributions, on realistic lesion-deficit data generated 
by a simulator conforming to a clinical study, and on synthetic fractal data. Both proposed methods have provided good 
classification on Gaussian mixtures and on realistic data. However, the experimental results on fractal data indicated that 
the clustering-based methods were only slightly better than random guess, while the recursive partitioning provided 
significantly better classification accuracy. 
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1. Introduction 
 
A lot of research has been done in the field of content-based retrieval and classification for general types of images (see 
[1, 2] for comparative surveys). In most cases the extracted features (usually color-based [3-5]) characterize the entire 
image rather than image regions and there is no distinction between important and unimportant features or between 
multiple objects in an image. In certain cases these features do not seem to be useful. Rather, characterization of an 
image on the basis of only those regions that are of interest to an expert seems to be more meaningful [6-8]. The 3-D 
images or volumes we consider here consist of region data that can be defined as sets of (often connected) voxels 
(volume elements) in three-dimensional space that form 3-D structures (or objects). We focus on 3-D volumes that are 
binary, i.e., only information about the presence or absence of a particular voxel in a certain region is available. 
Examples of such binary volumes are regions of interest (ROIs) in medical images, i.e., regions that differ from the 
norm, e.g. due to the presence of lesions, tumors, or gene expressions, etc. Focusing on the ROIs is very important for 
the characterization and classification of images.  

Necessary pre-processing steps prior to any data analysis of region data are the segmentation and registration 
procedures of the 3-D volumes. Image segmentation is required to delineate the particular regions (that are of interest) 
ensuring that image data are labeled consistently across samples. It can be performed manually, automatically, or semi-
automatically. In the medical imaging domain extensive image segmentation work has been done. Proposed methods can 
be divided into two broad groups: those that incorporate prior spatial information and those that are solely signal-
intensity based (see [9-11] for review). Image registration deals with the existing morphological variability among 
samples and is required to ensure that images are comparable across samples. The image registration is performed to 
bring the sample’s image data into register, i.e., spatial coincidence, with a common spatial standard. It is done using 
normalization to a particular template and it is used to determine whether two samples have ROIs in the same location. 
The methods used for image segmentation and registration are often domain specific.  In the following we assume that 
the region data have already been segmented and normalized.  
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The problem we focus on is the following: Given a set of region data and an assignment of these data to a 
number of classes based on certain non-spatial attributes, derive a classification scheme that will correctly classify a new 
sample of region data (predicting this way the non-spatial data) based only on spatial information. An example from the 
medical imaging domain is the following: Given a magnetic resonance (MR) image of a new subject that contains 
lesions, the goal is to determine whether it belongs to a group of subjects who did or did not develop a particular disorder 
(e.g., attention-deficit hyperactivity disorder (ADHD) after closed head injury). In this case the image data have resulted 
from scanning of a patient at multiple layers and then combining the images into a voxel-based 3-D representation. 

Here we are proposing methods for the automatic classification of ROIs and quantitative measurement of their 
levels of similarity. After the review of related work in Section 2, in Section 3 we introduce the proposed methodology 
based on clustering and dynamic recursive partitioning, followed by a survey of experimental results on data with 
various complexities in Section 4 and conclusive remarks in Section 5. 

2. Background and Related Work 
 
Statistical distance based methods are very often used for distinguishing among distributions. A new sample s is 
predicted to belong to the class that corresponds to one of the datasets SY or SN  (corresponding to two classes, “Y” and 
“N”) that is closer (in terms of some “distance”) to s.  

To compute the distance, the Mahalanobis distance [12] and the Kullback-Leibler (KL) divergence [13] are 
most often employed. Given data s corresponding to a new sample, the Mahalanobis distance between the new sample s 
and an existing data set S (SY or SN) is computed as: 
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where ps(x) and p(x) are probability densities corresponding to the distributions from which data sets s and S are drawn, 
respectively. In this paper, we use a discrete approximation of the Kullback-Leibler distance on histograms estimated 
using a technique described in [15]. 

Static partitioning [15] may also be used for distinguishing among distributions. This static partitioning method 
first partitions the volume into a prespecified number of 3-D hyper-rectangles. The number of voxels at region data 
inside the small 3-D hyper-rectangles are averaged over the total number of voxels at region data inside the whole 3-D 
domain and treated as new attributes for training a classification model. The main problem in this approach is to 
determine the splitting resolution (the optimal size of hyper-rectangles), an one of possible solutions is to gradually 
increase the number of hyper-rectangles until a satisfactory classification accuracy is achieved. 

Uniform histograms [16] are standardized methods for non-parametric modeling of probability distributions. 
Recently, importance-sampling method [17] has been developed to enhance estimation of highly non-uniform 
distributions.  Using this technique, the histograms are estimated through a recursive procedure where in each step a 
hyper-rectangle with the highest frequency of discrete objects is subsequently partitioned. Importance sampling employs 
oct-trees (e.g. [18,19]) to maintain the spatial structure of hyper-rectangles and priority queues [20] for ordering the 
hyper-rectangles according to objects frequencies. 

3. Methodology 
 
Without loss of generality we assume that the dataset consist of a number of samples assigned to one of two classes (in 
this paper, we will denote the classes “Yes” and “No”). For each sample, the data contains a finite number of region data 
specified by their coordinates and positioned in the same 3-dimensional domain—a hyper-rectangle. Given two data sets 
SY and SN containing coordinates of region data that belong to samples (patterns) from two classes, the objective is to 
determine the class of a new sample specified by a corresponding set s of region data, based on a classification model 



trained on provided data. In this paper, we propose two techniques for such a classification. The first is based on 
partitioning using clustering algorithms and use of maximum likelihood. The second is a novel method based on 
dynamic recursive partitioning. 

3.1. Clustering-based Partitioning for Maximum Likelihood Methods 
In the maximum likelihood method [13,21], the underlying distributions corresponding to each class are estimated and a 
new sample is classified according to the likelihood that it belongs to each of the distributions. Formally ( )spi

i
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where  is estimated probability that a new sample s belongs to a class i. To apply maximum likelihood methods, it 
is necessary to estimate the probability density of data distributions that correspond to each class. Distributions can be 
estimated using parametric or non-parametric methods [16]. In this study we apply the non-spatial (k-means) [22] and 
the spatial DBSCAN clustering algorithm [23] to estimate the distribution parameters. Consequently, the obtained 
clusters are employed to estimate covariance matrices and priors of Gausian mixture components. 
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The standard k-means algorithm [22] is a variant of expectation-maximization (EM) method aimed to determine 
the means of Gausian mixture components.   Through an iterative procedure, a dataset S containing n vectors xi is 
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The second considered clustering algorithm, DBSCAN, relies on a density-based notion of clusters and was 
designed to discover clusters of an arbitrary shape [23]. The key idea of a density-based cluster is that for each point of a 
cluster its Eps-neighborhood (for a given Eps > 0) should contain at least a minimum number of points (MinPts), (i.e. the 
density in the Eps-neighborhood of points has to exceed some threshold), since the typical density of points inside 
clusters is considerably higher than outside of clusters. Unlike the cluster centroids in the k-means, here the centers of 
the clusters can be outside of the clusters due to their arbitrary shapes. 

3.2. Dynamic Recursive Partitioning 
When performing classification of 3-D binary image data sets of region data with highly non-uniform distributions that 
can not be distinguished very well, standard statistical, static partitioning and clustering-based maximum likelihood 
methods may not achieve satisfactory performance. Therefore, in order to facilitate the classification, we propose the 
dynamic recursive partitioning (DRP) technique. It is aimed to determine a proper set of attributes corresponding to 
spatial sub-regions of the considered 3D domain and consists of the following three steps: 

• generation of candidate attributes,   
• attribute selection, and 
• learning classification models. 

At the beginning of the generation of candidate attributes, the voxels belonging to region data (ROI) within the 
global hyper-rectangle D are counted for each sample, and this number becomes the first candidate attribute. A hyper-
rectangle is partitioned only if the corresponding attribute does not have a sufficient discriminative power to determine 
the classes of samples. The procedure continues recursively and stops when all remaining hyper-rectangles are 
discriminative or when there is an insufficient number of voxels of region data inside a hyper-rectangle. 

For attributes generation we use oct-trees [18, 19] augmented to satisfy requirements for an efficient data 
representation and manipulation. Here, each tree node stores the boundaries of a corresponding 3D hyper-rectangle and 
the number of voxels at region data in the hyper-rectangle corresponding to each sample. In addition, to accomplish an 
efficient access to candidate attributes, we maintain a dynamic array [20], containing pointers to the leaf nodes of the 
tree.  

The outline of the DYNAMIC RECURSIVE PARTITIONING (DPR) algorithm is shown in Figure 1. Each recursion 
call results in further splitting of a spatial sub-domain, represented by a node of the oct-tree, and it is performed if and 
only if a suitable splitting criterion is satisfied. A generic splitting criterion is to continue with partitioning if the average 
number of voxels at region data in a sub-domain is larger than a pre-specified threshold but the corresponding candidate 
attribute is not discriminative in distinguishing the sample classes. Observe that unlike techniques proposed in [24] here 



significance tests are typically performed on larger spatial regions instead of on each voxel reducing the multiple 
comparison problem. 

One of the simplest significance criteria for splitting is based on the computation of the Pearson correlation 
coefficient [25] between the class label (considered as a binary numeric value) and the attribute value for each sample. 
Here, an attribute is considered significant if the correlation coefficient is larger than a pre-determined threshold. 
Although this technique may be useful in practice, the major difficulty is the absence of a formal procedure to establish a 
threshold value. 

Another criterion is based on discretization of the candidate attribute and evaluation of the class/attribute 
contingency matrix (see Figure 2b and 2c) using statistical tests (chi-square or the Fisher exact test [26]) with pre-
determined maximal type I errors. A suitable value for the discretization threshold can be set ad-hoc or by using 
discretization techniques that maximize class/attribute mutual information [27]. 

Finally, the significance of a candidate attribute can be assessed by deciding whether the distributions of 
attribute values corresponding to the two classes differ substantially (see Figure 2d). To determine this, both parametric 
tests (t-test [25]) and non-parametric tests (Wilcoxon rank sum [28]) can be applied, with confidence pre-set to a 
specified value (usually 0.05 or 0.01). 

If the splitting criterion is satisfied, the spatial sub-domain corresponding to the node of the oct-tree is 
partitioned into 8 smaller sub-domains. The tree node itself becomes the parent of eight children nodes, each 
corresponding to a smaller sub-domain (see Figure 3), and the number of voxels of region data in a subdomain per each 
sample becomes a new candidate attribute. 
 
 
 
 
 
 
 
 
 
 
 
 

           F
 

reduce
attribu
classifi
Mahala
applied

networ
non-lin
We tra
neuron
nodes 
(class 
to estim
 
 
 
 
 

Given:  Oct-tree T corresponding to the spatial domain D; Two sets { }YnYY YSS ,,1 ,,K=S ,

{ }NnNN NSSS ,,1 ,,K= containing region data for samples belonging to classes Y and N, respectively.

DYNAMIC RECURSIVE PARTITIONING (T,node, SY, SN ) 
If SPLITTING_CRITERION(T,node, SY, SN)==’yes’ 

T=SPLIT(T,node) 
 for node_c  in CHILDREN (T,node) 

 T=DYNAMIC RECURSIVE PARTITIONING (T,node_c, SY, SN )  
Else 

ADD_TO_LEAF_LIST (node) 
Return T 
 
igure 1. A generic procedure for dynamic recursive partitioning (DRP). 

Techniques for attribute selection are employed to eliminate irrelevant and highly correlated attributes and to 
 the total number of attributes. To perform these techniques, it is desirable to have a quick access to candidate 
tes, which is accomplished by maintaining dynamic array pointing to the leaves of the oct-tree. The applied 
cation-based selection algorithms involved inter-class and probabilistic selection criteria using Euclidean and 
nobis distance [12]. In addition to sequential backward and forward searches, the branch and bound search can be 
 for iterative reduction of the attribute set. 

For classification model trained on selected attributes, in this paper we propose the application of neural 
ks, universal approximators that were often reported to outperform the alternatives for classification of real life 
ear phenomena [29]. In addition, other classification techniques, including decision trees [30] can also be applied. 
ined feedforward sigmoidal neural network classification models [29] with one hidden layer having the number of 
s equal to the number of input attributes. The neural network classification models had the number of output 
equal to the number of classes, where the predicted class was decided according to the winner-take-all principle 
corresponds to the output with the larger response). The Levenberg-Marquardt [31] learning algorithm is applied 

ate coefficients of the neural network. 
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 (d) 
Figure 2. a) The values of a candidate attribute for a synthetic case of 40 samples. b) The true sample’s class (‘Yes’ and ‘No’) and the 
discretized attribute using the threshold from a). c) True class/discretized attribute contingency table. d) Histograms and estimated 
distributions of the values of a candidate attribute that correspond to each class. 
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Figure 3. a) Illustration of partitioning of initial domain into spatial sub-domains. (b) Splitting of an oct-tree node. 



4. Experimental Results 
 
The proposed methods were experimentally evaluated on three data sets. The first data set contained synthetic data 
representing two mixtures of nine Gaussian distributions. The second data set represented realistic data generated using a 
lesion-deficit simulator with a spatial statistical model conforming to the Frontal Lobe Injury in Childhood study [32] 
where the subjects were classified into two classes according to subsequent development of ADHD (attention deficit and 
hyperactivity disorder) after a closed head injury. Finally, the third data set corresponded to highly heterogeneous fractal 
data designed to mimic situations where different subregions of a 3D image have diverse discriminative power. 

4.1. Experiments with Synthetic Data 
Synthetic data used in our experiments contained samples from two mixtures of nine normal distributions. We were 
varying the parameters (means and variances) of mixture components, thus constructing different mixtures of 
distributions (see Figure 4). 
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Figure 4. Two mixtures of distributions that differ only in (a) variance of the distribution components; (b) means of components 
 
In the first series of experiments, the distribution components had the same variances but different means for each class 
(Figure 4a). We have repeated the experiments through 200 rounds, and each round consisted of random drawing of a 
new sample from one of the classes. The classification performance was monitored by measuring accuracy rate. The rate 
was computed as the ratio of the number of rounds when the classification of a new sample was successful and the total 
number of rounds. The samples contained a number of voxels of region data that varied from 50 to 500. 

When using the Mahalanobis distance, we were able to adequately classify a new set of samples that belonged 
to one of two mixtures in 90% to 99% of cases, depending on the size of sets SY, SN and the number of voxels of region 
data in a new sample (Figure 5). Analyzing the charts from Figure 5, it can be noticed that the prediction error of 
considered classification methods decreased when the size of sets SY, SN increased and when the number of region data  
increased too.                       
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Figure 5. The prediction error when classifying new samples from two distributions with different means using Mahalanobis distance. 
Distribution means difference was 0.6. 



Unlike the method using the Mahalanobis distance, the method using the Kullback-Leibler (KL) distance and static 
partitioning methods achieved almost perfect classification, for all considered sizes of data sets and numbers of voxels of 
region data in a new sample (the prediction error was less then 2%) (see Figure 5).  

Another group of experiments on synthetic data involved mixtures that had the same component means but 
different component variances for each class (See Figure 4b). In this case, classification was typically more challenging 
since the mixture of distributions with smaller variances is often overshadowed by the mixture with larger variances. 
When using Mahalanobis distance in this scenario, the achieved classification accuracy was very low when predicting 
the mixture with smaller variances (from 0% to 50%), and significantly higher when predicting the mixture with larger 
variances (from 50% to 99%) [15]. 

The method based on computing the KL distance was more successful in predicting new samples when they 
belonged to the distribution with larger variance. When predicting the mixture of distributions with smaller variance, the 
accuracy varied from 14% for the small size of the set SY to 99% for the larger sizes of set SY [15], which is much better 
than using Mahalanobis distance. When predicting the mixture of distributions with larger variances, the method with 
KL distance was able to perform almost-perfect classification in all cases (error less than 1%). 

When predicting the mixture of distributions with smaller variance using static partitioning methods, the 
accuracy varied from 55% to 99% with sizes of set SY (the larger size, the better accuracy) [15]. When predicting the 
mixture of distributions with larger variances, the static partitioning methods persistently provided almost perfect 
classification (error less than 1%). 

Experiments performed on the synthetic data when the distribution components had different means but same 
variances demonstrated that the maximum likelihood based parametric methods were also almost perfectly accurate 
(prediction error less than 1%) regardless of what clustering algorithm was used to estimate the underlying distributions 
(k-means or DBSCAN). On the other hand, when performing experiments on the synthetic data with mixtures having the 
same component means but different component variances, the maximum likelihood based parametric methods were not 
successful in classification (the distribution with smaller deviation had tendency to be miss-classified, see Figure 6). 
When predicting the mixture of distributions with smaller variance, the prediction error varied from 50% for the smaller 
data set SY and for the smaller number of voxels in a new sample to 2% for the larger size of data set SY and for the larger 
number of voxels in a new sample. However, when predicting the mixture of distributions with larger variances, the 
maximum likelihood parametric methods were more successful (Figure 6), since the prediction error was ranging from 
12% for the smaller number of voxels in a new sample to the perfect classification (prediction error less than 1%) for the 
larger number of voxels in a new sample. 
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Figure 6. The prediction error (%) when classifying new samples from two distributions with different variances. The variances of 
distributions were 0.01 and 0.02. Maximum likelihood parametric classification was used. 
 
Similarly to the maximum likelihood parametric based methods, dynamic recursive partitioning was able to classify new 
samples almost perfectly (prediction error less than 1%) when the experiments were performed on the synthetic data 
with the distribution components having different means but same variances. However, when predicting on the synthetic 
data with mixtures having the same component means but different component variances, the classification was not 



always exquisite (Table 1). When the difference between the component variances was larger, the prediction was more 
successful, and vice versa. 

Component Variances → 0.3 0.2 0.1 0.05 0.02 
Prediction error (smaller variance) 0 0 1.4 6.4 – 2.5 21.7 – 10.3 

DRP Prediction error (larger variance) 0 0 1.5 9.1 – 1.8 19.8 – 8.3 
Prediction error (smaller variance) 0 0 0 1 4 DBSCAN based 

maximum likelihood Prediction error (larger variance) 0 0 0 0 1 

Table 1. The prediction error (%) when predicting new samples from two distributions with different variances using clustering based 
maximum likelihood and DRP (dynamic recursive partitioning) methods. Variance of components in one mixture was 0.01 while the 
variances in the other mixture were varied. 
 
Results presented in Table 1 were ranging since we employed different stopping criteria, different thresholds of the 
statistical tests and different structures of the neural networks. Table 1 also compares the prediction performance of the 
DRP method to the DBSCAN clustering based maximum likelihood method. It is apparent that for the smaller difference 
between component variances (0.02 and 0.05 for the mixture with larger variance), the maximum likelihood parametric 
methods achieved slightly better prediction accuracy than the DRP, since the former method naturally fits to Gaussian 
mixtures. 

4.2. Experiments with Realistic Data 
We performed classification of realistic brain lesion distributions that were generated using a lesion-deficit simulator 
[33] with the spatial statistical model conforming to the Frontal Lobe Injury in Childhood (FLIC) study [32]. The 
samples (subjects in this case) were classified into two classes according to subsequent development of ADHD after 
closed head injury. Therefore, there were two distributions corresponding to subjects who developed ADHD (“yes 
ADHD” class) and did not develop ADHD (“no ADHD” class) (Figure 7). Given a new subject with a set of region data, 
the goal was to determine the more plausible class. The subjects contained a number of voxels of region data that varied 
from 50 to 500, although in the specific FLIC study [32] approximately 200 voxels of region data are present on average 
per a 3-D brain image (i.e. per subject). 

In experiments, we varied both the size of data sets for the classes and the number of voxels of region data 
belonging to a new subject. For each combination of these parameters, we performed the experiments through a 
predetermined number of rounds (200 in our experiments). Each round consisted of random drawing of a new subject 
from one of the classes. The classification performance was again measured by computing accuracy, as in Section 4.1 for 
synthetic data. 
 

     
Figure 7. Distributions for “yes ADHD” and “no ADHD” classes. 
 
Experiments on realistic brain lesion distributions showed that the proposed method based on Mahalanobis distance 
could provide more reliable and more accurate classification between the subjects regarding the development of ADHD 



than when classifying samples from synthetic distributions. Figure 8 demonstrates that classification with error less than 
10% was possible both for the subjects who did and who did not develop ADHD when a sufficient knowledge of the 
distribution corresponding to the subject was available (sets SY, SN large enough). This was apparent especially when 150 
or more voxels of region data were available for a new subject. The prediction was perfect (0% error) when the number 
of voxels of region data for a new subject was larger than 1000. It is interesting to notice that the classification accuracy 
was slightly better when predicting subjects in the “yes” ADHD class than in the “no ADHD class” (Figure 8). 
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with the level L, while the probability pdis(L) increased with L.  By this construction, nodes with higher depths were less 
frequent in the tree, but with the increased depth, corresponding spatial subdomains were becoming more relevant for 
classification. Here, the probabilities were defined as ( ) ( )Ld

l
lLp −= 32/1 , ( ) ( ) ( ) ( )LLd

disdis
disLpLp −⋅−= max3

max 2/  

and , and data were generated with parameter values L( ) ( ) ( )( 132/1 −−= Ld
errorerror

errorpLp
( )Lp ( )1p

)
max=8, dl=2.1, ddis=2.5, 

derror=1.5, =20%, =50%, ny=1 and nx=0. An example of a resulting oct-tree is shown inFigure 10a. maxdis error
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Figure 9. Distributions for “Yes” and “No” classes for fractal data. 
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We have simulated two classes: a “Yes” class and a “No” class, and we have generated 100 samples for each class 
(Figure 9). Observe that the resulting distributions were very similar and difficult for visual discrimination. The training 
set represented 50 random samples from the “Yes” class and 50 random samples from the “No” class. The test set 
represented the remaining 50 samples from “Yes” class and the remaining 50 samples from “No” class. For each sample 
from the test set, we computed Mahalanobis distances from the “Yes” and the “No” distributions and the obtained 
accuracy through 100 repeated experiments is reported at Table 2. 

The standard statistical methods based on Kullback-Leibler (KL) distance had similar performance, although 
the prediction error was slightly larger (left half of Table 2). Maximum likelihood clustering based parametric methods 
on fractal data could not over-perform the methods based on standard statistical tests. The prediction error when the 
number of discovered clusters was nine is shown in the right half in Table 2.  

Finally when DRP methods were applied to fractal data, we have achieved significantly better classification 
than using the previous methods, assuming that the splitting criterion was properly chosen (Table 3). As demonstrated in 
Figure 10, in such cases the discovered tree structure was similar to the original oct-tree employed to generate the fractal 
data. As we expected, the best results were obtained using the rank-sum non-parametric test, while in the absence of a 
proper threshold determination, the results using chi-square test were unsatisfactory. 
 

5.Conclusions and Work in Progress 
 
In this study, various methods to facilitate the classification of three-dimensional binary image data sets were 
considered. In addition to employing statistical distance-based techniques, we propose an alternative method based on 
partitioning by clustering combined with the maximum likelihood technique and a method based on dynamic recursive 
partitioning coupled with non-parametric classification algorithms. 

The proposed methods were experimentally evaluated on three-dimensional binary data of various 
complexities, including mixtures of Gaussian distributions, realistic lesion-deficit medical data generated by a simulator 
conforming to a clinical study, and synthetic fractal data. All considered methods were shown to provide good 
classification on realistic data and on Gaussian mixtures when distributions associated with the two classes differed 
significantly. Methods based on Mahalonobis distance were inferior in comparison to other methods when the 
distribution components had the same or similar means. The experimental results on highly complex fractal data 
indicated the clear advantage of the recursive partitioning methods over the alternatives. 



Work in progress involves comparison of the proposed and conventional classification techniques on clinical 
data. In particular, we are currently developing techniques that employ dynamic recursive partitioning to discover the 
discriminative brain regions for ADHD and other deficits. Also, we plan to thoroughly examine various splitting criteria 
as applied to the dynamic recursive partitioning. In addition, future work includes generalization of the proposed 
recursive partitioning technique to a multi-class case, the classification of multi-dimensional datasets, and classification 
of images where region data are not binary (i.e. present or absent on a specified location) but instead represent real-
valued observation data. Finally, in the proposed dynamic partitioning technique, we did not exploit spatial relationship 
among constructed attributes, and we plan to consider this important aspect in our future research. 

 
Distance type Clustering algorithm Prediction error 

(mean ± standard deviation) Mahalanobis Kullback-Leibler k-means  DBSCAN 
Classification Accuracy (%) 33.6 ± 2.5 43.4  ± 7.3 35.1 ± 11.8 30.8  ± 9.1 

Table 2. The prediction error (%) on fractal data when classifying new samples using distance-based statistical techniques and 
clustering based maximum likelihood methods. 
 

Splitting criterion 
Chi-square test (threshold=50) Correlation (threshold-0.75) t-test (significance 0.01) Rank sum test (significance 0.05)

48.9 ± 12.1 20.3 ± 25.2 7.9  ± 9.1 5.3 ± 14.5 
Table 3. The prediction error (%) (mean ± standard deviation) on fractal data when classifying new samples using DRP. 
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Figure 10. The structure of an oct-tree used to generate fractal data (a), and tree structures discovered using (b) the correlation 
criterion and (c) rank-sum test. Gray and black rectangles denote non-leaf and leaf nodes respectively. Children nodes are represented 
below its parent corresponding to a successive tree level (at the next depth). 
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