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Abstract—Genome-wide analysis of single nucleotide polymor-
phisms (SNP) can potentially be helpful in exploring the role of 
genetic variability in drug therapy. However, two major 
problems with such an analysis are the need for a large number 
of interrogated genomes, and the resulting high-dimensional data 
where the number of SNPs used as features is much larger than 
the number of subjects. The aim of this study is to identify 
informative SNPs associated with clinical efficacy and side effects 
of domperidone treatment for gastroparesis from DNA 
microarray experiments by applying our feature selection 
method, which approximates the Markov Blanket in a kernel-
induced space. DNA samples extracted from the saliva of 46 
patients treated with domperidone were analyzed using 
Affymetrix 6.0 SNP microarrays. Experimental evaluations on 
this SNP microarray dataset provide evidence that our feature 
selection method can remove useless SNP features more 
accurately than existing Markov Blanket based alternatives. 

Keywords-genetic variability; feature selection; drug therapy; 
SNP 

I.  INTRODUCTION  
Single nucleotide polymorphism (SNP) analysis with DNA 

microarrays holds great promises to elucidate the role of 
genetic variability on the clinical efficacy of drug therapy [1]. 
This technology collects millions of data points per genome, 
providing an unprecedented volume of genetic information. 
Therefore, arrays have dramatically changed the experimental 
strategy in molecular medicine. Unfortunately, assessment of 
data quality, statistical evaluation, and interpretation tools 
required for DNA microarray experiments far exceed the 
capacity of approaches accepted in traditional molecular 
studies [2]. A genome-wide search for SNP associations with a 
phenotype in question using DNA microarray experiments 
requires hundreds and thousands of interrogated genomes. 
Even then, the definitive identification of genes associated with 
the phenotype can be cumbersome. 

We proposed a new feature selection method that is actually 
an improvement of the method we have recently developed 
[13] for approximation of the Markov Blanket. Instead of 
relying on the conditional independence test or network 

structure learning, our method uses the Hilbert-Schmidt 
Independence criterion as a measure of dependence among 
variables in a kernel-induced space. This allows effective 
approximation of the Markov Blanket that consists of multiple 
dependent features rather than being limited to a single feature. 
Our method was previously proven to perform better than three 
alternatives on benchmark data sets. However, we didn't test 
our previous method [13] on microarray data where there are 
few instances and a large number of features. Moreover, our 
previous method [13] checks only one Markov Blanket 
candidate for each feature, which is not accurate enough to 
remove the feature. The objective of this study is to 
demonstrate that our method is applicable to genome-wide 
SNP data analysis. Our feature selection method aims to find a 
minimum subset of the most informative SNPs associated with 
clinical efficacy and side effects. This is done by efficiently 
approximating the Markov Blanket, which is a set of variables 
that can shield a certain SNP from the target.  

II. RELATED WORK 
This paper focuses on the filtering-based feature selection 

where information theory is used to identify a minimum subset 
of the most informative features by searching the so-called 
Markov Blanket. The Markov Blanket of a variable is regarded 
as a set of variables that can shield it from other variables. The 
premise of feature selection using the Markov Blanket is the 
elimination of a feature for which we can find the Markov 
Blanket in the remaining features. Such a feature selection 
process has been shown to result in a theoretically optimal set 
of features [3]. Feature selection methods using the Markov 
Blanket can be categorized into test-based, network structure 
learning-based and approximate methods. 

Existing test-based Markov Blanket feature selection 
methods [5] all use a 'Growing-Shrinking' (GS) [6] approach 
for discovering the Markov Blanket. In the growing phase of 
this approach, all features belonging to the Markov Blanket and 
possibly some false features are also included. Then, in the 
shrinking phase, all features in the current Markov Blanket are 
checked again to remove the false features introduced at the 
growing phase. In both phases, conditional independence 
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testing is used to judge if a feature belongs to the Markov 
Blanket or not. However, such conditional independence test-
based methods require that the sample have a large number of 
instances to ensure the reliability of the independence test. 
Another limitation of test-based feature selection algorithms is 
that they are usually too aggressive in removing features [7]. 

In a structure learning-based method, heuristic Bayesian 
network structure learning is performed and then the Markov 
Blanket is discovered corresponding to the learned structure 
[7]. In such an approach, to restrict search space, two heuristics 
(called 'sparse candidate' and 'screen-based') are proposed for 
selecting the promising candidates. However, a Bayesian 
network structure is learned using heuristic methods, as the 
optimization here is different. These heuristics combine locally 
optimal structures, which results in a learned structure that is 
not a global optimal solution. An additional limitation of such 
an approach is that the learning network structure could be 
computationally prohibitively expensive in the presence of a 
large number of features. 

In an approximate Markov Blanket method called FCBF, 
the redundant features are eliminated in a potentially relevant 
subset obtained by excluding the irrelevant features based on 
the correlation to the target variable [8]. In this approach, 
symmetrical uncertainty is used to measure the relationship 
between variables. For a pair of features, FCBF measures 
symmetrical uncertainty and also the symmetrical uncertainty 
between either of them and the target variable. If the measured 
value between these two variables is greater than the measured 
value between either one of them and the target variable, the 
variable with the larger symmetrical uncertainty to the target is 
regarded as the Markov Blanket of the other variable, which  
then is removed. FCBF assumes the Markov Blanket of a 
feature has only one feature, since it is based on pairwise 
comparison. Such an approach is often too restrictive in 
practical situations, as illustrated in the results section of this 
article. In addition, we found that FCBF is too aggressive in 
eliminating features, since it gives too high priority to dominant 
features. 

The feature selection method we proposed and evaluated in 
a previous study [13] approximates the Markov Blanket 
without relying on the conditional independence test or 
network structure learning. This is achieved by efficiently 
measuring dependence among variables according to the 
Hilbert-Schmidt Independence Criterion. This is used to 
effectively find an approximation of the Markov Blanket that 
consists of multiple dependent features rather than being 
limited to a single feature as in FCBF [8]. However, our 
previous method [13] only checks one Markov Blanket 
candidate for each feature with limited accuracy. In this study, 
the proposed methods check multiple Markov Blanket 
candidates for each feature. Also, in the previous work, we 
didn't determined if our method is applicable to microarray data 
where there are few instances and large numbers of features. 
Another objective of this study is to compare our method 
against four alternatives when applied to genome-wide SNP 
data analysis. Two high impact classification problems related 
to the development of side effects of drug therapy, and to the 
clinical efficacy of drug therapy were assessed.  We will show 
that our method outperforms the alternatives on this genome-

wide SNP data analysis when selecting few informative SNPs 
from a large number of SNPs in the presence of few data 
instances. 

III. APPROXIMATING MARKOV BLANKET 

A. Dependence Measurement 
Feature selection requires use of an appropriate dependence 

measure to evaluate the relationship between features and the 
target variable, or between different features. We measure the 
dependence among variables in an appropriate kernel space. In 
this section, we will first describe a dependence measure called 
the Hilbert-Schmidt Independence Criterion (HSIC) and will 
discuss the reason why HSIC is used as the basis measure for 
the Markov Blanket discovery. 

A Hilbert space F of functions in which point wise 
evaluation is a continuous linear function is called a 
Reproducing Kernel Hilbert Space (RKHS) [9]. In other words, 
in RKHS for an arbitrary feature set X, there is a mapping 

: X Fϕ →  to a Hilbert space F such that 
( ), ( ) ( , )x x k x xϕ ϕ ′ ′< >= , where k is a unique positive definite 

kernel. Let X and Y be sets drawn from some joint probability 
distribution Prxy. Let F be the RKHS on X with, 

:k X X× → ℜ  and : X Fϕ →  be the corresponding kernel 
and feature map. Similarly, let G be the RKHS on Y with 
kernel  and feature map ψ . Then, the cross-covariance 
operator [10] :xyC G F→  is defined as: 

,

[( ( ) ) ( ( ) )]

[ ( ) ( )]
xy xy x y

x y x y

C E x y

E x y

ϕ μ ψ μ
ϕ ψ μ μ

= − ⊗ −

= ⊗ − ⊗  
where ⊗  is the tensor product. Then, HSIC is defined as the 
square of the Hilbert-Schmidt norm of the cross-covariance 
operator. A kernel version of HSIC [10] is computed as: 

2( , , Pr) || ||

[ ( , ) ( , )] [ ( , )] [ ( , )]
2 [ [ ( , )] [ ( , )]]

xy HSxy
HSIC F G C

Exx yy k x x y y Exx k x x Eyy y y
Exy Ex k x x Ey l y y

=

′ ′ ′ ′ ′ ′ ′ ′= +
′ ′ ′ ′−

 

Here, we regard , , ,x x y yE ′ ′  as the expectation of two pairs (x, y) 
and ( , )x y′ ′ which are independent to each other and both drawn 
from PrBxyB. 

Given a sample Z drawn from the distribution Prxy, an 
empirical estimate of HSIC [9] is: 

2( , , ) ( 1)i cHSIC F G Z m trHKHL−= −  

where K and Lc are the kernel matrices of the feature Fi and the 
target variable C respectively, m is the number of instances and 

1
ij ijH mσ −= −  is used to center the features and targets in the 

feature space. 

HSIC can detect any kind of dependence between two 
variable sets X and Y by using a universal kernel (such as a 
Gaussian Kernel). It has been proved in [9] that 2|| || 0xy HSC =  if 
and only if x and y are independent to each other. This is our 
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direct motivation for choosing HSIC to measure the 
dependence. Actually, in this paper, we use ( , , )HSIC F G Z  to 
replace the ( , , Pr )xyHSIC F G to measure the independence 
between two variable sets. This is because ( , , )HSIC F G Z  is 
easy to compute and is concentrated, as previously proven [9] 
by showing that with probability at least 1 σ−  

2

log(6 / )| ( , , ) ( , , ) |xy
CHSIC F G Pr HSIC F G Z
Mm

σ
α

− ≤ +  

where 2 0.24α > , 0σ >  and C is the constant. 

 

There are three reasons HSIC is used as the measure of 
dependence among variables in the proposed algorithm. First, 
HSIC measures dependence in high dimensional kernel space 
and can detect any kind of dependence between two variable 
sets with a universal kernel, such as the RBF kernel, which is 
not possible with previously used measures. Second, HSIC can 
measure the dependence between both discrete and continuous 
variables. In contrast, most measures previously used to find 
the Markov Blanket are Entropy-based, and so they are not 
directly applicable to datasets with continuous variables. Third, 
HSIC is easy to compute from the kernel matrices without 
density estimation. 

B. Identification of the Markov Blanket Candidates  
The Markov Blanket MBi of feature Fi 

( , ( )i i iMB F F MB⊂ ∉ ) has the property that Fi is conditionally 
independent of the remaining features U and the target C. 

 Definition 1 (Markov Blanket). Let F be the whole set of 
features and C be the target variable, given a feature iF F∈ , 
let ( )i i iMB F F MB⊂ ∉ , MBi is the Markov Blanket of Fi iff: 

( , | , ) ( , | )
: { }
i i i

i i

P U C F MB P U C MB
where U F F MB

=
= − −  

If MBi is the Markov Blanket of Fi, then the prediction 
model learned without considering Fi would be as accurate as 
the model learned on all features F. It is often difficult to find 
the exact Markov Blanket for a given feature. To address this 
problem for a given feature we proposed a novel method [13] 
of finding an approximate Markov Blanket. We then use this 
method to develop a feature selection algorithm based on the 
discovered approximated Blanket.  

Given a set of features, we can determine if it is the Markov 
Blanket MBi of feature Fi. However, evaluating all subsets of F 
for this property is prohibitively costly. To reduce the search 
cost we will evaluate some candidate subsets, as proposed in 
the following subsection. 

Often, there might not be an exact Markov Blanket for a 
feature, but we can still try to identify an approximating 
Markov Blanket, which approximately subsumes the 
information about this feature. Thus we can remove this feature 
with little useful information lost. We now present a simple 
method to find an approximating Markov Blanket. 

Intuitively, if a feature Fi has its Markov Blanket, described 
as MBi, we assume that the features in MBi have more 
dependence with Fi than those features that are not in MBi. We 
choose a subset of k features that are strongly dependent to Fi 
as the candidate Markov Blanket of Fi. Then, for each feature, 
we only need to evaluate its candidate Markov Blanket rather 
than all possible subsets in the remaining features to see if such 
a candidate Markov Blanket is accurate enough to be regarded 
as the Markov Blanket. 

The problem is to find the candidate Markov Blanket for 
each feature, that is, how to find the set of k features that are 
most dependent on the feature Fi. The naive method is to 
calculate exactly the candidate Markov Blanket for each 
feature. This means having to compute the dependence 

2( , ) ( 1)i j i jHSIC F F m trHK HK−= −  for each pair of features Fi and 
Fj (Ki and Kj are the kernel matrices of feature Fi and Fj 
respectively), which obviously is too computationally 
expensive and cannot be applied in high dimensional datasets. 

In our method, in order to avoid such expensive 
computation, we don't compute the Candidate Markov Blanket 
exactly but rather approximate the Candidate Markov Blanket 
for each feature. 

Definition 2 (Markov Blanket Candidate). Let Bi be the 
set of features that have higher dependence on the target 
variable C than does the feature Fi. A set of features MBi is said 
to be the Markov Blanket candidate of the feature Fi, if each 
feature 

iMBF  in MBi satisfies: 

arg max  ( ,  ),  

            where : { }

i
c

i

MB F c iF

c i i MB

F HSIC K K

F B MB F

=

∈ − ∪
 

where KFc and Ki are Kernel matrices of feature Fc and Fi 
respectively. 

We tend to find the Markov Blanket for a feature Fi in the 
features which have higher dependence with the target variable 
than Fi has, since we assume these high dependent features are 
more likely to subsume the information which low dependent 
features have. 

In order to find the Markov Blanket Candidate for each 
feature, we define S as a list of all features ordered in 
descending value of dependence 

2( , ) ( 1)i i cHSIC F C m trHK HL−= − which is actually the 
dependence between each feature Fi and the target variable C 
(Ki and Lc are the kernel matrices of feature Fi and the target 
variable C). We can approximate the Markov Blanket 
Candidate of Fi as the set of k features that are most dependent 
on Fi and are listed before Fi in the list S. For the features in the 
top of S, which might not have enough k features before them, 
we can either choose the nearest features after them or assume 
that they don't have a Markov Blanket and keep these features 
in our optimal subset of features. 

One possible problem of our previous method [13] in 
finding the Markov Blanket Candidate is the value of k, the 
number of features in MBi. Basically, k should not be too large 
or too small. The larger the k is, the more likely that we 
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identify all features that should be in the Markov Blanket. But a 
larger k produces a greater possibility of identifying features 
not necessary in the Markov Blanket, which increases the 
chance of selecting unnecessary features in the Markov 
Blanket. Conversely, a small value of k reduces the possibility 
of choosing unnecessary features but increases the chance of 
getting an un-completed Markov Blanket. In this study, for a 
certain feature Fi, we regard all features listed before Fi in the 
list S as possible candidates of Markov Blanket. Therefore we 
proposed a new feature selection method described in section 
Ⅳ.  

C. Screening Markov Blanket Candidates  
After defining the candidate Markov Blanket, we show in 

this section how we approximate the Markov Blanket for each 
feature Fi 

Definition 3 (Dependence-based Screening Test). Let 
MBi be the approximate candidate Markov Blanket of feature 
Fi. We define the following dependence-based screen test to 
check whether MBi can be regarded as an actual approximation 
of the Markov Blanket: 

1. ( , ) ( , )
2. ( , ) ( , ),and
   ( , ) ( , )

i i i

i i

i i i

HSIC MB C HSIC MB F C
HSIC MB C HSIC F C
HSIC MB F HSIC F C

> ∪
>
>

 

where C is the target variable and HSIC(X, Y) is defined as the 
dependence measure between two variable sets X and Y. 

We say MBi passes the screening test if it satisfies at least 
one of two conditions. We remove the feature whose Markov 
Blanket candidate passes the Screening test. Unlike [9], we 
remove both irrelevant and redundant features at the same time 
rather than in two separate steps. 

We can remove irrelevant features, regardless of 
independent irrelevant features or a set of irrelevant features 
that are dependent to each other. The independent irrelevant 
feature always satisfies ( , ) ( , )i i iHSIC MB C HSIC MB F C> ∪ , 
since adding such an irrelevant feature Fi into MBi will 
decrease the dependence between MBi and C. If we have a set 
of irrelevant features which themselves are dependent on each 
other, adding such irrelevant features Fi into MBi may not 
decrease the dependence on target variable C, and will not be 
removed based on condition 1. However, each will still be 
removed one by one according to condition 2. This is because 
in such cases, Fi is irrelevant to C, which means they are likely 
to be independent resulting in HSIC(Fi ,C) usually being 
smaller than HSIC(MBi , Fi ). Therefore such kinds of Fi will 
be removed one by one, and the last one in this set will be 
removed by condition 1 as we discussed before. 

Condition 2 ensures that we remove the redundant features, 
since the corresponding MBi of the redundant feature Fi can 
subsume the information this feature has about the target 
variable. ( , ) ( , )i i iHSIC MB F HSIC F C>  implies that Fi is more 
dependent on MBi than to C; 

( , ) ( , )i iHSIC MB C HSIC F C> means MBi is more dependent on 
C than Fi and ensures MBi has more deterministic information 
with the target variable C than Fi does. 

IV. FEATURE SELECTION ALGORITHM 
Having defined our approximate Markov Blanket, we now 

describe how to apply it to our feature selection method. The 
premise of feature selection using the Markov Blanket is to 
remove the feature for which we can find the Markov Blanket 
in the remaining features. In our method, we remove the feature 
for which we can identify its approximate Markov Blanket 
since we are actually looking for an approximate the Markov 
Blanket here. With the approximate Markov Blanket defined in 
section 3.1.2, we proposed a feature selection algorithm called 
the Markov Blanket based Feature Selection method (MBFS), 
as shown in Algorithm 1. 

Algorithm 1.  MBFS method 

Input:       F = F1, F2, ..., FN, C // training data set with N features and   
target C 
Output:    MB    // as set of selected features 
For i = 1 to N do
         calculate HSIC(Fi, C); 
         insert Fi into list S based on HSIC(Fi, C); 
End For 
For i = 1 to N do 
         For each Fj listed in S before Fi 
                    MBcan = Fj 
                    If  
                             Fi and MBcan pass the screen test 
                    Then 
                             Remove Fi from S 
                             Skip the rest Fj, goto check next Fi 
                     End If 
           End For 
End For 
MB = S 

 

In the MBFS algorithm for each Fi in the whole feature set 
F, we first compute HSIC(Fi ,C), which is actually the 
dependence between Fi and the target variable C, and then sort 
the features into a list S in descending order based on the 
measured dependence. Then, for each feature Fi, we find the 
candidate Markov Blanket MBcan of Fi, which consists of the 
most dependent features before Fi in the sorted list S. If Fi and 
MBcan pass the screen test, Fi will be removed from the sorted 
list S. Repeating this process with all features one by one, we 
can remove all features that can find the approximate the 
Markov Blanket in the remaining set of features. No multi-
iteration is needed in our algorithm. 

The main computation lies in computing HSIC values, 
which has complexity of 2O( )M  in terms of the number of 
instances M, since it takes 2O( )M  to compute the HSIC value. 
However, this is more efficient than other kernel-based 
methods, which usually need 3O( )M  complexity. In terms of the 
number of features N, MBFS has linear complexity to compute 
the HSIC value between each feature and target. However, for 
each feature we have to find the candidate Markov Blanket in 
which there are k features. We need to search the features 
before Fi in the list S to find the candidate Markov Blanket 
with k features. Hence, in order to select the optimal subsets 
MB, the algorithm has a complexity of O( * )p N , where p is  
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TABLE I.  SIDE EFFECTS PREDICTION OF DOMPERIDONE 

 All feature MBFS HSMB FCBF GS BAHSIC 

Sensitivity 0 0.8889 0.6154 0 0 0.5714 

Specificity 1.0000 0.9730 0.9697 1.0000 1.0000 0.9688 

Accuracy 0.5000 0.9309 0.7925 0.5000 0.5000 0.7701 

(a) classification accuracy 
MBFS HSMB FCBF GS BAHSIC 

3 1 3 4 Top 4 

(b) Number of selected features 
 

TABLE II.  CLINIC EFFICACY PREDICTION OF DOMPERIDONE 

 All feature MBFS HSMB FCBF GS BAHSIC 

Sensitivity 1.0000 0.9667 0.8750 0.7647 0.7429 0.8387 

Specificity 0 0.8750 0.8571 0.6667 0.6364 0.7333 

Accuracy 0.5000 0.9208 0.8661 0.7157 0.6896 0.7860 

(a) classification accuracy 
MBFS HSMB FCBF GS BAHSIC 

6 1 3 5 Top 6 

(b) Number of selected features 
 
 

the number of features before a certain feature Fi in the list S. 
In the worst case, p tends to become N, resulting in 2O( )N . 
However, in the best case, p tends to be a small constant if we 
remove enough features, resulting in a complexity of O( )N . 
Fortunately, in real datasets, we are more likely to tend to the 
best case. This is because in high dimensional datasets, we are 
likely to remove most features. 

V. RESULTS 

A. Data Description and Experiment Setup 
Our SNP microarray data consists of 46 patients, each with 

853,943 SNPs. We consider two classification problems, one 
related to Clinical Efficacy (1 and -1 correspond to responder 
and non-responder, respectively), and the other related to Side 
Effect (1 and -1 correspond to patients with and without side 
effects, respectively). The patient-reported response on the 
Clinical Patient Grading Assessment Scale (CPGAS) was used 
to categorize patients as definite responders (scores of 2 or 3) 
and non-responders (scores of 1 or less). To reduce data 
dimensionality, single nucleotide polymorphisms (SNPs) were 
coded as a single three valued variable (AA=0,BB=2, 
null=AB=1). Initially, data for fluorescence intensity for all 
906,600 SNPs were included in the analysis. Data was then 
screened to ensure the presence of polymorphisms. Constant 
invariant SNPs were excluded, leaving 853,943 SNPs. 

We compared our algorithm to the GS algorithm [6], which 
uses a test-based Markov Blanket discovering method, FCBF 
[8], which uses an approximate Markov Blanket method as 
well, HSMB[13], which checks only one Markov Blanket 

candidate for each feature, and BAHSIC [11], which directly 
uses HSIC as the feature selection criterion without finding the 
Markov Blanket. 

For the learning algorithm, we performed a leave-one-out 
Support Vector Machine (SVM) using a Gaussian kernel. As in 
[11], we used the same SVM for all methods where δ of the 
Gaussian kernel was set as the median distance between points 
in the sample [12]. FCBF, GS, HSMB and MBFS do not need 
to predefine the number of selected features. For the BAHSIC 
method, we choose the same number of features as the largest 
number of features in the subset FCBF, GS, HSMB, and MBFS 
returns. 

B. Results by MBFS and Alternatives 
We first compared our method to alternatives according to 

classification accuracy when using selected SNPs and also 
according to the number of selected SNPs. The results on 
clinical efficacy and side effects of Domperidone are shown in 
Table 1 and Table 2, respectively. We compared the sensitivity, 
specificity, and accuracy, defined as the mean of sensitivity and 
specificity. Both Table 1 and Table 2 show that our MBFS 
method outperforms the alternatives since our method always 
achieved the best accuracy with the least number of SNPs. 'All 
feature' in Table 1 and Table 2 means using all SNPs to train 
the classifier. 

To compare the quality of selected SNPs by different 
methods, we modified the stop criteria to let MBFS, HSMB, 
FCBF and GS select different numbers of SNPs, though they 
can choose optimal sets of SNPs automatically. We compared 
the quality of different numbers of selected features and present 
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the results in Figure 1 and Figure 2.  Figure 1 and Figure 2 
show that our feature selection method MBFS performs the 
best out of the four methods considered. 

We also compared the stability among different feature 
selection methods. As mentioned before, we applied leave-one-
out Support Vector Machine (SVM). Specifically, for our data, 
we applied 46 SVMs where each SVM was trained on 45 
patients and tested on the remaining patient. Features selected 
are slightly different when training different SVM. We choose 
the most frequent features as the final optimal set. We 
compared the frequency of the optimal set selected by different 
methods to demonstrate the stability of the methods. The higher 
the frequency is, the higher stability is. The results are shown 
in Figure 3 and Figure 4. We clearly show that our method was 
the most stable of the four methods considered in this study. 

 

Figure 1.   Accuracy for different numbers of features on the side effect 
prediction of Domperidone ('X' indicates the number of features selected 

automatically by each method except BAHSIC) 

 

Figure 2.   Accuracy for different numbers of features on the side effect 
prediction of Domperidone ('X' indicates the number of features selected 

automatically by each method except BAHSIC) 

C. Discussion 
The IDs of selected SNPs are shown in Table 3 and Table 

4. Since BAHSIC cannot automatically select the optimal set of 
SNPs, we report 4 and 6 most relevant SNPs as the results of 
this method for side effect and efficacy problem, respectively.  
Table 3 shows the SNPs selected in the problem of Side Effect 
Prediction, and Table 4 lists the selected SNPs for Clinical 
Efficacy Prediction. 

 
 

Figure 3.  Frequency of optimal sets selected by different methods with the 
side effect of Domperidone. 

 

Figure 4.  Frequency of optimal sets selected by different methods on the 
clinic efficacy of Domperidone. 

 

The feature selection method MBFS was applied to 46 
genomes categorized by the incidence of side effects, or 
clinical efficacy of domperidone. As a result, SNPs with the 
highest classification accuracy were selected in each of these 
analyzes. Our analytical tool identified several SNPs associated 
with efficacy and side effects of domperidone.  Importantly,  
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TABLE III.  6 SNPS SELECTED BY MBFS FOR PREDICTION OF DOMPERIDONE SIDE EFFECTS 

Selected SNP ID Chromosome Gene     Symbol Location  

rs965739 7 C7orf25 /// GLI3 intergenic region 

rs3891683 1 CACNA1E intron 

rs9964594 18 CDH2 /// CHST9 intergenic region 

rs4511574 17 FBXL20 intron 

rs10831474 11 MAML2 intron 

rs9632703 7 SEMA3E intron 

 

TABLE IV.  3 SNPS SELECTED BY MBFS FOR PREDICTION OF DOMPERIDONE CLINICAL EFFICACY 

Selected SNP ID Chromosome Gene     Symbol Location  

rs9977558 21 JAM2 /// MRPL39 promoter region 

rs585620 10 KCNMA1 intron 

rs7637788 3 UBE2E1 putative promoter region 

 
 

 

some of the identified SNPs are located in the promoter, 
intronic, and intergenic regions of the genes that could  
contribute to physiological effects of domperidone  (Table 3 
and 4). While in many cases the causal relation between  
physiological mechanism of domperidone and affected genes 
remains obscure, some genes provide attractive candidates with 
clear physiological significance. For example, the calcium-
sensitive potassium channel KCMA1 plays a key role in 
regulation of the contraction of smooth muscle, and genetic 
polymorphism in the KCNMA1 gene could modulate 
domperidone effects. Similarly, JAM2 may have functions 
related to efficacy/side effects of domperidone. JAM2 
(junctional adhesion molecule 2) encodes a protein that is 
localized in the tight junctions between high endothelial cells. 
Because this protein forms a physical barrier to prevent solutes 
and water from passing through the paracellular space, genetic 
variations in its expression or functioning may contribute to 
domperidone gut absorption. 

Clinical efficacy of domperidone pharmacotherapy has 
been predicted by SNP rs4511574, located within the first 
intron of the FBXL20 gene. Moreover, the same SNP 
rs4511574 was selected with the help of Least Angle 
Regression Analysis (LAR) [14]. Therefore, the feature 
selection method MBFS suggested in the present work allows 
an exploratory data analysis without a pre-specified hypothesis. 
By accomplishing MBFS analysis of a limited number of 
interrogated genomes, we were able to generate testable 
hypotheses about an association of phenotypes with genetic 
markers. Specific hypotheses formulated as a result of our 
analysis will be statistically evaluated in a larger prospective 
group of patients. Direct functional assays to address the 
clinical significance of our findings are needed using the in 
vitro and in vivo models.  

Until the results of clinical validation of identified markers 
become available, we have to rely on circumstantial evidence 
that the results generated by the proposed approach are 
feasible. First, several selection methods provide overlapping 
(though non-identical) lists of genes. Second, if differential 
genetic markers located in the same gene are selected, this 
improves the chances that a true association is found.  

VI. CONCLUSION 
We applied our feature selection method (MBFS) on real 

SNP microarray data to select the informative SNPs for 
prediction of clinical efficacy and side effects of Domperidone. 
Experiments show that the classification model built on SNPs 
selected by our method is more accurate than the model built 
on all SNPs and the models built on SNPs selected by four 
alternative feature selection methods. 
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