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Abstract
Different studies have demonstrated the importance of comorbidities to better understand

the origin and evolution of medical complications. This study focuses on improvement of the

predictive model interpretability based on simple logical features representing comorbidi-

ties. We use group lasso based feature interaction discovery followed by a post-processing

step, where simple logic terms are added. In the final step, we reduce the feature set by

applying lasso logistic regression to obtain a compact set of non-zero coefficients that repre-

sent a more comprehensible predictive model. The effectiveness of the proposed approach

was demonstrated on a pediatric hospital discharge dataset that was used to build a read-

mission risk estimation model. The evaluation of the proposed method demonstrates a

reduction of the initial set of features in a regression model by 72%, with a slight improve-

ment in the Area Under the ROC Curve metric from 0.763 (95% CI: 0.755–0.771) to 0.769

(95% CI: 0.761–0.777). Additionally, our results show improvement in comprehensibility of

the final predictive model using simple comorbidity based terms for logistic regression.

Introduction
In the recent revolution in the healthcare field that focuses on big data driven predictive models
that will be able to offer decision support on a personalized level, we still mostly use classifica-
tion and regression models that were developed decades ago. However, even though some
basic methodologies stay the same, we have recently witnessed many adaptations of different
predictive methods due to the increasing the number of available samples and especially due to
a rapid pace of growth in the number of available features. A large part of such adaptations
comes from bioinformatics where the need for adaptations of older predictive models
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originates from specific dataset characteristics such as a feature dimensionality that is much
larger than the number of available examples. Different variants of regression models have
been widely used in the biomedical domain to build effective and interpretable predictive mod-
els [1]. The rapid increase in the number of features brought some novel adaptations of regres-
sion models that now allow us to simultaneously select features and predict the target class or
value [2]. Also, adding interactions to the prediction models can provide more information
considering the co-occurrence effects of different features, and for complex prediction prob-
lems traditional additive models are insufficient [3–5]. However, adding all pairwise interac-
tions in a dataset with n features will result in a model with 2n terms considering only
interactions of second order and will grow exponentially with the number of features. This not
only highly increases the computation burden, but also the complexity of the model. For that
reasons, most researchers only focus on pairwise interaction models [3, 6].

The interaction discovery method that was originally proposed to solve very high-dimen-
sional problems in bioinformatics was used in this study to pre-filter a set of features and their
interactions. This procedure is followed by the introduction of simple logical terms and a post-
processing that allows the building of effective and comprehensible predictive models from
Electronic Medical Records (EMR) data. The high dimensionality of data in EMR usually origi-
nates from binary features representing diagnoses, procedures or drugs using specific diagnos-
tic, procedural and pharmaceutical codes. In general, the interactions corresponding to the
features with larger main effects intuitively have more practical effects on the output [7]. For
that reason we focus on reliable interactions that have larger main effects.

Information on comorbidities or co-occurrence of multiple diseases has been widely used to
improve different algorithms. In this paper, we use the terms comorbidity and interaction
interchangeably, which refer to a co-occurrence of two or more diagnoses or clinical condi-
tions. Lappenshaar et al. [8] proposed a novel method to identify interactions between different
malignancies including their interpretation based on Bayesian networks. Riano et al. [9] intro-
duced a model for combination of treatments for the management of chronic comorbid
patients using a divide-and-conquer approach. The comorbidity of hypertension and chronic
heart failure was explored in the evaluation of the proposed approach. However, none of the
two mentioned studies used comorbidity data in predictive models. Most methods that employ
co-occurrence of features in high-dimensional data have their origins in bioinformatics. A
study by Ruczinski et al. [10] presents a regression method that uses Boolean combinations of
binary features as new features to improve the regression performance. Although this approach
can be used to improve the regression performance by adding interpretable features, the new
features often consist of multiple basic features combined in complex representations. Com-
bined new features can be difficult to interpret, especially when multiple such features are com-
bined in a regression equation. Bien et al. [3] and Lim and Hastie [11] proposed two
approaches limited to the discovery of regression interaction terms instead of more complex
features. Both of them use highly efficient lasso regression [12] that allows them to find a small
set of interaction terms contributing to the improvement of the regression performance. Both
approaches also satisfy strong hierarchical constraints, i.e. the inclusion of an interaction term
also implies the inclusion of its main effects in the regression equation. Therefore, our
approach relies on the work of Lim and Hastie that allows for the fast selection of the initial set
of interaction terms. As an alternative to regularized regression, one can use other rule-based
systems that allow interpretability of results. In this paper, we use boosted decision trees [13],
where feature selection is part of the decision tree building process. Although small sets of
boosted decision trees can achieve competitive results [14], it is difficult to interpret the
obtained models. Even though each boosted decision tree can be transformed to a set of rules
for easier interpretation, we have to be aware that each boosted decision tree should be
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interpreted separately as opposed to simply merging all rules obtained in the process of deci-
sion tree boosting.

Materials and Methods
In the initial step of our approach, we use a glinternet R package by Lim and Hastie [11] due to
the lower computational complexity of this approach as compared to competing solutions. In
this study, we measure the complexity or comprehensibility of the predictive model by the
number of regression coefficients. We follow the intuition that if we reduce the number of fea-
tures (i.e. regression coefficients) in the model we facilitate its interpretation by the domain
expert. Our approach consists of three steps:

1. Run group lasso based approach for learning pairwise interactions in a manner that satisfies
strong hierarchy to obtain a set of main effects with corresponding interactions. Here, a user
defines the number of interactions to be discovered.

2. Use the information on the selected features to introduce additional Boolean logic based fea-
tures for binary features representing presence of diagnoses on a medical record. The intro-
duction of these additional features allows the model to capture the cases when one
diagnosis is present while the other is not (e.g. discerning subgroups of patients with similar
diagnosis codes on their records).

3. Run lasso regression to find an optimal set of features introduced in step 2.

Here, we explain the introduction of new features from step 2 for a simple case of a single
interaction involving two binary features representing presence of diagnoses d1 and d2.

As a result of step 1, we obtain the following basic regression equation:

y ¼ b0 þ b1d1 þ b2d2 þ b3d1d2 þ ε

where y represents the output of the regression function, β is the regression coefficient, and ε is
the random error term. More generally, for presence of multiple diagnoses the following
regression equation is obtained:

y ¼ b0 þ
X

j

bjdj þ
1

2

X

j6¼k

yjkdjdk þ ε

where j and k represent the number of diagnoses; θ is introduced as a coefficient for interaction
terms.

Since glinternet was used to obtain the above result, the model respects the hierarchy con-
straints by including the main effects and the interaction term in the equation. At this point,
we add two additional logical features to the equation as follows:

y ¼ b0 þ b1d1 þ b2d2 þ b3d1d2 þ b4d1d
c
2 þ b5d

c
1d2 þ ε

A more general form of the extended equation that includes additional regression coeffi-
cients is:

y ¼ b0 þ
X

j

bjdj þ
1

2

X

j 6¼k

yjkdjdk þ
X

j<k

gjkdjd
c
k þ

X

j<k

djkd
c
j dk þ ε

where djd
c
k and d

c
j dk represent cases where only one of the diagnoses is present and the other is

not, β represents the coefficients of single diagnoses, while θ, γ and δ represent coefficients for
different types of interactions.
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Next, we reduce the number of coefficients based on the optimal performance that can be
achieved by keeping only the coefficients for features selected by lasso regression at non-zero.
This way we can reduce the number of features and improve the comprehensibility of our
model. We used the proposed approach on a binary classification problem and therefore a
logistic regression was used instead of the more general multivariate regression. Our approach
improves regression performance and reduces the number of features in the final model, thus
improving the interpretability of the model as demonstrated in the next section. Although we
lose the strong hierarchy by introduction of a lasso regression in the third step, we are able to
capture relations including both diagnoses by the newly introduced features from step 2 and
therefore reduce the need for the strong hierarchy. This is especially true in cases where one or
both of the newly introduced coefficients are kept in the final model, with all the rest
eliminated.

To compare the results with alternative solutions that still maintain the interpretability of
results, we ran additional experiments where we used boosted decision trees, using C5.0 pack-
age in R [15, 16], instead of lasso regression in the final step of the proposed approach. We
used 10 boosting iterations and kept the rest of the parameters at their default values—i.e. min-
imal number of samples in leaves was set to 2, confidence factor to 0.25 with global pruning off
and early stopping on. The source code for all experiments performed in the paper is available
from https://github.com/gregst/plos-one/.

Results
The empirical evaluation of the proposed method with respect to its predictive performance as
well as the complexity of the final model was done on the problem of predicting rehospitaliza-
tion within 30 days from the date of discharge. Hospital discharge data from California, State
Inpatient Databases (SID), Healthcare Cost and Utilization Project (HCUP), Agency for
Healthcare Research and Quality [17] was used in all experiments. The SID is a component of
the HCUP, a partnership between federal and state governments and industry, tracking all hos-
pital admissions at the individual level. The HCUP data is open and available to all researchers.
We used data from January 2009 through December 2011 in the pre-processing phase. In this
study, we focus on a specific population of patients from pediatric hospitals that are rarely used
in studies predicting readmission, but represent an important group where good results in
terms of predictive performance can be achieved [18]. After pre-processing the data from pedi-
atric hospitals (including children up to 10 years of age), we obtained the final dataset contain-
ing 61,111 discharge records with 10,675 positive (readmitted within 30 days) and 50,436
negative records.

Features used to perform the classification, included age, sex, length of stay, number of
chronic diseases, number of procedures on the record and total charges in USD. An additional
set of 213 features representing the presence of most frequent diagnoses was added to an initial
set of general information. In case of total charges and length of stay, the log-transformed fea-
tures were added as well.

To measure the performance of the compared methods, we use the repeated hold-out set
evaluation where we randomly split the data into a training set consisting of 2/3 and a test set
consisting of the remaining 1/3 of data samples. The hold-out based evaluation was repeated
1000 times to obtain a better insight into the variance of the area under the ROC curve (AUC)
and complexity of the predictive model (number of coefficients) that were measured for each
run.

In all experiments, we compared the performance of the group lasso interaction discovery
method called glinternet as proposed by Lim and Hastie [11] to our proposed approach that
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aims to reduce the complexity of the predictive model and keep the regression terms highly
interpretable at the same time. Four experimental runs were conducted where the number of
discovered interactions (NDI) was set to 5, 10, 15 and 20. The λ parameter that controls the
overall strength of the penalty on regression coefficients was tuned on the training set using
5-fold cross-validation to avoid feature selection bias as described by Friedman et al. [19]. The
same λ parameter tuning was used in step 1 (glinternet) and step 3 (lasso) of the proposed
approach. Two settings were used in the application of lasso (step 3) in our approach. The first
one used λ that resulted in the optimal AUC (OPT), while the second allowed one standard
error deviation from AUC but resulted in a smaller set of selected features (1SE).

Performance and Interpretability
Fig 1 presents the results for the AUC, where it can be observed that the models produced by
OPT and 1SE resulted in an improved AUC compared to glinternet. However, the differences
in AUC are not significantly different with an average AUC for glinternet with 5 interactions at
0.750 (95% CI: 0.742–0.758), OPT at 0.756 (0.747–0.764) and 1SE at 0.754 (0.746–0.763). The
best results were obtained with 20 interactions with the average AUC for glinternet 0.763
(0.755–0.771), OPT 0.771 (0.763–0.779) and 1SE 0.769 (0.761–0.777). The only exception to
the above results was the performance of the C5.0 decision trees with AUC of 0.742 (0.722–
0.755) for 5 interactions and 0.752 (0.741–0.762) for 20 interactions that differs significantly,
especially as the number of interactions increases.

Since this study primarily focuses on the reduction of model complexity and consequently
improved comprehensibility, one expects significant differences in the number of features
selected by the different approaches. Fig 2 confirms our expectations and demonstrates

Fig 1. Classification performance of the three observed approaches. Four sets of boxplots represent predictive performance measured in Area under
the ROC curve (AUC) for 1-Standard Error (1SE), boosted C5.0 decision trees (C5.0), glinternet (GLI) and a model using optimal lambda (OPT) setting
obtained using cross-validation. Each set is obtained for a different setting of “Number of Discovered Interactions” (NDI)–i.e. 5, 10, 15 and 20 interactions.

doi:10.1371/journal.pone.0144439.g001
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significant differences for OPT and 1SE in comparison to baseline (glinternet) and C5.0 mod-
els. In the case of 5 selected interactions we can observe a relatively low number of selected fea-
tures for all methods with average number of selected features for C5.0 trees at 45.99 (95% CI:
18.00–66.00), glinternet at 24.11 (21.00–31.18), OPT at 10.02 (6.00–17.00) and 1SE at 6.41
(5.00–11.00). When comparing the most complex models that performed the best in terms of
AUC, we can observe bigger differences. Here C5.0 used 75.95 (51.73–100.00), glinternet used
87.11 (78.00–107.23), OPT 40.43 (32.00–52.00) and 1SE 24.55 (15.00–38.00) features on
average.

Comorbidity Analysis
To compare the results of the proposed OPT and 1SE models, we analyzed different sets of fea-
tures selected in 1000 experimental runs with emphasis on significant interactions representing
comorbidities of interest. As can be seen, especially from Table 1, the simple logic features that
were introduced in our approach play an important role in predicting the readmission within
30 days of the hospital discharge.

One can notice that the two highest ranked features both include ICD9-CM diagnosis codes
288.00 (Neutropenia, unspecified) and 204.00 (Acute lymphoid leukemia, without mention of
having achieved remission) and might represent an interesting “switching” pattern. Conse-
quently, this means that for patients that have only one of those two diagnoses the risk of read-
mission is higher than for patients that do not have any or have both of the two diagnoses. One
has to be aware that frequent selection of a variable does not necessarily imply a strong influ-
ence on the dependent variable. However, in the above case it can be observed that a feature
with both 288.00 and 204.00 was not present, except in a very few cases (0.2%) for the OPT

Fig 2. Complexity of the three observed approaches. Comparison of model complexity, measured as number of selected features, for the three compared
approaches and four different settings of “Number of Discovered Interactions” (NDI).

doi:10.1371/journal.pone.0144439.g002
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model (S1 File). On the other hand, it is also possible that 204.00 confounds 288.00 or vice-
versa. Further experiments would be needed to confirm this.

Additionally, selected comorbidities can also lead to discovery of new knowledge or confir-
mation of already existing knowledge on comorbidities. For example, an interaction with nega-
tive coefficient between Pneumonia (486) and Obstructive sleep apnea (327.23) is mentioned
in a recent paper by Bhattacharyya [20] who reported their relation to readmissions in adult
population. Our results point at a similar relation in the pediatric population. In our case, pres-
ence of 486 and 327.23 can be observed in the two top ranked features with an additional fea-
ture where only 486 is present as a frequent negative coefficient (Table 2). For all
hospitalizations where 486 = 0 AND 327.23 = 1 or 486 = 1 AND 327.23 = 0, the risk of read-
mission is reduced, with an additional reduction for the second group that has only 486 pres-
ent. This means that even in case of both 486 and 327.23 being present the readmission risk
will mostly be reduced due to high frequency of 486 in negative coefficients, however this
reduction will be smaller than in case of patients where only one of the two diagnoses is
present.

With a closer observation of the results in Tables 1 and 2, one can notice the presence of
two numerical features in both tables—i.e. log transformed length of stay (LOS_LOG) and
number of chronic conditions (NCHRONIC). As main effects, they represent a positive coeffi-
cient in all models, but on the other side, they are also present in all models as a negative inter-
action coefficient. Practically, this means that for children who are hospitalized for a longer
period and have a high number of chronic conditions the hospitalization risk decreases, in con-
trast to children with lower length of stay and high number of chronic conditions or higher
length of stay and lower number of chronic conditions.

Table 1. Ranked list of the most frequent positive coefficients including comorbidity terms for both
proposed approaches.

Rank Variable Present in
the final set
of features

(%)

OPT 1SE

1 288.00 = 0 AND 204.00 = 1; 288.00—Neutropenia, unspecified; 204.00—Acute
lymphoid leukemia, without mention of having achieved remission

100.0 99.9

2 288.00 = 1 AND 204.00 = 0; 288.00—Neutropenia, unspecified; 204.00—Acute
lymphoid leukemia, without mention of having achieved remission

100.0 100.0

3 V58.11 = 0 AND 194.0 = 1; V58.11—Encounter for antineoplastic chemotherapy;
194.0—Malignant neoplasm of adrenal gland

100.0 100.0

4 V58.11 = 0 AND 284.1 = 1; V58.11—Encounter for antineoplastic chemotherapy;
284.1—Pancytopenia

100.0 100.0

5 Length of stay (log transformed) 100.0 100.0

6 Number of chronic conditions 100.0 100.0

7 V58.11 = 1 AND 288.00 = 0; V58.11—Encounter for antineoplastic chemotherapy;
288.00—Neutropenia, unspecified

99.8 99.9

8 V58.11 = 0 AND 780.60 = 1; V58.11—Encounter for antineoplastic chemotherapy;
780.60—Fever, unspecified

99.2 93.8

9 V58.11 = 0 AND 780.61 = 1; V58.11—Encounter for antineoplastic chemotherapy;
780.61—Fever presenting with conditions classified elsewhere

99.2 99.3

10 V58.11 = 1 AND 284.1 = 0; V58.11—Encounter for antineoplastic chemotherapy;
284.1 –Pancytopenia

99.0 97.5

doi:10.1371/journal.pone.0144439.t001
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In Table 2, we see that the top ranked features of OPT and 1SE differ significantly. By allow-
ing up to one standard deviation larger error in lasso regression λ tuning to achieve a smaller
more comprehensible model, we are reducing the cardinality of the set of selected features in
the 1SE model. It is intuitive that 1SE will set some similar (i.e. highly correlated) features to
zero and keep only a few of the similar features. For example, in Table 2 the similarity between
the top 3 features can be clearly seen—they all include number of chronic conditions. Since we
want to reduce the set of features by employing 1SE, it seems that in most cases only one of the
three similar features (or even none in some cases) was chosen. Based on the results from
Table 2 we can conclude that interaction with age, length of stay or number of procedures gives
very similar results. However, if we allow more features to be selected, each of them can be use-
ful and possibly contribute to a slight improvement in AUC.

To observe this phenomenon, also known as Simpson’s Paradox [21], we took a closer look
and built two logistic regression models using only LOS_LOG and NCHRONIC with and with-
out an interaction term. Fig 3 presents a response value of the model with interaction term
(left) and without interaction term (right).

It can be seen that without the interaction term, we are not able to model the fact that by
increasing LOS_LOG and NCHRONIC simultaneously, the risk of readmission actually drops.
In the end, the effect of the interaction term might not be as significant as it seems for Fig 3,
mainly because of the small number of patients with extremely high LOS_LOG and NCHRO-
NIC, but this example still demonstrates the importance of interaction term inclusion in pre-
dictive modeling.

Discussion and Conclusions
This paper presents an approach to model comorbidities by introducing additional features
that can represent cases when one of the diagnoses is not present while the other is. This sce-
nario is important in cases where a number of different but similar diagnoses are present on
the medical record and we would like to exclude only one of them to define a specific subgroup
of patients.

Table 2. Ranked list of the most frequent negative coefficients including comorbidity terms for both
proposed approaches.

Rank Variable Present in
the final set
of features

(%)

OPT 1SE

1 Number of chronic conditions AND Age 100.0 46.1

2 Number of chronic conditions AND Length of stay (log transformed) 100.0 8.87

3 Number of chronic conditions AND Number of procedures 99.3 19.1

4 486 = 0 AND 327.23 = 1; 486—Pneumonia, organism unspecified; 327.23—
Obstructive sleep apnea (adult)(pediatric)

97.8 94.8

5 486—Pneumonia, organism unspecified 82.9 85.3

6 486 = 1 AND 327.23 = 0; 486—Pneumonia, organism unspecified; 327.23—
Obstructive sleep apnea (adult)(pediatric)

72.1 51.9

7 486 = 0 AND 382.9 = 1; 486—Pneumonia, organism unspecified; 382.9—
Unspecified otitis media

69.7 58.8

8 799.02 –Hypoxemia 57.8 61.3

9 493.00—Extrinsic asthma, unspecified 53.7 55.5

10 382.9—Unspecified otitis media 39.4 45.5

doi:10.1371/journal.pone.0144439.t002
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To demonstrate different possibilities in reduction of the final set of comorbidity based fea-
tures, we compared the proposed approach to a variant using boosted decision trees. The pro-
posed approaches outperformed boosted decision trees in terms of AUC and number of
selected features. However, it has to be noted that it would be possible to reduce the number of
selected features in decision trees without significant loss of predictive performance as we dem-
onstrated in our earlier study [22]. On the other hand, even if we would be able to make single
decision trees more comprehensible by reducing their complexity, it would still be difficult to
interpret them, because of the boosting approach that results in multiple decision trees that
need to be interpreted.

In contrast to a similar approach called Logic Regression [10], the proposed approach allows
interactions between different types of features, although we focus this study primarily on dis-
covery of comorbidities that can improve the predictive performance. Additionally, our
approach is better suited for larger and more complex problems due to the screening phase
that can significantly lower the computational complexity of the interaction discovery process.
It would be possible to extend the proposed approach by inclusion of more complex interac-
tions involving multiple features by simply re-running steps 1 and 2 of the proposed approach.

Results in this study demonstrate that in some cases, selected features represent combina-
tions of diagnoses that would not be observed using simple interaction terms often used in
regression based predictive modeling. As demonstrated with an increasing number of studies
focusing on disease associations based on data from EMR [23], such interactions may lead to
discovery of new knowledge. The practical value of the proposed approach reflects in improved
comprehensibility of obtained predictive models by slightly improving their classification per-
formance at the same time.

Fig 3. Risk of readmission with and without the interaction term. Surface plot of the response (risk of readmission) from the model without (left) and with
interaction between length of stay (LOS_LOG) and number of chronic diseases (NCHRONIC).

doi:10.1371/journal.pone.0144439.g003
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