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Abstract

Disordered regions are sequences within proteins that fail to fold into a �xed tertiary structure

and have been shown to be involved in a variety of biological functions. We recently applied neural

network predictors of disorder developed from X-ray data to several protein sequences characterized

as disordered by NMR (Garner, Cannon, Romero, Obradovic and Dunker, Genome Informatics,

9, 201-213, 1998). A few predictions on the NMR-characterized disordered regions were noted

to contain \false" negative indications of order that correlated with regions of function. These

and additional examples are examined in more detail here. Overall, 8 of 9 functional segments

in 5 disordered proteins were identi�ed or partially identi�ed by this approach. The functions of

these regions appear to involve binding to DNA, RNA, and proteins. These regions are known

to undergo disorder-to-order transitions upon binding. This apparent ability of the predictors to

identify functional regions in disordered proteins could be due to the existence of di�erent avors,

or sub-classes of disorder, originating from the sequence of the disordered regions and perhaps owing

to local inclinations toward order. These di�erent avors may be a characteristic that could be used

to identify binding regions within proteins that are diÆcult to characterize structurally.

1 Introduction

As the amount of sequence data from various genomic projects increases, it becomes ever more im-

portant to predict structure from primary sequence. Predictions of structure from sequence, whether

by ab initio approaches or homology-based methods, are then used to deduce function. This scheme

assumes that de�ned structures are a prerequisite for function [10, 15, 17, 20].

Increasing attention has recently focused on proteins or regions of proteins lacking �xed tertiary

structure, essentially being partially or fully unfolded [7, 11, 26, 39]. Such disordered regions (DRs)

have been shown to be involved in a variety of functions, including DNA recognition [5, 16, 23, 24],

modulation of speci�city/aÆnity of protein binding [1, 8, 34, 28], molecular threading [6], activation by

cleavage [4, 9], and control of protein lifetimes [18]. Although these DRs lack a de�ned 3-D structure

in their native states, they frequently undergo disorder-to-order transitions upon binding to their

partners.

As it is known that sequence determines structure [2], we assumed that sequence would determine

lack of structure as well. To test this, we developed a series of neural network predictors (NNPs)

that use amino acid sequence data to estimate the likelihood of disorder in a given region [30, 31].

The 70% accuracies shown from 5-cross validation and out-of-sample testing [13, 30, 33] support the

hypothesis that DRs are encoded by local amino acid sequence. Further support for this hypothesis

comes from observations that DRs have characteristics that are consistent with expectations for non-

folding sequences, such as signi�cant net charge, lack of aromatic residues, an excess of hydrophilic

groups, or a combination of these and other appropriate sequence attributes [7, 40].



Proteins with DRs are largely unexplored, yet represent a signi�cant percentage of proteins in

nature. Previous studies have indicated that, at a threshold with a false positive rate less than 1 in

618,344 predictions, more than 1000 proteins out of the database SWISS-PROT contain DRs longer

than 40 amino acids in length. At a threshold with a false positive rate of about 7% per protein chain,

almost 25% of the SWISS-PROT sequences are predicted to have such long DRs [32].

Gerstein et al. [14] showed that the proteins from structural databases are related to only a small

subset of those from genomic databases and that the compositional qualities of the unrepresented

proteins are indeed quite di�erent from those sequences represented in structural databases. The

unrepresented proteins from the genomes had signi�cantly more charged residues, less cysteine and

less tryptophan than proteins in the Protein Data Bank (PDB). These sequence characteristics are

some of those associated with native protein disorder [7, 40]. Thus, a reasonable suggestion is that the

biases discovered by Gerstein et al. are due to a signi�cant degree to the existence of protein disorder.

Studies are in progress to estimate the relative amount of disorder in the current complete genomes.

In a previous study of regions known to be disordered through NMR characterization, we noted a

couple of examples in which prediction errors corresponded to functionally important segments [13].

That is, apparent false negative errors (predictions of order within regions structurally characterized

to be disordered) mapped to functional regions within the disordered protein sequences. Here we

present a more complete examination of these previous examples and extend the study to new ones.

Although the sample size is still too small to serve as the basis for generalization, these few examples

demonstrate a novel use for our NNPs, namely, to perhaps identify binding segments within DRs.

2 Materials and Methods

2.1 Development of NNPs

Two of our disorder predictors are utilized in this study, the X-ray and calcineurin (CaN) NNPs. The

X-ray NNP is the same as the long disordered region (LDR) predictor described previously [33] but

renamed for clarity [13]. The NNPs use primary sequence information, within a sliding window of 21.

Attributes, such as numbers of particular amino acids or hydropathy, are calculated over this window

and used as inputs into the NNP. The NNP then assigns an output value to the central amino acid

within the window. Any output value exceeding a threshold of 0.5 is considered disordered. Past

studies have shown that as the length of the predicted disordered region increases, the false positive

error rate of that given prediction decreases, and that errors frequently occur at boundary regions,

perhaps due to the use of windows by the predictor [13].

The X-ray NNP was trained upon a disordered data set of 7 structures with missing coordinates

in PDB. These were selected to have no associating subunits or bound cofactors within the crystal

structure. An ordered set was obtained from randomly selected patterns from NRL 3D [25]. The X-

ray NNP's attributes were selected using a method of sequential forward search. The resulting NNP

utilized a feed forward architecture with 10 inputs, 7 fully connected nodes within the hidden layer,

and a single output. The accuracy was 73% as judged by 5-cross validation on a residue-by-residue

basis [31].

The calcineurin NNP, an example of a family-speci�c predictor, was developed based upon data

from alignments between the disordered region of human calcineurin and those of calcineurins from

other species identi�ed in SWISS-PROT [30]. Any SWISS-PROT sequence segment that aligned with

the disordered region of human CaN was considered disordered. Ordered data patterns were again

selected randomly from NRL 3D. Branch and bound searching was utilized to determine the optimal

features to be used as inputs. The CaN NNP used 10 inputs, 10 fully connected nodes, and one

output, and had a 5-cross-prediction accuracy of 83% [30].

The features that serve as inputs for the two NNPs are similar; indeed, 6 of 10 selected attributes

are the same. Thus, similar attributes were selected despite the di�erent training sets used. A list
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of selected features is presented in Table 1, where the individual amino acids correspond to their

compositions in windows of 21. The hydropathy attribute used the Kyte and Doolittle scale [19],

while exibility values were based on backbone atom B-factor values, averaged for each amino acid

type [37]. The �-moment was calculated as described previously [30]. A list of selected attributes is

presented in table 1.

X-ray NNP H C S W Y E D K Hydropathy Flexibility

CaN NNP H C S W Y E V F R �-moment

Table 1: Features used by the NNPs

2.2 Application of NNPs to Disordered Proteins and Cross Validation.

Both the LDR and the CaN NNP were applied to a set of structurally well-characterized proteins

(see http://disorder.chem.wsu.edu/proteinlist.html), all of which have been shown through a variety

of methods to be fully disordered or to contain long disordered regions. For the NMR-characterized

proteins in the absence of binding partners, no tertiary structure was evident, and secondary structure,

if present at all, was highly dynamic.

In the present study, the NNPs were applied only to the disordered parts of the proteins. First, we

identi�ed regions that showed predictions of order or large di�erences between the outputs of the two

di�erent predictors, with at least one of the predictors giving false negative indications of order. These

predicted regions of order were then examined to see whether they corresponded to any functional

sites within the sequence.

2.3 Proteins Used in This Study

The 4e binding protein 1 (4E-BP1) is a translational regulator, inhibiting the formation of the initiation

factor complex eIF4F by binding to eIF4E. A 20 residue fragment of 4E-BP1 was shown to be suÆcient

to bind to the eIF4E protein and inhibit translation [11, 12]. 4E-BP1 has been shown by NMR to

have little folded structure in solution. Only the binding site (residues 49-68) becomes structured

upon binding, while the remainder of the protein remains disordered.

High mobility group factor (HMGI(Y)) is a protein involved in assembly of higher order transcrip-

tion enhancer complexes. This protein contains 3 DNA binding domains that interact with the B

DNA minor groove [16]. This protein has been shown to be fully disordered by NMR, and becomes

structured upon binding to DNA.

The transcriptional activation protein N of phage lambda (APN) regulates genes expressed from

phage promoters to allow the phage to transcribe through terminators. The protein includes a Box

B RNA binding region, a Nus A binding region, and a carboxy-terminal region that interacts with

RNA polymerase. NMR indicates that the protein is disordered in solution, and that the Box B RNA

binding region undergoes a local disorder-to-order transition when interacting with the BoxB RNA,

while the other regions remain disordered in the absence of interactions with their target proteins [22].

Flagellin is the sole component of bacterial agella, and is a self-polymerizing protein that has

unfolded N and C terminal ends in its monomeric form [38]. When these regions are proteolytically

removed, the agella still assemble, but the stability and polymorphic ability of the agella are lost.

The N terminal region is involved in the completion of outer-tube domain folding and in the regulation

of the initiation and stabilization of these interactions between subunits. This region becomes ordered

upon polymerization [21].
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The N transcriptional activation domain of thyroid transcription factor-1 (TTF-1) is a unique DNA

binding domain that falls outside of the proline-rich, glutamine rich and acidic domain classi�cations

previously suggested for transcription factors. TTF-1 functions as a tissue speci�c transcription factor,

regulating transcription of thyroid and lung-speci�c genes. It has been shown by CD to exist in

a random coil conformation and is quite susceptible to protease digestion [36]. Similar to acidic

transcription domains, TTF-1 assumes a helical structure when binding to DNA. The formation of a

helix within regions required for binding is supported by CD spectroscopy, by protection from protease

digestion in solution with triouroethanol (TFE), and by secondary structure predictions [36].

Protein name Disordered Region Method of Structural Functional Regions Refs

Examined Characterization

4E-BP1 1-118 NMR, CD 49-68 Minimal eIF4E [11, 12]

Fully disordered binding region

HMGI(Y) 1-106 NMR 23-31 DNA BD I, [16, 29]

Fully disordered 55-70 DNA BD II,

81-89 DNA BD III

APN 1-107 NMR 1-22 Box B RNA binding, [22]

Fully disordered 34-47 Nus A binding,

73-107 RNA polymerase

binding

N term. of 1-65 Protease digestion, 40-65 Involved in outer [21]

agellin Adiabatic domain folding and

compressibility subunit stabilization

TTF-1 1-156 CD, 51- 102 Minimal [36]

Fully disordered Protease Digestion activating region,

49-73 Predicted helix,

58-78 TFE + protease

resistant

Table 2: Proteins Examined

3 Results

3.1 Cross Predictions

We have developed several di�erent NNPs based on di�erent training sets [30, 31, 33]. Predictions

on each other's training examples, i.e. cross predictions, revealed di�erent types, or \avors", of

disorder [33]. Thus, cross prediction is a useful approach for characterizing similarities and di�erences

between two predictors.

For the studies presented here, we applied several of our predictors to known regions of disorder

to test for di�erent \avors". Although interesting details come from comparing the results of several

of these predictors, the main points are evident from comparing just two: the CaN and X-ray NNPs.

The X-ray NNP included CaN within its training set; indeed, almost 1/4 of the disordered amino

acids came from this protein. Despite this overlap, only 6 out of 10 of the attributes were common

between the two training sets. To determine the extent to which the two predictors give concordant

predictions, the CaN NNP was applied to the DRs of the X-ray NNP's training data and vice versa.
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The X-ray NNP exhibited a very high success rate (97%) in cross-predictions on the CaN disorder

data, whereas the CaN NNP gave a much lower accuracy (59%) on the X-ray disorder data, and an

even lower value (40%) after the CaN disorder was removed from the X-ray training set. These results

are consistent with other studies showing that the X-ray NNP does fairly well across a wide spectrum

of disordered proteins, whereas the CaN NNP exhibits speci�city for CaN-like disordered regions [33].

The presence of a CaN sequence in the X-ray NNP's training set certainly contributes to its high

success rate on the CaN disorder data, but the success is still unexpectedly high for reasons that we

don't understand.

3.2 Predictions on Disordered Proteins

Figures 1-5 show the numerical NNP outputs of the predictions on the well-characterized DRs of the

selected proteins. The vertical axis of each graph represents the NNP's output, while the horizontal

axis represents the residue number. The outputs are given by solid (X-ray NNP) and dashed (CaN

NNP) lines. Values above 0.5, indicated by the central line, are predictions of disorder; below this

line, order. Shaded regions have been identi�ed as important to function.

Application of the two NNPs to the 4E-BP1 protein (�gure 1) gave concordant and correct pre-

dictions of disorder in the C-terminal region, concordant but false negative predictions of order in

the central region, and discordant predictions in the N-terminal region. The concordant false nega-

tive predictions of order and the identi�ed binding region of this protein are essentially coincident as

indicated by the degree of overlap of the shaded area (49-68) with the two strong predictions of order.

Figure 1: 4E-BP1 Figure 2: TTF-1

As for TTF-1 (�gure 2), the shaded area and the bar represent the suggested region essential for

function. That is, the shaded area (residues 51-102) indicates the minimal activating region, while the

black bar (residues 58-78) denotes the location of the protease-resistant, TFE-induced helix, which

is a putative DNA binding site. Again, the false negative prediction of order and the functional

region are mostly coincident. A very low score is predicted for the minimal activating region, but an

absolute minimum (e.g. a neural net output of 0) is predicted in the location of the protease-resistant,

TFE-induced helix.

For the remaining 3 proteins the two NNPs di�er in their false negative predictions of order. In

these examples, di�erences between the predictor outputs identify functionally important regions that

undergo disorder-to-order transitions upon binding.

For agellin (�gure 3), the X-ray NNP (solid line) indicates that this segment of the protein is

disordered, save for a small dip in the 45-55 residue region. The CaN NNP (dashed line) shows a near

absolute minimum (e.g. an output near 0) for the residues 43-62, all falling within the shaded 40-65

segment involved in the intersubunit interactions.
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Figure 3: N terminus of Flagellin Figure 4: HMGI(Y)

The predictions upon HMGI(Y) (�gure 4) show that the CaN NNP (dashed line) predicts minimas

to be overlapping with, but slightly o�-shifted from, the shaded DNA binding domains (residues 23-31,

55-70, and 81-89). In contrast, the X-ray NNP (solid line) considers this a fully unfolded protein as

indicated by the high score throughout the sequence.

The predictions on APN (�gure 5) show that the

Figure 5: APN

X-ray NNP (solid line) regards the Box B RNA bind-

ing site (�rst shaded region on the left) to be disor-

dered while the CaN NNP (dashed line) gives an out-

put indicating order. This pattern is again repeated

in the RNAP binding site in the C-term (right shad-

ed region). Here the CaN NNP considers the residues

55 and higher to be ordered, while the X-ray predicts

disorder for residues 65-77. An additional 20 residues

(55-75) are predicted to be ordered aside from the

known functional region. We wonder whether these

extra 20 residues are involved in some yet unknown

function. The NUSA binding region, residues 34-47,

is predicted as disordered rather than ordered, and is

considered missed by the criteria of this study.

4 Discussion

4.1 Potential Binding Sites by Disorder Prediction

In the cases presented above, the NNPs are able to identify binding sites within disordered proteins

by yielding apparent false negative predictions, e.g. predictions of order. The two predictors may

give di�ering patterns of agreement in regards to the binding regions, but in all cases the functional

regions were identi�ed using sequence information alone.

The structural assignment of a protein as being \disordered" is diÆcult, and in many cases,

somewhat arbitrary. While a protein may be disordered in its monomeric or unbound form, particular

regions within the protein may become structured upon binding, as is the case for all of the afore-

mentioned examples. Therefore, during predictor development, a judgement must be made whether

the disordered region is either consistently disordered or disordered until binding.

The X-ray NNP was trained upon a data set of unliganded, monomeric molecules, many of which

undergo disorder-to-order transitions upon association with ligands. Since the molecules were unbound

within the crystal structure, the binding regions of the X-ray NNP's training set were considered
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disordered during the training. This becomes manifest as shown by 3 examples above, where the

unliganded binding regions are considered disordered by the X-ray NNP as it has been taught to

recognize those regions as disordered.

The X-ray NNP, which is broad spectrum and has a fair out-of-sample accuracy, may miss func-

tional information. The CaN NNP, on the other hand, has a very poor out-of-sample accuracy and it

might therefore provide increased discrimination of the functional regions.

4.2 Di�erent Types of Disorder

The results herein and the results of past work [30] have indicated the presence of di�erent \avors"

of disorder. Evidence for these \avors" has come from clustering analyses of our disordered and

ordered data sets in attribute space. While random patterns from NRL-3D cluster in a given well-

de�ned region, the attributes for disordered proteins lie in a much greater region of attribute space,

and cluster within subgroups [30]. Indeed, the discovery of these di�ering inclinations toward disorder

is what prompted the development of the CaN and other family-speci�c NNPs, so as to be able to

di�erentiate possible disorder subtypes. Here we are investigating whether these \avors" can provide

information regarding protein function.

The presence of di�ering avors of disorder may be responsible for the identi�cation of the binding

sites. The X-ray NNP evidently considers many of the binding domains disordered due to the larger

\breadth" of its training set (and the inclusion of CaN). In contrast, the CaN NNP has not been

trained upon as many regions of di�ering function as the X-ray NNP, and hence is more selective in

its prediction of disorder. Similar arguments can be developed for the predictions on 4E-BP1 and

TTF-1, where both predictors agree that the binding sites are ordered. A more globally recognized

type of disorder may be seen in the linker regions between these binding sites, where both predictors

consider the region disordered. These areas must contain attributes shared by both predictors and

recognized by both as disordered.

4.3 Structural Implications

A di�erent source of the false negative minimas can also be envisioned. The degree of order/disorder

within proteins is by no means a binary state, as is assumed in the inputs to our predictors. That

is, any given region could be in equilibrium between order and disorder. Di�erent regions could

have di�erent values for the equilibrium constant, ranging from being disordered most of the time to

being predominantly ordered. We would expect a collection of such sequences to exhibit a gradient of

disorder tendencies rather than the two-state behavior assumed during training.

Perhaps the binding areas of the afore mentioned proteins, and of proteins in general that undergo

disorder-to-ordered transitions upon binding, do indeed contain sequence compositions that are na-

tively disordered, but are missing the nonlocal interactions required to drive them into the ordered

state. The extreme false negative minimas witnessed on the binding regions within this study may

contain an inclination toward, or transient state of, order, but again need the driving force provided

by the interactions with the associating partner. This would allow for the increased rate of associ-

ation of the interacting complex proposed in unstructured domains, through both an increased rate

of association as well as modulation of the speci�city of the binding [8, 27, 34]. Much evidence is

growing to support this, including thermodynamic arguments which have been proposed stating that

site-speci�c DNA-protein interactions are indeed disordered, and undergo disorder-to-order transitions

upon binding [35].

This study shows that NNPs trained upon di�rent disordered proteins can di�erentiate between

functional DRs. This supports the view that DRs may contain di�ering compositional features char-

acteristic of their function, which may prove to be a powerful tool for protein function identi�cation.

As the amount of both structural and functional data regarding disordered proteins increases, we hope
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to develop more NNPs based upon family and function-speci�c data, to perhaps discriminate other

functional regions from sequence.

On the ip side of the disorder problem, many DRs have been identi�ed without any known

function. Are these truly \orphans" without function, or do they contain functions yet to be discovered.

Using our predictors, systematic studies on \disorder orphans" may shed light upon both the locations

and functions of such sequences.

4.4 Future E�orts

The results presented herein suggest that functional regions within disordered domains can be recog-

nized by their local tendencies to form ordered structure. Of course, the number of examples is too

small to know whether or not this is a general feature of such sequences. On the other hand, func-

tional sites within disordered regions that are missed with a given set of predictors might be identi�ed

as more predictor avors are added. Given the recent call for the identi�cation and study of more

disordered proteins [39], we look forward to a much larger sample size that will enable us to more

completely test the proposals presented herein.
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