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Abstract. Protein phosphorylation is a crucial regulatory mechanism in various 
organisms. With recent improvements in mass spectrometry, phosphorylation 
site data are rapidly accumulating. Despite this wealth of data, computational 
prediction of phosphorylation sites remains a challenging task. This is particu-
larly true in plants, due to the limited information on substrate specificities of 
protein kinases in plants and the fact that current phosphorylation prediction 
tools are trained with kinase-specific phosphorylation data from non-plant or-
ganisms. In this paper, we proposed a new machine learning approach for phos-
phorylation site prediction. We incorporate protein sequence information and 
protein disordered regions, and integrate machine learning techniques of k-
nearest neighbor and support vector machine for predicting phosphorylation 
sites. Test results on the PhosPhAt dataset of phosphoserines in Arabidopsis and 
the TAIR7 non-redundant protein database show good performance of our pro-
posed phosphorylation site prediction method. 

Keywords: Protein Phosphorylation, Phosphoproteomics, Arabidopsis, Protein 
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1   Introduction 

Reversible protein phosphorylation is one of the most pervasive posttranslational 
modification mechanisms, regulating diverse cellular processes in various organisms. 
It has been estimated that about 30% of all proteins in a cell are phosphorylated at any 
given time [1]. In recent years, publicly available protein phosphorylation data have 
rapidly accumulated due to large-scale, mass spectrometry studies of protein phos-
phorylation in different organisms [2-6] and the development of associated phos-
phorylation web resources [7-11]. 
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Protein phosphorylation can occur on serine, threonine and tyrosine residues, as 
well as histidine and aspartate residues in the case of two-component phosphorelays. 
However, O-linked phosphorylation, specifically on serine residues, is the most com-
mon form of phosphorylation in eukaryotes. Despite the increasing number of large-
scale phosphorylation studies, experimental identification of phosphorylation sites is 
still a difficult and time-consuming task. Therefore, more efficient methods for pre-
dicting phosphorylation sites in silico are desirable. A number of phosphorylation site 
prediction tools have been developed, including Scansite 2.0 [12], NetPhosK [13], 
PredPhospho [14], DISPHOS [15], KinasePhos [16], PPSP [17], pkaPS [18], Predikin 
[19], GPS 2.0 [20], AutoMotif [21] and CRPhos [22]. However, these tools have 
limitations when predicting phosphorylation sites in plants for two major reasons: (1) 
they were trained mostly on phosphorylation data from non-plant—mainly mammal-
ian organisms; (2) all of them except DISPHOS, were trained on kinase-specific 
phosphorylation data and aimed to predict kinase substrate specificities. Meanwhile, 
the phosphorylation data in plants are not as well annotated as those in mammals, 
with much less information available on the specificity of phosphorylation sites and 
their corresponding kinases. Therefore, there is a clear need to train a reliable phos-
phorylation predictor in plants given the increased frequency of protein kinases in 
plant genomes and the lack of knowledge about their substrate specificities. With the 
recently released PhosPhAt database, potential phosphoserines were predicted for the 
Arabidopsis protein database TAIR7 [23] by support vector machine (SVM) trained 
on the experimental data collected in the database [10]. Nevertheless, there is room 
for improvement in prediction accuracy. 

In this paper, we proposed a new machine learning approach for phosphorylation 
site prediction in plants, which integrates features from protein disorder informa-
tion, nearest neighbors of known phosphorylation sites, and amino acid frequencies 
in the surrounding sequences of phosphorylation sites to train an SVM for phos-
phorylation site prediction. The key differences between our method and the previ-
ous study [10] are that we incorporated protein disorder prediction and nearest 
neighbor information in the prediction. A previous study demonstrated that disorder 
information significantly improved the discrimination between phosphorylation and 
non-phosphorylation sites [15]. With increasing volume of empirical phosphoryla-
tion sites, it is advantageous to use nearest neighbor information. Test results on the 
PhosPhAt [10] dataset of phosphoserines and the TAIR7 [23] non-redundant protein 
database indeed shows the remarkable performance of our proposed phosphoryla-
tion prediction method.  

2   Materials and Methods 

Phosphorylation site prediction can be formulated as a binary classification problem, 
namely each serine/threonine/tyrosine can be classified as either phosphorylation site 
or non-phosphorylation site. As with all general binary classification problems, there 
are three key issues: (1) a well-collected and curated dataset including positive and 
negative data; (2) a set of effective features to characterize the common patterns in 
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each category and the differences between the two categories; (3) a classifier trained 
from the known data, capable of making reliable predictions for new data. In this 
study, datasets were extracted from the TAIR7 protein database and PhosPhAt phos-
phorylation database as discussed in Section 2.1. Outputs from a protein disorder 
predictor, outputs from k-nearest neighbor predictions and amino acid frequencies 
around the phosphorylation sites were taken as features as discussed in Section 2.2. 
We used SVM as the classifier. 

2.1   Phosphorylation Dataset 

Phosphorylation data in the model organism Arabidopsis thaliana collected in Phos-
PhAt [10] and the Arabidopsis thaliana protein database TAIR7 were utilized in this 
study. Sequences with high similarities were first removed from TAIR7 to build a 
non-redundant (NR) protein database using BLASTClust in the BLAST package 
version 2.2.19 with a sequence identity threshold of 30%. As a result, 12,018 repre-
sentative proteins remain in the TAIR NR database. The PhosPhAt phosphorylation 
data were then incorporated resulting in 1152 phosphoproteins in the TAIR NR data-
base, which contain 2050 phosphorylation sites, including 1818 phosphoserines, 130 
phosphothreonines and 102 phosphotyrosines. We only study phosphoserine events in 
this paper because of the large number of available data for training and testing. How-
ever, the proposed method can be applied to all types of phosphorylation sites. 

A 25-residue-long amino acid sequence surrounding each phosphoserine with the 
phosphoserine in the middle was extracted from each phosphoprotein in the TAIR NR 
database. Phosphoserines with upstream or downstream less than 12 residues were 
discarded. As a result, we retrieved a positive set with 1671 sequences surrounding 
phosphoserines. Similarly, the 433,744 sequences surrounding the non-
phosphoserines (serines other than the phosphoserines) were assumed to be the nega-
tive set. Although not all these sites are necessarily true negatives, it is reasonable to 
believe that the vast majority of them are. 

2.2   Feature Extraction and Selection 

2.2.1   K-Nearest Neighbor Features 
Both of the positive and negative sets are very diverse at the sequence level. How-
ever, clusters may exist in the positive set, since each phosphorylation site is the sub-
strate of a specific protein kinase, and one kinase could target multiple substrates. It is 
well known that substrates of the same kinase may share similar patterns in sequence 
[24]. To take advantage of the cluster information when predicting phosphorylation 
for a new site (represented by its surrounding sequence), we extracted features from 
its similar sequences in both positive and negative sets retrieved by a k-nearest 
neighbor (KNN) algorithm as the following procedure. 

i) For a new sequence s, find its k nearest neighbors (NN) in positive and nega-
tive sets respectively according to the sequence distance measure defined as 
follows. For two protein sequences s1={s1(-w), s1(-w+1),…, s1(w-1), s1(w)} 
and s2={s2(-w), s2(-w+1),…, s2(w-1), s2(w)}, define the distance Dist(s1, s2) 
between s1 and s2 as 
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  (1) 
where w is the length of left/right window (w=12) and Sim—amino acid 
similarity matrix—is derived from the normalized BLOSUM62 [25]: 
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where a and b are two amino acids, Blosum is the BLOSUM62 matrix, and 
max/min{Blosum} represent the largest/smallest number in the Blosum ma-
trix. 

ii) The corresponding KNN feature is then extracted as follows 
a) Calculate the average distances from the new sequence s to the k nearest 

neighbors in the positive and negative sets, respectively. 
b) Calculate KNN score—the ratio of the average distance to the nearest 

neighbors in the positive set against that in the negative set. 
iii) To take advantage of different properties of neighbors with different similari-

ties, repeat (i) and (ii) for different k’s to get multiple features for the phos-
phorylation predictor. In this paper, k was chosen to be 0.1%, 0.2%, 0.5%, 
1%, 2%, 5% and 10% of the size of positive/negative sets, and thus 7 KNN 
scores were extracted as features for the phosphorylation prediction. 

2.2.2   Protein Disorder Features 
It was observed that sites of posttranslational modifications, including protein phos-
phorylation sites, are frequently located within disordered regions [15, 26]. In [15], the 
disorder prediction results for the phosphorylation sites were employed as features to 
construct a phosphorylation predictor—DISPHOS. In this study, we extracted the 
disorder information for all surrounding residues of each phosphorylation site and 
combined them to form a set of disorder features in SVM. The procedure is as follows: 

i) For each protein in the TAIR NR database, predict its disordered region using 
VSL2B [27]. 

ii) Extract the disorder prediction scores for the surrounding residues in both 
positive and negative sets, and thus form a vector of 25 scores. 

iii) Take the average scores surrounding the sites with different window sizes as 
features for the phosphorylation predictor. In this paper, we chose the window 
sizes to be 1, 9 and 25, and thus three disorder features were extracted for 
each sequence. 

2.2.3   Amino Acid Frequency Features 
In [15], Iakoucheva et al. analyzed the amino acid composition of the surrounding 
sequences of phosphorylation sites and found that rigid, buried, neutral amino acids 
(W, C, F, I, Y, V and L) are significantly depleted, while flexible, surface-exposed 
amino acids (S, P, E, K) are significantly enriched. This conclusion was confirmed by 
this study as illustrated in Section 3.3. This fact makes the amino acid frequencies  
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good candidates as features for phosphorylation site prediction. In this paper, all 20 
amino acid frequencies in each 25-residue sequence were extracted as features for the 
phosphorylation predictor. 

3   Results and Discussions 

3.1   KNN Scores as Features 

The KNN scores were extracted as features according to the procedure described in 
Section 2.2.1. A KNN score for a sequence of interest actually compares its average 
distance (or dissimilarity) to the nearest neighbors (NNs) in the positive set with that 
in the negative set. A score smaller than 1 means the sequence is more similar to the 
positive set; a score larger than 1 means more similar to the negative set. The smaller 
the KNN score, the more similar the sequence is to known phosphorylation sites, and 
thus the more likely it contains a phosphorylation site. 

Figure 1 compares the KNN scores of phosphoserines with non-phosphoserines. 
Overall the phosphoserines have smaller KNN scores than non-phosphoserines. All of 
the phosphoserines’ average KNN scores with different sizes of NNs are smaller than 
1, which means overall the sequences in the positive set are more similar to their NNs 
in the positive set as expected. It is worth mentioning that such similarities are not due 
to protein homology as there is no significant sequence similarity between any two 
proteins in our non-redundant dataset. This finding confirms that phosphorylation-
related clusters may exist in the positive set as discussed in Section 2.2.1. 

Interestingly, all of the non-phosphoserines’ average KNN scores are around 1, 
which means overall the sequences in the negative set are not predominantly more 
similar to NNs in either the positive or negative sets. This is not surprising, since 
phosphorylation-related clusters are unlikely to exist in the negative set, and thus the 
sequences in the negative set have similar chance to find close neighbors in either 
positive or negative set. 

In short, KNN scores capture the cluster information in phosphoserines, and hence 
distinguish them from non-phosphoserines. Therefore, KNN scores are suitable to 
serve as features for the phosphorylation site prediction. The prediction performance 
of KNNs scores will be demonstrated in Section 3.4. 

3.2   Protein Phosphorylation and Disorder  

In this section, we will demonstrate that phosphoserines in the dataset we used are 
predominantly overrepresented in disordered regions, and hence confirm the effec-
tiveness of the disorder scores as features for phosphorylation prediction. Figures 
2(A) and 2(B) plot the histograms of the disorder scores of phosphoserines and non-
phosphoserines’ surrounding residues, respectively. From Fig. 2(A), the number of 
phosphoserines increases exponentially when the disorder score increases from 0 to 1; 
the number of phosphoserines with disorder scores larger than 0.9 is much higher than 
those in the other sub-ranges. In contrast, from Fig. 2(B), there is no such a pattern for 
the non-phosphoserines. The number of non-phosphoserines with disorder 
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Fig. 1. Comparison of KNN scores in the positive set (1671 sequences around phosphoserines) 
and those in the negative set (randomly selected 1671 sequences around non-phosphoserines). 
The horizontal axis represents the size of nearest neighbors (in percentage relative to the size of 
positive/negative set). The vertical axis represents the KNN score. Each KNN score for one 
sequence is represented by ‘x’ (positive data) or dot (negative data). Each square symbol stands 
for the mean value of KNN scores for each size of NNs.  

scores larger than 0.9 is slightly higher than those in the other sub-ranges. This may 
be because some phosphoserines were not discovered by the experiments in [10] and 
as a result were incorrectly classified as non-phosphoserines. Alternatively, this could 
also reflect the general preference of serine in disordered regions. In any case, it is 
clear that phosphoserines in this dataset are significantly overrepresented in disor-
dered regions. In fact, the majority (~89%) of the phosphoserines have a disorder 
score larger than 0.5 (Note that VSL2B predicts a residue in the disordered region 
when its predicted value is larger than 0.5), while this percentage is only ~57% for 
non-phosphoserines. 

3.3   Amino Acid Frequency Features 

In this section, we will study the amino acid composition surrounding the phos-
phoserines. In Figure 3, from left to right, the amino acids vary from being depleted 
to being enriched in the surrounding sequences of phosphoserines. Similarly as 
observed in [15], amino acids C, W, Y, F, H, I, L are depleted around phosphoseri-
nes, while D, E, R, P and K are enriched. However, S is not significantly enriched 
around the phosphoserines in this dataset, in contrast to the previous study [15]. The 
different composition of amino acids surrounding phosphoserines and non-
phosphoserines justifies the use of amino acid frequencies as features for the phos-
phorylation predictor. 
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Fig. 2. Preference of phosphorylation sites (serines) in disordered regions. (A) Histogram of 
disorder scores of residues around phosphoserines (1671 in total). The horizontal axis repre-
sents the disorder score predicted by VSL2B, divided into 10 sub-ranges from 0 to 1; the verti-
cal axis represents the occurrence (the number of sequences) in the corresponding disorder sub-
range.  Different grayscale from dark to while in each bar stand for 25 different positions in the 
window from the upstream -12 to downstream 12 as indicated in the color bar on the top right. 
(B) Histogram of disorder scores of residues around non-phosphoserines (433,744 in total). (C) 
Disorder scores in the positive and negative sets. The horizontal axis represents the 25 positions 
(-12 to 12); the vertical axis represents the mean disorder score in the positive set (‘x’) or the 
negative set (dot). (D) Average disorder scores over windows of different lengths. The horizon-
tal axis represents the window size over which to take average of the disorder scores for each 
surrounding sequence. The vertical axis represents the mean of those average scores. 

3.4   SVM Training and Testing 

In this study, an SVM was trained as the classifier between phosphoserines and  
non-phosphoserines. The SVMlight Version 6.02 [28] was used. The parameters were 
optimized as ‘-t 2 -g 1 -c 10 –x 1’, which means selecting the kernel as radial basis 
function with gamma equal to 1, setting C—the tradeoff between training error and 
margin to 10, and computing the leave-one-out estimate. 

As mentioned in Section 2.1, there are 1671 serines in the positive set and 433,744 
in the negative set. Testing of the proposed method was performed using the follow-
ing procedure: 

i) Randomly select 1671 samples from the negative set, together with the posi-
tive set, and form a balanced dataset of 3342 samples. 



 A New Machine Learning Approach for Protein Phosphorylation Site Prediction 25 

C W Y F H I L M Q V T N A S G K P R E D
0

0.02

0.04

0.06

0.08

0.1

0.12

Amino acid

F
re

qu
en

cy

 

 
Phospho

Non-Phospho

 

Fig. 3. Amino acid frequencies in the positive and negative sets (the serines in the middle of the 
25 residues were excluded; all positive and negative data were used). The vertical axis repre-
sents the amino acid frequency. The horizontal axis represents the 20 amino acids sorted in 
ascending order by the ratio between the amino acid’s frequency in the positive set (black) and 
that in the negative set (gray). 

ii) Perform a 10-fold cross validation test: the dataset was partitioned into 10 
subsets; a single subset was retained as validation data and the other 9 sets as 
training data; the cross-validation process is then repeated 10 times, with each 
subset used exactly once as the validation data. The 10 results were then 
combined to produce an average estimation. 

iii) Note: in each training/test, the disorder and frequency features remained the 
same. However, the KNN features of each training or validation needed to be 
re-extracted from the training data, and every time the training data was 
changed. 

The above testing procedure was performed on each separate set of features (amino 
acid features only, disorder features only, or KNN features only) and combined fea-
tures (all three sets of features together) 10 times each. Table 1 shows the area under 
receiver operating characteristic (ROC) curve (AUC) for each test of each set of fea-
tures, and also the mean AUCs and the standard deviations. Figure 4 shows the mean 
ROC curves for these tests. 

Table 1 and Figure 4 show that all of the three sets of features provide certain pre-
dictive powers, but the combined features gave the best test results with the smallest 
variance (standard deviation) among the 10 random tests. This indicates that combin-
ing various features yields more accurate and robust prediction. When testing the 
features separately, the disorder features were not performed as accurately as the 
KNN features and frequency features. This may be partially due to fact that all the 
data came from the same species (Arabidopsis). It is unclear whether similar perform-
ance can be maintained for cross-species prediction (e.g., training with Arabidopsis  
 



26 J. Gao et al. 

Table 1. Prediction performance (AUC) for 10 random tests for different sets of features  

Test Frequency only Disorder only KNN only Combined 
1 0.754  0.722  0.816  0.840  
2 0.769  0.707  0.806  0.825  
3 0.768  0.729  0.812  0.825  
4 0.758  0.723  0.796  0.830  
5 0.769  0.727  0.813  0.830  
6 0.764  0.730  0.794  0.823  
7 0.765  0.733  0.813  0.829  
8 0.734  0.719  0.819  0.827  
9 0.771  0.715  0.816  0.828  

10 0.759  0.715  0.793  0.817  
Mean 0.761  0.722  0.808  0.827  

Standard Deviation 0.011  0.008  0.010  0.006  

 

Fig. 4. Mean receiver operating characteristic curves of 10 random tests for different sets of 
features. The horizontal axis represents the false positive rate (the fraction of misclassified 
samples in the randomly selected negative set); the vertical axis represents the true positive rate 
(the fraction of correctly detected samples in the positive set). 

data and predicting phosphorylation sites in soybean). There, the disordered informa-
tion may be more generic and species-independent.  

The phosphoserine predictor in [10] gave a performance of AUC around 0.81 on 
the redundant Arabidopsis TAIR7 protein dataset. It is worth mentioning that for the 
redundant dataset, the test results of our method achieved 0.84-0.85 on AUC, as KNN 
may find sequence neighbors in close homologs of the query protein. 
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4   Conclusion and Future Work 

In this paper, we developed a new approach for predicting protein phosphorylation 
sites in plants. We treated phosphorylation site prediction as a binary classification 
problem, and employed machine learning techniques to solve it. Multiple features 
were first extracted from the dataset, including features from nearest neighbors,  
protein disordered regions and amino acid frequencies. We demonstrated that phos-
phoserines in the PhosPhAt dataset are predominantly overrepresented in disordered 
regions. An SVM was then trained based on these features, and used to predict phos-
phorylation sites in new data. Our method combined both KNN to take advantage of 
similar known sequence fragments around phosphorylation sites to query protein 
sequences and SVM to account for other generic features.  Test results show good 
performance of this proposed phosphorylation prediction method. As more phos-
phorylation sites are experimentally identified, the accuracy of our method is ex-
pected to increase automatically. 

In future work, we plan to apply our method on phosphothreonines and phosphoty-
rosines, as well as to the whole proteomes of Arabidopsis and other plant species. We 
will also develop a standalone application and a web service based on this work. 
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