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Abstract 

 
Aerosol Optical Depth (AOD) indicates the amount 

of depletion that a beam of radiation undergoes as it 
passes through the atmosphere. In this study a data-
driven approach based on training neural networks for 
AOD prediction was considered. To train the 
predictor, we used more than a thousand collocated 
data points whose attributes were derived from 
MODIS instrument satellite observations and whose 
target AOD variable was obtained from the ground-
based AERONET instruments. In order to minimize the 
relative error, which is performance measure 
preferred by domain scientists, we trained an ensemble 
of neural networks with adaptive cost functions. AOD 
prediction accuracy of neural networks was compared 
to the recently developed operational MODIS 
Collection 005 retrieval algorithm. Results obtained 
over the entire globe during the first six months of year 
2005 showed that neural networks were more accurate 
than the operational retrieval algorithm.  
 
 
1. Introduction 
 

The aerosols, small suspended liquids or solids in 
the atmosphere emanating from natural and man-made 
sources have been recognized as one of the major 
factors influencing the climate changes [1]. By 
reflecting and absorbing solar radiation, aerosols have 
direct influence on both cooling the surface and 
warming the atmosphere. Therefore, the accurate 
prediction of aerosols composition and their 
concentration is one of the biggest challenges in 
current climate research.  

Aerosol Optical Depth (AOD) is dimensionless 
quantity that represents the amount of light extinction 
by aerosols within atmosphere [1]. In conjunction with 
an atmospheric model, AOD can provide estimates of 
atmospheric effects on transmitted and reflected solar 
radiation which are further used in developing climate 

models. The process of predicting AOD using ground 
[2] or satellite [3] based observations is known as AOD 
retrieval. 

AEROsol robotic NETwork (AERONET) is global 
remote sensing network of about 540 ground-based 
radiometers that retrieve AOD several times an hour 
under clear-sky conditions. AERONET AOD retrieval 
is very accurate and is often considered as ground truth 
when validating retrieval quality of various satellite-
based AOD retrieval algorithms [4]. The MODerate 
resolution Imaging Spectrometer (MODIS), aboard 
NASA’s Terra and Aqua satellites, is one of the major 
instruments for satellite-based AOD retrieval. MODIS 
observes reflected solar radiation over a large spectral 
range with a high spatial resolution and almost daily 
coverage of the entire Earth.  

Operational algorithms used to retrieve AOD from 
MODIS observations are based on matching the 
atmospheric component of the observed spectral 
reflectance at the top of the atmosphere to the 
simulated values stored in lookup tables. The 
atmospheric component is obtained after the removal 
of the surface effect of the observed reflectance. The 
lookup tables are generated by the forward simulation 
model that estimates observed reflectance given the 
aerosol type and amount.  

The operational retrieval algorithms are domain-
driven because they are manually tuned by domain 
scientists. While this guarantees that the retrievals are 
based on sound physical principles, it also creates 
problems when there is an opportunity to use ground 
truth data to improve the algorithm. Currently, ground 
truth data are used by validation studies whose goal is 
to reveal major sources of retrieval errors. Then, the 
algorithm is occasionally manually modified to address 
these issues and improve retrieval accuracy.  

For example, a major weakness of the previous 
version of the MODIS AOD retrieval algorithm (C004) 
was found to be overestimation at small AOD and 
underestimation at high AOD values. In order to 
overcome these problems, the new retrieval algorithm 
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known as MODIS Collection 005 (C005) has been 
developed [5] by including more realistic aerosol 
models and dynamic surface assumptions. Clearly, the 
algorithm improvement is a time consuming and 
cumbersome procedure that does not guarantee that the 
ground truth data is used in the most efficient manner. 

As an alternative to the domain-driven approach, 
statistical or data-driven retrieval approaches could be 
used. This approach is possible when a data set is 
available that consists of satellite observations and 
collocated ground-truth labels (e.g. AERONET AOD 
values). Given such data a regression model can be 
constructed that predicts the labels from the satellite 
observations.  

Neural networks are often a model of choice in 
data-driven retrieval of atmospheric properties [6, 7, 8, 
9, 10]. In our previous work neural networks have been 
trained to predict AERONET AOD over continental 
US using attributes derived from satellite data [11]. 
Comparing to the C004 AOD predictions, operational 
at that time, neural network AOD predictions were 
significantly more accurate. Because universal 
predictor could not completely explain the complex 
aerosol spatial-temporal variability, we proposed an 
integration of global and local data-driven aerosol 
predictors [12]. There, global neural network was 
trained to predict AERONET AOD over US in 
combination with region specific neural networks. The 
final AOD prediction was obtained as weighted 
average of global and local AOD predictors. The 
results showed that data-driven approach could be used 
as complement to the traditional domain-based 
retrieval algorithms.  

In this work, we address an additional challenge 
that is related to retrieval accuracy estimation. Well 
known accuracy measures such as Mean Squared Error 
(MSE) are often not informative enough because (1) 
retrieval error increases with AOD, (2) distribution of 
AOD is skewed towards small values, and (3) there are 
many outliers. Instead, domain scientists use an array 
of accuracy measures to gain better insight into the 
retrieval accuracy [5]. For example, the relative error 
makes larger absolute errors more tolerable when 
predicting large AOD than when predicting small 
AOD. Ideally, one would like to have a retrieval 
algorithm that provides good accuracy with respect to 
most of the popular accuracy measures.  

In this study we considered training of neural 
networks that minimize MSRE instead of MSE. In 
order to construct a predictor that is also accurate with 
respect to MSE and several other accuracy measures, 
we proposed an approach that builds an ensemble of 
neural networks, each trained with slightly different 
MSRE measure. The outputs of the ensemble are then 

used as inputs to a meta-level neural network that 
produces the actual AOD predictions.  

AOD prediction accuracy of the proposed predictor 
was compared to individual neural networks trained to 
minimize MSE and MSRE, to an ensemble of neural 
networks trained to minimize MSE, as well as to the 
currently operational MODIS Collection 005 retrieval 
algorithm. Obtained results showed that our approach 
is more successful than the alternatives. 

The rest of the paper is organized as follows. In the 
Section 2.1 spatial-temporal merging of MODIS and 
AERONET data is presented. Dataset used in our 
experiments is described in the Section 2.2. Different 
measures of AOD prediction accuracy are presented in 
the Section 3.1. Neural network based data-driven 
approach for predicting AOD is proposed in the 
Sections 3.2 and 3.3 and an ensemble of neural 
networks is introduced along with the adaptive cost 
functions. In the Section 4 comparative results are 
presented, C005 and neural network predictors are 
evaluated based on the defined accuracy measures. 
Finally, Section 5 contains our conclusions. 

 
2. Data Sets 
 
2.1. Aggregation of satellite and ground based 
AOD data 
 

Although MODIS instrument has high spatial 
resolution (one pixel is as small as 250x250 m2 at 
nadir), deterministic MODIS algorithms do not retrieve 
AOD for single pixels due to the high signal to noise 
ratio [5]. Instead, single pixels are aggregated to larger 
areas. Based on the assumption that AOD has small 
spatial variability, MODIS C005 algorithm retrieves 
AOD in 10 x 10 km2 blocks. After discarding cloud, 
snow, ice, water and bright surface pixels along with 
20% of the darkest and 50% of the brightest ones, the 
remaining pixels are aggregated as a representative for 
the corresponding 10 x 10 km2 block.   
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Figure 1. Spatial-temporal collocation of MODIS and 
AERONET AOD retrievals 



 
 

Figure 2. Location of 55 AERONET sites used in our experiments 

Validation of MODIS AOD retrievals is usually 
performed using AERONET AOD retrievals as ground 
truth [4]. Whereas MODIS achieves an almost 
complete global coverage daily, AERONET retrievals 
are provided many times every day, but only over 
selected locations. Validation studies showed that it 
would be inappropriate to compare AOD from a single 
MODIS block directly to an AERONET point 
measurement [13]. Hence, the method named the 
“collocation” of the AERONET and the MODIS data 
has been proposed [13] (Figure 1). Essentially, this 
method involves aggregating initial MODIS blocks of 
10 x 10 km size into blocks of size 50 x 50 km around 
each AERONET site, called spatial merging.  

Due to the fact that MODIS and AERONET AOD 
retrievals may occur at different times, this gives rise 
to the need for temporal data merging. AERONET 
AOD data are acquired on average at intervals of 15 
min. Assuming slow AOD variation over short time 
periods, the MODIS AOD retrievals are said to be 
temporally collocated with the corresponding 
AERONET AOD retrievals if there is a valid 
AERONET AOD retrieval within one hour time 
window centered at the satellite overpass time. The 
data collocated in this way can be obtained from the 
official MODIS website of NASA [5]. Each collocated 
data point is represented with time, date, average 
AERONET AOD, average MODIS reflectances and 
ancillary attributes. In our experiments we take into 
account a collocated data point if we have at least one 
valid out of possible 25 MODIS AOD retrievals in 
50x50 km2 spatial block and at least one valid 
AERONET AOD retrieval within the 30 minutes from 
the satellite overpass. 

 

2.2. Data description 
 

There are several levels of AERONET AOD 
measurements [2]. To avoid potential problem with 
outliers in ground truth data, AERONET Level 2.0 
observations were considered since they were cloud 
screened and manually verified. For our study we 
collected 1,637 collocated MODIS Aqua and Terra 
observations with AERONET Level 2.0 points over 
entire globe from 55 AERONET sites (Figure 2) 
during the first six months of 2005. We could not 
consider a longer time period since AERONET Level 
2.0 data were available for the years up to 2005 while 
C005 predictions were rarely available for the years 
before 2005. As shown in Figure 2, AERONET sites 
are not uniformly distributed over the globe. The 
highest density is within the US. On the other hand, 
continental Asia, Africa, and Australia are poorly 
covered. Hence, as a cautionary note, global 
applicability of data-driven approaches is somehow 
limited. During the time period, measurements from 
the 55 AERONET sites were almost uniformly 
distributed. In order to make fair comparison between 
the C005 algorithm and neural networks, we extracted 
only the satellite-based attributes that were used as 

Table 1. List of attributes collected from the MODIS 
aggregated data 

Attribute 
index Description 

1-7 Mean reflectance in 50 x 50 km blocks at 
seven wavelengths 

8-14 Std. deviation of reflectance in 50 x 50 blocks 
at seven wavelengths 

15-18 Solar Zenith, Solar Azimuth, Sensor Zenith, 
Sensor Azimuth angles 

19 AERONET site elevation 
 



inputs to C005 algorithm. Attributes used are listed in 
Table 1. The seven wavelengths were taken from the 
MODIS range between 440nm – 2100nm, as these are 
sufficient to describe aerosol properties [5].  

By convention, AOD is reported at the 550nm 
wavelength. Since AERONET sites do not provide 
AOD value at that particular wavelength, based on the 
domain knowledge, we performed linear interpolation 
in the log scale of AERONET AOD measurements at 
440nm and 670nm to estimate AOD at 550nm [5]. 

 
3. Methodology 
 
3.1. Accuracy measures for AOD retrieval 
 

Regardless of the approach used for AOD 
prediction, obtained predictor has to be evaluated and 
its accuracy adequately quantified. Considering AOD 
prediction as a regression problem, there are many 
possible measures that could be used to assess 
predictor performance. Given a target vector t of 
AERONET AOD measurements and vector y of 
corresponding AOD values derived from satellite 
observations, the appropriate measure of prediction 
accuracy could be coefficient of determination (R2) 
defined as  
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where t represents the mean value of vector t, and 
summations are over all N collocated points. In the 
regression analysis, R2 is preferred to simple quadratic 
distance measure mean square error (MSE), 
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since it takes into account variance in the target data. 
Portion of the variance that the predictor successfully 
models is described by R2 value. The highest R2 
accuracy is 1, while R2 accuracy of the predictor that 
simply predicts the mean of the population is 0. R2 
accuracy of some particularly poor predictors can even 
be negative.  

Another measure that is often used is correlation 
coefficient (CORR) 
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where y  represents the mean value of vector y, while 
other parameters were defined previously. CORR 

measure is insensitive to the prediction bias that is 
easily correctable [11].  

In this paper we also considered several domain 
specific measures of AOD retrieval accuracy. Due to 
the inherent measurement errors of the MODIS 
instrument, expected boundaries for AOD retrieval 
error rate were proposed in [5]. Boundaries were 
defined as a linear function of ground truth (target) 
AOD value ti

 iii tty 15.005.0 +≤−  (4) 
Relation (4) directly implies that the errors in AOD 
prediction are much more tolerable for large AOD. 
Consequently, AOD predictor should be much more 
accurate in predicting small AOD.  In this sense, a new 
accuracy measure can be defined as mean squared 
relative error (MSRE) 
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where the sum is over all N collocated data points. If 
MSRE is closer to 0 the AOD predictor has better 
performance. However, having in mind the MODIS 
instrument uncertainty, it can be said that predictor 
performance is acceptable if MSRE is less than 1. In 
addition, we measure FRAC defined as the fraction 
(FRAC) of data points that are between domain 
expected boundaries,  

 %100×=
N
IFRAC  (6) 

where I is the number of points that satisfy relation (4) 
and N is number of collocated points. 

In order to demonstrate the need for using various 
kinds of measures for AOD predictor evaluation, let us 
analyze the accuracy of C005 AOD retrieval. Scatter 
plot of C005 AOD retrieval vs. AERONET AOD 
retrieval during the first six months of 2005 over whole 
globe is depicted in Figure 3 while the values of the 
proposed measures are shown in Table 2. In Figure 3 
solid line represents an ideal, desirable AOD 
prediction, while dashed lines represent boundaries of 
an area within it data points are considered as 
acceptable for domain scientists. In Figure 3a the 
whole range of AOD values is plotted, while the 
zoomed-in portion of Figure 3a for small values of 
AOD (defined as AOD < 0.5 [5]) are presented in 
Figure 3b.  

From Table 2 we can conclude that C005 AOD 
predictor has an excellent performance based on the 
CORR accuracy. However, R2 accuracy tells us that 
there is a significant portion of variance which C005 
predictor was unable to model. MSE accuracy is 
difficult to judge when accuracy of some simpler 
competing predictors is not available. Furthermore, 
domain specific MSRE accuracy is higher than 1 



which indicates lower than expected accuracy. Finally, 
FRAC measure shows that almost 40% of predictions 
are of insufficient accuracy. 

 
3.2. Relative error as a cost function 
 

Since AERONET AOD predictions are considered 
as highly accurate [2], they can be used as target values 
in data-driven approaches for AOD prediction. 
Construction of the neural network AERONET AOD 
predictor based on the MODIS observed parameters 
will be explored here. 

Standard approach in building neural networks uses 
the MSE minimization as the optimization objective. 
This kind of cost function treats all errors equally 
regardless of the level of target value. As discussed in 

the previous section, domain scientists prefer small 
squared relative errors rather than small squared 
errors. Hence, in this application using an MSE 
function as the cost function in the neural network 
training process is not the most appropriate. 
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Figure 3. Scatter plot of C005 vs. AERONET AOD 
a) whole range of AOD  b) small AOD 

To address this issue, we introduced a new neural 
network cost function defined as relative error (REL) 
between predicted and ground truth AOD:  
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where a and b are positive user defined parameters. 
Note that this measure is equivalent to the MSE if a=0 
and b=1 and is equivalent with MSRE from equation 
(5) if a=0.15 and b=0.05. Influence of the various 
errors in the training process can be controlled by 
tuning parameters a and b. Different combination of a 
and b values put different importance to the errors with 
small and large AOD. For backpropagation algorithm, 
neural network weights have been updated in the 
training process proportionally to the derivative of the 
cost function 
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By analyzing equation (8), we can conclude that if b 
approaches 0, the term ati becomes more important and 
so does error when predicting small AOD. On the other 
hand, if b is large, term ati for some small a can be 
neglected. Hence, errors for small and large AOD 
become of similar importance. Parameter a in 
conjunction with parameter b defines sensitivity to the 
ground truth value. As long as parameter a increases, 
neural network becomes more sensitive to the errors 
made in predicting small AOD. Otherwise, all errors 
become equivalent in the training process. 

 
3.3. Ensembles with adaptive cost functions  Table 2. C005 AOD vs. AERONET AOD accuracy  

C005 AOD retrieval Time 
period 

#  
points MSE R2 CORR MSRE FRAC

2005 
Jan-Jun  1637 0.02 0.76 0.89 1.95 61%  

 
REL cost function (equation (7)) with a=0.15 and 

b=0.05 directly leads to maximization of MSRE 
accuracy from equation (5). However, neural network 
trained in this way would have decreased MSE 
accuracy (equation (2)). We were interested in 
construction of an AOD predictor that is accurate with 
respect to both accuracy measures. To achieve this, we 
used the observation that MSRE-optimized neural 
networks will be more accurate when AOD is small, 
while MSE-optimized networks will work better when 
AOD is large.  

However, the problem arises because it is not 
known in advance whether the AOD value is small or 
large. If the predictor which has the ability to decide 
whether AOD value is large or small has been used, the 
accurate prediction of medium level AOD values 



would still be the problem. More specifically, such a 
predictor would either overestimate or underestimate 
medium level AOD depending on whether it was 
“classified” as large or small, respectively. To solve 
this problem we proposed a two-stage approach: 

Neural Network 
specialized in predicting 

small AOD 

Neural Network 
specialized in predicting 

small AOD 

Neural Network 
specialized in predicting 

large AOD 

Neural Network 
specialized in predicting 

large AOD 

…
…

Neural Network 
specialized to minimize  

MSRE 
     Input attributes     AOD prediction 

 
 

Figure 4. Architecture of the proposed two-stage system for 
AOD prediction 

 

1. construct an ensemble of neural networks among 
which some would be specialized in predicting 
small AOD while others would be specialized in 
predicting large AOD. This could be done by 
using different values for the parameters a and b.  

2. apply the meta-learning method previously 
defined as “stacked generalization” approach [14], 
more specifically use outputs of the ensemble 
networks as inputs to a second-level neural 
network. This neural network is optimized to 
minimize MSRE and is used as AOD predictor 
(Figure 4). 

 
4. Experimental results 
 

It is well known that most aerosols have temporal 
correlation below one week [1]. Therefore, we can 
neglect AOD time correlation if we divide our six 
months data set in weekly intervals. Thanks to this 
result, in all of the following experiments 4-cross-
validation method was applied in the following 
manner.  For each month, data from one week were left 
out and they were used as a test set while the remaining 
three weeks data were merged and used as a training 
set.  

Neural networks with ten neurons in the hidden 
layer and one neuron in the output layer were used 
throughout all experiments. Neural networks had 19 
inputs as there were 19 attributes in feature vector.  
Sigmoid activation function has been used for all 
hidden neurons while the linear activation function was 
used for the output neuron. 
 
4.1. Experiments using single neural network 
 

First, we examined single neural network predictors 
trained to predict AERONET AOD using aggregated 
MODIS attributes from Table 1. Two different neural 
network predictors were evaluated. One predictor used 
standard MSE measure as a cost function, while the 
other used our novel REL measure defined in equation 
(7). According to the analysis from the Section 3, 
parameters a and b were fixed as a=0.15 and b=0.05 in 
order to give an emphasis to the errors attained in 
predicting small AOD values. Results achieved by 
deterministic C005 algorithm are presented in the 
Table 3. Accuracies of neural networks are presented 
in Tables 4 and 5. We report results on 5 accuracy 
measures from Section 3.1 – MSE, R2, CORR, MSRE, 
FRAC. 

Based on the obtained results we can conclude that 
both neural networks were more accurate in predicting 
AOD than the operational C005 algorithm for all 5 
accuracy measures. Neural network trained using an 
MSE cost function has better performance regarding 
MSE, R2, and CORR (Table 4), while neural network 
trained using REL as a cost function achieves better 
performance considering MSRE and FRAC measures 
(Table 5). 
 
4.2. Experiments using an ensemble of neural 
networks 
 

To evaluate the proposed ensemble approach, we 
built two ensembles of neural networks which 
consisted of ten networks followed by a filter network 
trained to make the final decision. Each network in the 
ensemble was trained separately on the whole training 
data set. Second-level network was trained on the 
outputs of ensemble networks. Two approaches were 
evaluated. First, all networks in the ensemble along 
with the filter network were trained using MSE cost 
function. Obtained results are presented in the Table 6. 
Second, neural networks in the ensemble were trained 
in the following way. Half of them were specialized for 
the small AOD prediction by using REL as the cost 
function with parameter a changing from a=0.05 to 
a=0.25 in the steps of 0.05 and parameter b fixed to 
the value b=0.05. Another half of networks were 
specialized in prediction of large AOD values which 
was achieved by setting parameter a from a=0.05 to 
a=0.25 in the steps of 0.05 and by fixing parameter b 
to b=1. Having in mind domain requirements, a 
second-level neural network was trained to be more 
accurate in small AOD prediction. Hence, the 
parameters of this network are set to a=0.15 and 
b=0.05. Results are presented in the Table 7.  

Comparing ensembles of neural networks to the 
single neural network predictors, we noticed that all 
measures were either similar or significantly improved 



Table 3. C005 AOD vs. AERONET AOD 
C005 AOD Year Week out # Points 

MSE R2 CORR MSRE FRAC 
1 436 0.018 0.76 0.88 1.75 61% 
2 405 0.019 0.81 0.91 1.74 65% 
3 405 0.022 0.66 0.83 2.25 56% 

2005 
First six months 

4 391 0.021 0.79 0.91 2.04 63% 
Overall mean 1637 0.020 0.76 0.89 1.95 61% 

Table 4. Neural network AOD (MSE) vs. AERONET AOD 
Neural network AOD, cost function MSE Year Week out # Points 

MSE R2 CORR MSRE FRAC 
1 436 0.014 0.81 0.90 1.54 66% 
2 405 0.014 0.86 0.93 1.37 68% 
3 405 0.016 0.75 0.87 1.74 60% 

2005 
First six months 

4 391 0.015 0.85 0.92 1.67 63% 
Overall mean 1637 0.015 0.82 0.91 1.58 64% 

Table 5. Neural network AOD (REL with a=0.15 and b=0.05) vs. AERONET AOD 
Neural network AOD, cost function REL Year Week out # Points 

MSE R2 CORR MSRE FRAC 
1 436 0.019 0.74 0.88 1.30 68% 
2 405 0.018 0.82 0.92 0.93 73% 
3 405 0.018 0.72 0.86 1.26 68% 

2005 
First six months 

4 391 0.016 0.83 0.92 1.19 65% 
Overall mean 1637 0.018 0.78 0.89 1.17 68% 

Table 6. Ensemble of neural networks AOD (MSE) vs. AERONET AOD 
Neural network AOD, cost function MSE Year Week out # Points 

MSE R2 CORR MSRE FRAC 
1 436 0.013 0.83 0.91 1.23 68% 
2 405 0.013 0.87 0.93 1.03 74% 
3 405 0.014 0.79 0.89 1.39 69% 

2005 
First six months 

4 391 0.012 0.88 0.94 1.21 75% 
Overall mean 1637 0.013 0.84 0.92 1.22 71% 

Table 7. Ensemble of neural networks AOD (adaptive REL) vs. AERONET AOD 
Neural network AOD, cost function REL Year Week out # Points 

MSE R2 CORR MSRE FRAC 
1 436 0.014 0.81 0.91 1.02 74% 
2 405 0.012 0.88 0.94 0.83 80% 
3 405 0.013 0.80 0.90 1.10 72% 

2005 
First six months 

4 391 0.013 0.86 0.94 0.95 74% 
Overall mean 1637 0.013 0.84 0.92 0.97 75% 

 

by applying ensembles instead of single neural network 
as AOD predictor. Therefore, we conclude that 
ensembles of neural networks are much more accurate 
than single neural network AOD predictors.  

By comparing results shown at Table 6 and Table 7, 
we conclude that an ensemble of neural networks 
trained with adaptive cost functions based on REL 
function preserves MSE, R2 and CORR accuracies, 
while it significantly improves MSRE (from 1.22 to 
0.97) and FRAC (from 71% to 75%). 

Improvement in the AOD prediction can be seen in 
the Figure 5 where comparative scatter plots of C005 
vs. AERONET AOD and ensemble of neural networks 
(with adaptive REL) AOD vs. AEROENT AOD are 

presented. By inspecting these plots, we can conclude 
that the ensemble is equally successful for both small 
and large AOD. High accuracy of the proposed method 
in predicting small AOD can be seen in the zoomed-in 
plots in the Figure 6. Comparing to the C005, bias in 
predicting small AOD values is significantly reduced 
using ensemble of neural networks in conjunction with 
the adaptive cost function.  
 
5. Conclusion 
 

An ensemble-based data-driven approach for AOD 
prediction was presented. Neural networks from the 
ensemble were trained using collocated data points 



whose attributes were derived from MODIS instrument 
satellite observations and whose target AOD variable 
was obtained from the ground-based AERONET 
instruments. Instead of relying on MSE minimization 
criterion for neural network training, we proposed use 
of the relative error REL, which can be considered as 
generalization of MSE.  

We observed that REL criterion allowed us to 
achieve increased accuracy over certain ranges of AOD 
values. In an attempt to provide a predictor that is 
accurate over the whole range of AOD values for each 
of the 5 commonly used accuracy measures, we 
proposed an ensemble of neural networks with 
adaptive cost functions. Some networks in the 
ensemble were specialized in predicting small AOD 
while others were specialized in predicting large AOD. 

The experiments showed that the proposed 
ensemble outperformed an ensemble that used standard 
MSE optimization; it managed to achieve as high 
MSE, R2 and CORR accuracies while it significantly 
improved MSRE and FRAC accuracies. In addition, 
AOD prediction accuracy of the proposed ensemble 
was compared to the recently developed operational 
MODIS Collection 005 retrieval algorithm. Results 
obtained over the entire globe during the first six 
months of year 2005 showed that the proposed 
ensemble of neural networks was significantly more 
accurate for all the considered accuracy measures. 
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Figure 5. Scatter plots of:  a) C005 vs. AERONET and b) Ensemble of neural networks (adaptive REL) AOD 
predictions vs. AERONET; solid line – ideal prediction, dashed lines – boundaries of acceptable error 
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Figure 6. Zoomed scatter plots of: a) C005 vs. AERONET and b) Ensemble of neural networks (adaptive REL) AOD 
predictions vs. AERONET; solid line – ideal prediction, dashed lines – boundaries of acceptable error 
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