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t is human nature to want to know in advance what is likely to happen I in the future. Observing past outcomes of a phenomenon in order to 
anticipate its future behavior represents the essence offurecasting or pye- 
diction. If a complete mathematical model describing a studied phe- 
nomenon is known and not overly complex, and if the initial conditions 
are sufficiently defined, forecasting often becomes a trivial task. How- 
ever, when an analytical model is unknown, incomplete, or too com- 
plex, a typical alternative is to try to forecast by building a model that 
takes into account only previous outcomes of the phenomenon while 
ignoring any exterior influence. In other words, look at what it does, not 
why. For example, the simplest attempt to predict US electric power 
consumption would be to build a prediction model based just on previ- 
ous values of power consumption, neglecting any other information that 
might be available (temperature, time of the day, season, and so on). 
The outcomes of the phenomenon over time form a time series. 

More formally, a time series {x,} can be defined as a function x of an 
independent variable t, stemming from a process for which a mathe- 
matical description is unknown. The main characteristic of such a series 
is that its future behavior cannot be predicted exactly, as can that of a 
known deterministic function oft. However, the behavior of a time se- 
ries can sometimes be anticipated by describing it through probabilis- 
tic laws. Commonly, time series prediction problems are approached 
either from a stochastic perspective' or, more recently, from a neural 
network perspective.' Each of these approaches has advantages and dis- 
advantages: stochastic methods are usually fast, but of limited applica- 
bility since they commonly employ only linear models. The NN meth- 
ods, on the other hand, are powerful enough, but selecting an 
appropriate architecture and parameters is a time-consuming trial-and- 
error procedure. 
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Why use NNs for time series 
prediction? 
Though the relationship may not be immedi- 
ately apparent, NNs might be very well suited 
to modeling time series for at least two reasons: 

(1) Theoretical work shows that NNs are pow- 
erful enough to uniformly approximate al- 
most any arbitrary continuous function on 
a compact domain,3 similar to traditional 
universal approximation techniques based 
on Taylor function expansion, Fourier se- 
ries, and so forth. However, in addition to 
their ability to represent complex nonlinear 
functions, N N s  can effectively construct ap- 
proximations for unknown functions by 
learning from examples (known outcomes 
of the function). This ability to approximate 
unknown complex input-output mappings 
makes them attractive in practical applica- 
tions where traditional computational struc- 
tures have performed poorly (such as those 
with ambiguous data or large contextual in- 
fluence). NN models can be complemented 
by other successful approximation tech- 
niques based on wavelets, kernel estimators, 
nearest neighbors, B-splines, hinging hy- 
perplanes, projection pursuit regression, 
partial least squares, and fuzzy models4 

(2) There is a direct relationship between the 
basic stochastic models for time series and 
NN models, as we will explain. 

Other researchers’ have compared stochastic 
and NN techniques for time series prediction 
with respect to the time series history required 
for building a reliable model and the decrease 
in prediction accuracy when predicting further 
into the future. The combination of stochastic 
and NN techniques in a hybrid system for im- 
proving prediction accuracy, or the use of some 
stochastic prior knowledge of the underlying 
time series for configuring the NN, are topics 
that deserve further consideration. 

This article explores the possibility of rapidly 
designing an appropriate NN for time series 
prediction based on information obtained from 
stochastic modeling. Such an analysis could pro- 
vide some initial knowledge regarding the 
choice of an NN architecture and parameters, 
as well as regarding an appropriate data-sam- 
pling rate. Stochastic analysis provides a com- 
plementary approach to previously proposed dy- 
namical system analysis for NN design. Based 
on Takens’s theorem,‘ an estimate of the di- 

mension m of the manifold from which the time 
series originated can be used to construct an 
NN model using 2m + 1 external inputs.’ This 
design is further extended by Potts and Broom- 
head,’ who first embed the state space of a dis- 
crete-time dynamical system in a manifold of di- 
mension n >> 27-72 + 1, which is further projected 
to its 2m + 1 principal components used as ex- 
ternal inputs in a radial-basis-function NN 
model for time series prediction. 

Our approach is to perform an initial stochas- 
tic analysis of the data and to choose an appro- 
priate NN architecture, and possibly initial val- 
ues for the NN parameters, according to the 
most adequate linear model. This idea is sup- 
ported by Juditsky et al., who remark that “many 
nonlinear systems can be described fairly well 
by linear models and for such systems it is a 
good idea to use insights from the best linear 
model to select the regressors for the NN 
model.”’ The motivation for this approach is 
that it is much more cost-effective to select an 
NN architecture with the help of linear sto- 
chastic modeling than by trial and error. The  
objective of this study is not to obtain “the opti- 
mal” NN architecture for a given problem, but 
to rapzdly provide an architecture with close-to- 
optimal performance. Since information is ob- 
tained from a linear model, for more complex 
problems the NN might be overdimensioned 
(similar performance could be obtained using a 
smaller machine and fewer learning examples). 
However, the exhaustive trial-and-error proce- 
dure involved for determining such an optimal 
machine could be costlier than the alternative 
based on stochastic analysis. 

We evaluate this approach in the context of 
different prediction objectives, as well as data 
sets of varying complexity. An additional issue 
we address is whether NNs different from the 
ones suggested by the stochastic model can lead 
to significant improvements in prediction accu- 
racy, as compared to the suggested ones. 

Stochastic models: ARMA and NARMA 
Stationary time series can be described as time 
series whose characteristic parameters are in- 
variant in time. This makes them very attractive 
in practice, since it implies that they could be 
represented by time-invariant models. The first 
step in stochastic modeling is thus an attempt to 
“stationarize” the studied time series through a 
suitable discrete differentiation preprocessing, 
as described later. 
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A general linear stochastic model of a station- 
ary time series is the autoregressive moving aver- 
age model of orders p and q, denoted as 
ARMA@, q). It describes the process value as a 
weighted sum of (1) p previous values of the 
given process and (2) the current as well as q 
previous values of a separate, and random, 
process. Formally, a stationary rwc1A@, q) 
process {x,} with zero mean is represented as 

where x ~ - ~ ,  xt-2, ..., xt-p represent the process 
values at p previous time steps, a,, a,l, . . ., a,+ 
are the current and the q previous values of a 
random process, usually emanating from a nor- 
mal (Gaussian) distribution with mean zero, and 
q1.. .qP, VI.. . y9 are the model parameters. 

The ARMAb, q)-based pF*edictor approximates 
the real process value xt by a predicted value X,, 
computed as 

X ,  = q1xt-1+ q)zx,-2 +. . . + q P X t - P  

+yla,-l + y2a,_2 + . . . + y a,- ( 2 )  

The error between the real process value x, and 
the predicted value $ is called the residual. If the 
ARMA@, q) predictor is adequate, the residual 
should have the same statistics as the random 

9 4  

process, a,, appearing in the description (Equa- 
tion l) of its underlying ARMA@, q) model. 

Some time series might be modeled fairly ac- 
curately by using special, simpler cases of the 
ARMAb, q) model: the AR@) or MA(q) models. 
The ARb) model is described as 

and the MA(q) is described as 

X, = a ,  + vla,-l + y2a,-, + . . . + wga,-g (4) 

A natural generalization of the linear ARMA 
and AR models to the nonlineav cases leads to 
the NARMA model 

x, = h(x,-l,x,_2, . . . , x , -~)  + a ,  (6)  

where h is an unknown smooth function. 
The AR-, MA-, NARMA-, and NAR-based 

predictors are obtained from their correspond- 
ing models in a way analogous to obtaining the 
ARMA-based predictor (Equation 2) from the 
ARMA model (Equation 1). 

The NARMA and NAR models are very 
complex, thus being unsuitable for real-life ap- 

External inputs Context inputs 

delay delay 

0, r = biases 
f(x) = I / ( I+  exp(-px)) 
I(x)  = x Predicted value 

Figure 1. Approximating a nonlinear stochastic predictor of a time series (NARMA 
predictor) with a three-layer recurrent neural network. 

- 
plications. Fortunately, they are 
closely related to more practi- 
cal nonlinear models; the neural 
networks. 

stochastic models with 
neural networks 
Neural networks consist of a 
number of relatively simple 
processing units called neurons. 
The  neurons are intercon- 
nected through synaptic links, 
called weights, and are grouped 
in layers, with synaptic links 
connecting neurons in adjacent 
layers. Three different layer 
types can be distinguished: in- 
put layw (the layer that external 
stimuli are applied to), output 
LayeY (the layer that outputs re- 
sults to the exterior world), and 
one or more hidden Layers (in- 
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termediate computational layers between input 
and output). The NN architectures considered 
here are eitherfeedfomuard, in which the signal 
flow is from input layer towards output layer, or 
recuwent, in which the feedforward signal flow 
is supplemented with additional feedback con- 
nections from output to input layer. Each neu- 
ron in the hidden and output layers applies an 
activation $unction (usually a nonlinear smooth 
and bounded function) to the sum of its 
weighted inputs and a neuron-specific parame- 
ter (called bias). [See CS&E Spring '96, p. 36 and 
Computer Mar. '96, pp. 24,3 1 for further reading 
on the basics of NNs.  -Ed.] 

Recurrent and feedforward N N s  have been 
proposed*," for simulating NARMA and NAR 
models respectively. An  invertible' NARMA- 
based predictor can be approximated as 

A special case of particular interest in this 
study is the approximation of a linear AR pre- 
dictor by a feedforward NN. If we removed the 
hidden layer and the feedback connections from 
the NN in Figure 1 it would be computation- 
ally equivalent to the linear AR predictor. How- 
ever, such a trivial NN woulld be of no interest 
since it could not do any better than the equiva- 
lent AR model. Instead, we consider approxi- 
mating an AR model of orderp by a feedforward 
NN withp input units, p hidden units, and a sin- 
gle output unit. Each hidden unit uses an acti- 
vation function of the formflx) = 1/(1 + e?"), 
whereas the output unit uses the identity func- 
tion I(x) = x as its activation function. In this 
NN, let us set the weights between input and 
hidden layer as 

(9) wij = 6,, for all i , j  E { 1, ..., p }  

where f represents a nonlinear, smooth, and 
bounded function and ak = xk- & for all k E 

{t - q, . . ., t - 1). This approximation of the 
NARMA-based model corresponds to the re- 
current NN in Figure 1, in which Wi are the 
weights between hidden and output neurons, wi 
are the weights between external-input neurons 
and hidden neurons, w ji are the weights between 

B i = O ,  forall i ~ { l ,  . . . ,pl (10) 

wherej represents the number of the input neu- 
ron, i represents the number of the hidden neu- 
ron, and 6, = 1 if i = j  and 6, = 0 otherwise. 

Using the notation from Figure 1, on input 
(x,-~, . . ., x ~ - ~ ) ,  the NN output can be written as 

+ yi :=cg(x,+i)  (11) 
X t  = g[l + ,-put-, l P  i=l 

where E;=, = I-. 

tor outputs 
On the same input, the AR@)-based predic- 

context-input neurons and hidden neurons, %, P P 
are the hidden-neuron biases, r is the output- 
neuron bias, andfis the activation function of 1=S 2=1 

2, = c qzxt-, =c h(x,-,) (12) 

the hidden neurons. Similarly, a NAR-based 
predictor can be approximated as Expression 11 approximates 12 if each g(x,-,) ap- 

proximates the corresponding h(x,,). Expand- 
ing g(x,_,) in a Taylor series around the origin 
and keeping just the term:, up to order 1, we 

X t  = h(xt-l, ..., X t - p )  

(8) obtain 

g(x,-,> -g(O) + g'(O)x,-, 
PW, (1 3 )  

obtained by disconnecting the context inputs 

The single-hidden-laver NN architecture can 
a,l . . . at-y from Figure 1. - - T + Y 1 + 4 X t - l  Wl 

be extended in a straightforward manner to one 
with multiple hidden layers by inserting addi- 
tional layers of neurons, with their associated 
synaptic links, between the existing hidden layer 
and the output layer. 

Hence, by settingg(x,J = h(x,,), we obtain 

(14) 
w. y . = - 2 and 

z 2  
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So, the NN with p inputs, p hidden units, and 
interconnection parameters 

wii = 
8, = O  

W, = 3 qZ 

for all i , j  E { 1, . . . , p } ,  
for all i E (1, . . . ,p} ,  
for all i E { I, . . . , p}, and 

r=-2cP p z=1 9. I (16) 

approximates an AR predictor of order p with 
parameters (PI, . . . , qP. 

For the approximation in Equation 13 to be 
reasonably accurate, xt-i has to be close to zero. 
For 2,; E [-1, 11, the maximum relative errors 
when approximating h(~ ,~ )  from Equation 12 by 
g(xt-J from Equation 1 1 (with and R. computed 
according to Equations 14 and 15) are 8 , 2 ,  and 
0.08 percent for p =  1,0.5, and 0.1, respectively. 

Commonly, the parameters w ~ ,  wi, Wi, e,, and 
r are estimated from examples by a gradient- 
descent error minimization techmque known as 
backpropagation learning." This is also the 
learning method employed in our experiments. 

Time series prediction process 
Both the NN and the ARMA prediction 
processes proceed as follows: 

(1) Preprocess the data 
(2) Identify the model to use 
(3) Estimate parameters using a first data set 
(4) Validate the model using a second data set 
(5) Predict the time series 

Steps 2 through 4 are iterated until the model is 
suitable. The individual steps are performed as 
follows. 

Step 1 
The data preprocessing step usually comprises 

smoothing and possibly stationavization. In prac- 
tice a logarithmic transformation of the original 
positive-valued series is commonly performed 
for smoothing f i t  = log(x,)) and a first- or second- 
order discrete differentiation for stationarization 
(zt =yt -yt-l or z,  =yt  - 2ytPl +yt-2 respectively). 

Step 2 
For neural network prediction, the model 

identification step selects an NN architecture 

(feedfonvard or recurrent), a layer structure 
(number of layers and number of units per 
layer), and learning parameters (learning rate, 
momentum, and tolerance). 

For AFMA prediction, this step selects a 
model type (AR, MA, or ARMA), as well as cor- 
responding model orders. 

Step 3 
For neural networks, the parameter estima- 

tion step encompasses the NN training on a h s t  
data set (training set), in which the network 
weights are modified according to a given learn- 
ing technique (backpropagation in our case). 

For ARMA, this step consists of a maximum 
likelihood' estimation of the model parameters 
on a first data set (in the case of pure AR models, 
the Modified Covariance method or Burg's 
method are also applicable'*). 

Step 4 
The  model validation step checks the ade- 

quacy of the model by performing the residual 
analysis of prediction errors on the second data 
set. Alternatively, in the absence of a second data 
set, the model validation should encompass the 
analysis of Akaike's final prediction error (FPE) 
and/or information criterion (AIC), according 
to which the most appropriate model is the one 
that yelds the smallest values for FPE or AIC. 

Although the prediction error plot is com- 
monly encountered in the residual analysis, it  
only provides a subjective means of visually eval- 
uating the prediction accuracy. It is much more 
desirable to have a quantitative means of evalu- 
ating the prediction. For this reason, the resid- 
ual analysis of prediction errors should comprise 
at  least the computation of 

4 the e w o Y  mean 

1 
,U = -c" n r=l (xi - Gi), and 

4 the coeficient of  detemination 

where x; and & denote actual and predicted 
process values, respectively, while X denotes 
the mean of the actual data. 

The error mean p is usually used just to mea- 
sure whether the predictor is biased or not. A 
predictor with error mean close to zero is called 
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unbiased, whereas a predictor 
with error mean far from zero 
indicates a biased predictor, and 
points out that there are some 
deficiencies with the predictor 
that need to be solved. The er- 
ror mean shouldn’t be consid- 
ered in an absolute sense but 
with respect to the actual 
process values. The  most im- 
portant parameter for evaluat- 
ing the prediction accuracy is 
the coefficient of determination 
r 2 ,  which is a function of the 
mean squared error normalized 
by the variance of the actual 
data. For a perfect predictor, 
the coefficient of determination 
should be 1, whereas for a trivial 
mean predictor (one that always 
predicts the mean of the actual 

11,000 l 2 ’ O o 0 m -  

4,000 

3,000 
1 201 401 601 801 1,001 1,201 1,401 1,601 1,801 2,001 

Frame number 

Figure 2. Entertainment video traffic data used in experiment. 

data) the coefficient of determination is zero. Al- 
though the coefficient of determination can also 
be negative, it usually doesn’t make sense to eval- 
uate a predictor whose 2 is even close to zero. 

Step 5 
The  actual prediction can deal either with 

predicting a characteristic process parameter for 
just the next time step (prediction horizon I ) ,  or 
with predicting a parameter several steps ahead 
(larger prediction horizon). Larger prediction 
horizons are useful in numerous real-life prob- 
lems like power consumption predictions, car 
sales predictions, or Internet traffic predictions. 

Testing the idea 
Our experiments tested whether the most appro- 
priate linear stochastic model can provide an in- 
dication of the appropriate number of NN inputs: 
p external inputs to a feedforward NN for an 
AR@) process, or p external and q context inputs 
to a recurrent NN for an ARMA@, q) process. 
Additionally, they explored whether initial NN 
weights obtained from the stochastic model as de- 
scribed by Equations 16 are appropriate. In the 
case of larger prediction horizons, the experi- 
ments also analyzed whether an adequate data- 
sampling rate could be obtained from stochastic 
modeling. Since stochastic analysis of the data sets 
considered in the experiments indicated AEQ) 
models as the most appropriate, all the tested NN 
architectures were of feedforward type. 

All of our experiments encompassed a prepro- 

cessing, consisting of both a l o g a r i h c  smooth- 
ing and a first-order differentiation for station- 
arization purposes. The NN experiments used 
backpropagation learning with the following pa- 
rameters: learning rate 71 = 0.01, momentum 
term a = 0.7, tolerance t = 0.02. Unless stated 
otherwise, the NN learning encompassed 4,000 
passes (epochs) through the training set. We used 
two very different types of data to test whether 
prior knowledge derived from stochastic model- 
ing can help in selecting an adequate NN archi- 
tecture, initial weights, and a sampling rate. 

Experimental results: 
Entertainment video traffic data 
The first data type used in the experiments con- 
sisted of real-life, compressed, entertainment 
video traffic data used in an ATM (Asynchronous 
Transfer Mode) network, in which each sample 
represents the size of a corresponding com- 
pressed video f?ame.13 The frame sizes are given 
in number of cells, each cell having a fixed length 
of 53 bytes. The  difficulty associated with this 
data set is the nonstationarity (data distribution 
changes over time), as well as the existence of 
“outliers” (values very different from neighbor- 
ing ones). The  problem is especially difficult 
since the outliers contain useful information that 
cannot be discarded through filtering. Hence, it 
is not sufficient to be able to accurately predict 
the (easily predictable) smooth sections of the 
time series, it is also important to predict the out- 
liers. The data (see figure 2 )  considered in our 
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Figure 3. Prediction accuracy for horizon 1 on entertainment video 
traffic data. 

experiments consisted of 2,000 samples, of which 
the first 1,000 were used for parameter estima- 
tion (training) and the last 1,000 for model vali- 
dation (testing). The  actual predictions were 
done on the same 1,000 samples used for model 
validation and not on a separate data set. 

Prediction horizon 1 
The NN weights were initialized either with 

small random values, or from the correspond- 
ing AR parameters as in Equations 16. The re- 
sults presented for the N N s  initialized with ran- 
dom weights were averaged over 10 runs. The 
coefficient of determination for the most ap- 
propriate stochastic model, as well as for some 
NNs,  obtained either from the stochastic model 
or through a trial-and-error procedure, is pre- 
sented in Figure 3,  in which the notation NhT 
x y - 5 v - z  stands for an NN with x external in- 
puts, y1 andyz units in the first and second hid- 
den layers respectively, and z output units. 

The error means were not included in the fig- 
ure since they indicated that both AR and NN 
predictors were unbiased (the residual means 
were negligible compared to the actual data val- 
ues). As mentioned earlier, the mean of the 
residuals doesn’t serve as a quantitative measure 
of a predictor’s accuracy. It is merely used to sig- 
nal a deficient predictor when its value relative 
to the process values is far from zero. 

The quantitative evaluator of a predictor’s ac- 
curacy, $, for different AR@) predictors, withp 
in the 1 4 0  range, indicated an AR(6)  as the most 
appropriate stochastic model, thus suggesting 
the use of a feedforward NN with six inputs. 
Varying the hidden-layer size suggested that a 
number of hidden units equal to the number of 
inputs is an appropriate choice, thus also allow- 

ing the NN weight initialization using AR- 
model parameters. Figure 3 shows a slight im- 
provement in prediction accuracy of the best 
NN model as compared to the most appropriate 
AR model. The  2 values confirmed that the 
choice of an NN with six inputs, corresponding 
to the most appropriate AR(6), was adequate (by 
varying the number of external inputs, hidden 
neurons, and number of hidden layers, no sig- 
nificant improvement in prediction accuracy was 
achieved). Whether starting from random 
weights or by initializing the weights from the 
AR parameters, the N N s  yielded a very similar 
prediction accuracy. Starting the neural network 
learning process with weights initialized from the 
AR parameters could offer the benefit of being 
close to a minimum of the error surface, hence 
shortening the learning process. It would also 
eliminate the necessity of running a number of 
experiments in which the weights are initialized 
with different random values in order to obtain 
an averaged performance. On the other hand, to 
avoid the “freezing” of the learning process in a 
local minimum a small additive noise to the ini- 
tial weight values could be desirable. 

From these experiments we conclude the 
following: 

+ The  data set appears to underlie a fairly lin- 
ear process, so that the improvement obtained 
by the (nonlinear) NN predictors compared 
to the (linear) AR models is not significant. 

+ The  prior knowledge provided by the sto- 
chastic analysis of using six input units for NN 
modeling of the underlying process seems to 
be appropriate. 

+ Mapping the AR parameters onto the NN 
weights yields a similar prediction accuracy to 
the case of random weight initialization but 
speeds up the learning process. 

Increased prediction horizon 
In the previous experiment, the NN did not 

perform significantly better than the corre- 
sponding linear stochastic model. We then ex- 
perimented with a different prediction objective 
of increased difficulty, in which we expected the 
computationally more powerful NN model to 
yield better performance.’ This more difficult 
problem, which is quite important in practice, 
is prediction for an increased horizon (more 
than one step ahead in time). 

For a larger prediction horizon different sam- 
pling rates can be employed, which makes the 
trial-and-error selection of an NN architecture 
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even more impractical. Conse- 
quently, in this experiment the 
choice of an appropriate sani- 
pling rate based on the stochas- 
tic-modeling prior knowledge 2 0 

similar to the prediction hori- 

0 7  

0 6  - 
was also explored. In addition, g i  g +g 0 3  

0 1  

0 

0 % 0 2 

zon 1, we also explored whether 
an appropriate AR@) model in- 

NN with p external inputs .a Fe' n 2g Is 
dicates tlie use of a feedforward 

a- e- -i- ty 

whose initial weights can be set 
according to the AR parame- 
L U b .  

The same entertainment video 
traffic data were used for experi- 
mentation, but now with predic- 
tion horizon 10 (the 1 Oth-step- 

Figure 4. Prediction accuracy for horizon 10 and different sampling rates on 
entertainment video traffic data. 

ahead process value is predicted). To predict the 
process at time step t + 10 using k process values 
up to time t, the following uniform sampling rates 
were considered (all are divisors of the prediction 
horizon): 

+ Rate 1-by ones; the k previous process val- 
ues are x(t), x(t  - l), x(t  - 2 ) ,  . . ., x(t - ( k  - 1)) 

+ Rate 2-by twos; previous values are x(t), 
x(t - 2 ) ,  x(t  - 4), etc. 

+ Rate 5-by fives; previous values are x(t), 
x(t - 5), x(t - lo), etc. 

+ Rate 10-by tens; previous values are x(t), 
x(t - lo), x(t - 2 O ) ,  etc. 

For horizon h larger than one, the prediction 
can be done either in a direct or in an incremental 
fashion. In the direct approach, the NN is 
trained to predict directly the hth step ahead 
without predicting any of the intermediate I ,  . . ., 
h - 1 steps. In the incremental 
approach, the NN predicts all 
the intermediate values up to h 
steps ahead by using the previ- 
ously predicted values as inputs 
when predicting the next value. 
All NN results were, as indi- 
cated, obtained either by ini- 

0.95 

0 9  

0 85 

0 8  
n 7 c  

both stochastic and NN predictors appeared to 
be unbiased, so the predictors' accuracy was 
evaluated according to the 2 values (the higher 
the 2 value, the better the predictor). The  sto- 
chastic models indicated a sampling rate 1 as the 
most appropriate. The  NN results confirmed 
this. We also observed that tlhe performance of 
the NNs with weights initialized according to 
the AR parameters was very similar to that of 
the N N s  averaged over 10 runs with different 
initial random weights. 

Figure 5 summarizes the results obtained for 
the most appropriate stochastic model, as well 
as for different representative N N s  when using 
a sampling rate 1. All the NIV results were av- 
eraged over IO runs with dijFferent initial ran- 
dom weights. The  figure indicates that the NN 
having 11 inputs yielded the best prediction, this 
being consistent with the prior knowledge pro- 
vided by the stochastic modeling. We also ex- 

a " I d  

tializing the NN weights from 5 o 7  

the AR parameters, or averaged 5 65 

over 10 runs with different ini- 
tial random weights. 

The  most appropriate AR 
models obtained for different 
sampling rates, as well as the 
corresponding NN models, are 
presented in Figure 4. Again, 

g 
a, 8 055 

0 5  

Model 

Figure 5. Prediction accuracy for horizon 10 and sampling rate 1 on entertainment 
video traffic data. 

SUMMER 1996 85 



1.4 

1.2 

1 

J 0.8 

0.6 

- m > 

0.4 

0.2 

0 
1 201 401 601 801 1,001 1,201 1,401 1,601 1,801 2,001 

Sample number 

Figure 6. Mackey-Glass data arising from a nonlinear, chaotic time series. 

perimented with neural network architectures 
much larger than the ones indicated, but their 
performance was poor. 

The  conclusions that could be drawn from 
these experiments are: 

o The data-sampling rate indicated by the sto- 
chastic models seems to be appropriate also 
for the NN models. 

o The prior knowledge provided by stochastic 
analysis regarding the number of external in- 
puts and appropriate initial weight values is 
effective also for larger horizons. 

o The performance of the AR models and the 
corresponding N N s  is comparable, indicating 
a linearity of the problem. 

Experimental results: 
Mac key-6 lass data 
The second data type we used is a deterministic 
time series obtained by integrating a delay dif- 
ferential equation (also known as the 
Mackey-Glass series): 

dx(t) - A x ( t - z )  
-- - Bx(t) 

dt 1 + x”’(t - z) 

Experiments were performed for the A = 0.2, 
B = 0.1, ~ = 1 7 ,  case in which the system exhibits 
chaotic behavior. The difficulty associated with 
this data set is the high nonlinearity. The data set 
consisted of 12,000 samples; the first 2,000 of 

which are shown in Figure 6. 
The  time series appears to be 
quasi-periodic with fairly long 
smooth segments. This sug- 
gests that the prediction of 
most of the series (except for 
the turning points, possibly) 
should be fairly easy for an ade- 
quate predictor. In accordance 
with previously published re- 
s u l t ~ , ~  a sampling rate 6 was 
used for predicting 6 or 6k 
steps ahead. Hence, the origi- 
nal data set was sampled at a 
rate 6 to generate a new 2,000- 
sample data set which was used 
for experimentation on predic- 
tion horizons 1 and k. The first 
1,000 samples of this “filtered” 
data were used for training, the 
last 1,000 for testing. 

Prediction horizon 1 
Similar to the previous experiments, the NN 

results were obtained either as a single run start- 
ing with weights derived from the AR model, or 
as an average over 10 runs with different initial 
random weights. 

Instead of comparing the stochastic-informa- 
tion-based NN to the NNs of somewhat differ- 
ent architectures obtained through a trial-and- 
error procedure as previously, in these 
experiments the results were compared with an 
earlier reported “optimal” NN topology with 
four inputs and two hidden layers of 10 units 
each, in which the number of inputs was deter- 
mined according to Takens’s t h e ~ r e m . ~  The  
number of training epochs was 2,000 for the 
NN 20-20-1 architectures and 4,000 for the 
NN 4-10-10-1 architecture. Both stochastic 
and NN predictors were unbiased, so the pre- 
dictors’ accuracy was evaluated according to the 
9 values reported in Figure 7. 

The  conclusions we draw from this experi- 
ment are: 

o The performance of the N N s  is much better 
than that of the most appropriate stochastic 
model, this being explained by the nonlinear- 
ity of the time series. 

o The NN based on stochastic prior knowledge 
(regarding both the number of inputs and ap- 
propriate initial weight values) performed 
similarly to the “optimal” NN architecture, 
further supporting the stochastic-informa- 
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Figure 7. Prediction accuracy for horizon 1 on 
Mackey-Glass data. 

tion-based design approach. This is an im- 
portant finding, since it confirms that useful 
information can be extracted from a linear 
model even if the underlying time series is 
highly nonlinear. 

+ Although the stochastic-information-based 
NN might appear to be overdimensioned 
compared to the “optimal” network, training 
(learning) and prediction in an actual hardware 
implementation would be faster for the sto- 
chastic-information-based architecture since 
it contains a single layer of hidden units com- 
pared to two such layers in the “optimal” 
architecture. 

Increased prediction horizon 
Whereas corresponding experiments on the en- 

tertainment video data were used to predict only 
10 steps ahead, for the Mackey-Glass data we an- 
alyzed the decrease in prediction accuracy for very 
large prediction horizons. For this purpose the 
AR(20) and the NN 20-20-1, trained as in the ex- 
periment for prediction horizon 1, were used to 
incrementally predict the process values up to 30 
steps ahead (this corresponds to 180 steps ahead in 
the “unfiltered’’ series shown in Figure 6). In the 
case of the NN, the weights were initialized from 
the AR parameters. The values for the coefficient 
of determination, Y L ,  resulting from these experi- 
ments are presented in Figure 8. 

The results indicated that, although the per- 
formance of the NN was much better when pre- 
dicting the near future, it decreased dramatically 

until, after about 30 steps ahead, the NN pre- 
dictor became completely unusable. (The 2 val- 
ues for the NN predictor were 0.969,0.493 and 
< 0 for horizons 10,20, and 30 respectively; for 
the AR predictor the values were 0.565, 0.515, 
and 0.488 for horizons 10, Y O ,  and 30 respec- 
tively.) This was an indication of the instability 
of the trained NN (an undesirable accumulation 
of error when using the incremental approach). 
For this reason, three 20-20-1 NNs were 
trained in the direct fashion for predicting 10, 
20, and 30 steps ahead, respectively. The values 
for their coefficients of determination (0.858, 
0.667, and 0.535 for horizons 10, 20, and 30), 
obtained as averages over 10 imns with different 
initial random weights, are also included in Fig- 
ure 8. They are significantly better than the cor- 
responding ones for the AR(20) model. How- 
ever, for prediction horizon 10 the coefficient of 
determination for the direct approach was worse 
than for the incremental approach. 

We conclude from this experiment that, al- 
though an incremental appralach for NN train- 
ing in the case of an increased prediction horizon 
has the advantage of training a single NN and us- 
ing it afterwards for predicting as many steps 
ahead as desired, the system can be unstable, re- 
sulting in a dramatic error accumulation when in- 
creasing the prediction horizon. For this reason, 
for larger prediction horizons it is desirable to an- 
alyze both the incremental and the direct train- 
ing approach and to select the more appropriate 
one for each particular prediction horizon. 

arious exploratory analysis techniques have V been proposed with the objective of ex- 
tracting information from a time series that 
would indicate its predictability, as well as the 
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appropriateness of a specific prediction method. 
Although promising diagnostic methods have 
been reported, one that is general and practical 
enough to be applied to an arbitrary time series 
is still unknown. This is generally due to insuf- 
ficient data for a reliable diagnostic, or complex 
data interdependencies overlooked by the diag- 
nostic process. 

Our study did not attempt to provide a gen- 
eral means of classifylng time series into groups 
that can or cannot be predicted well by certain 
methods. Instead, the study investigated the 
possibility of integrating two different predic- 
tion methods-stochastic models and neural 
networks-in order to speed up the design 
process of an appropriate predictor. In particu- 
lar, we tested whether feedforward N N s  for 
time series predictions can be rapidly designed 
by using prior knowledge obtained from sto- 
chastic modeling. The  generality of this ap- 
proach was analyzed in the context of two very 
different time series: a real-life, nonstationary, 
stochastic time series (the entertainment video 
traffic data), and an artificially generated, non- 
linear, deterministic time series (the Mackey- 
Glass data). 

The existence of a large number of outliers in 
the entertainment video traffic time series sug- 
gests a process that is difficult to predict with 
high accuracy. This was confirmed in our ex- 
periments by a relatively low value of the coeffi- 
cient of determination for both stochastic and 
NN models. However, although N N s  are com- 
putationally more powerful than the linear sto- 
chastic models, a simple stochastic model per- 
formed comparably to the NNs, justifying the 
use of linear models for some important real-life 
problems. 

The quasi-periodicity and smoothness of the 
Mackey-Glass time series suggests a process 
that is possible to predict with high accuracy if 
using an appropriate predictor. A high value of 
the coefficient of determination, significantly 
larger than for the stochastic predictor, was ob- 
tained using an NN, confirming the nonlinear- 
ity of the underlying time series. Nevertheless, 
experiments suggested that linear stochastic 
analysis provided useful knowledge on selecting 
the number of NN inputs and initial weights, as 
well as on choosing an appropriate data-sam- 
pling rate. 

It is important to emphasize that the goal of 
the proposed approach was not to find “the op- 
timal” NN architecture for a given problem but 
to provide rapidly (after a fast stochastic analysis) 

an NN architecture with close to optimal per- 
formance. Further research is needed to explore 
the validity of the stochastic prior knowledge to 
other time series prediction problems, as well as 
to extend the study from AR to ARMA models 
(that would indicate the choice of a recurrent 
NN). We believe that potentially better predic- 
tion accuracy and/or more efficient modeling is 
achievable by integrating prior knowledge and 
mT learning. For example, a successful integra- 
tion of expert-system rules and NN classifiers 
has been demonstrated e1~ewhere.l~ The  ap- 
proach proposed in this study is a way of incor- 
porating prior knowledge into NN systems for 
time series prediction. As a further level of in- 
tegration, our current research considers the use 
of stochastic modeling with additional sources 
of prior knowledge (such as information theory 
and chaotic system analysis) for NN-based time 
series predictions. + 
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