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Abstract—We propose a method for designing a partitioning 
clustering algorithm from reusable components that is suitable for 
finding the appropriate number of clusters (K) in microarray data. 
The proposed method is evaluated on 10 datasets (4 syntetic and 6 
real-word microarrays) by considering 1008 reusable-component-
based algorithms and four normalization methods. The best 
performing algorithm were reported on every dataset and also 
rules were identified for designing microarray-specific clustering 
algorithms. The obtained results indicate that in the majority of 
cases a data-tailored clustering algorithm design outperforms the 
results reported in the literature. In addition, data normalization 
can have an important influence on algorithm performance. The 
method proposed in this paper gives insights for design of divisive 
clustering algorithms that can reveal the optimal K in a microarray 
dataset. 
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I.  INTRODUCTION 
Clustering of gene expression microarray data plays an 

important role in biomedical research. The usage and evaluation 
of clustering algorithms in biomedical research has been 
exhaustively reviewed [1] and the importance of finding the 
appropriate algorithms for different biomedical applications is 
greatly emphasized. Microarray gene expression data can be 
clustered twofold. On one hand, genes can be clustered based on 
similar expressions over biological samples and, on the other 
hand, biological samples can be clustered based on gene 
expression data [2]. A more challenging problem is the clustering 
of samples on the basis of genes, where many clustering 
techniques fail to capture complex local structures, due to the 
high-dimensionality of the data and the small number of samples 
[3], [4]. Although there are some recommendations regarding 
algorithm selection for clustering biological data [5], there is no 
consensus about the best algorithm for such a hard clustering 

task. In this regard, the reusable-component (RC) based approach 
([6] for clustering algorithms could give a clearer direction. 

In this paper we propose a method for designing a 
hierarchical divisive clustering algorithm that can reveal an 
appropriate number of clusters in data (K). The method is used to 
design algorithms for clustering of samples over gene expression 
data. The RC-based approach allows the design of a plethora of 
hierarchal divisive clustering algorithms (in this paper 1008) that 
are composed by combining RCs (found in algorithms and 
algorithm improvements) on the same algorithm sub-problems 
(e.g. various methods for initialization, for measuring distances 
etc).  

This research extends our research of RC-based partitioning 
clustering algorithms on microarray data analysis [7], where the 
main focus was identification of algorithm structures that can 
reveal the right clustering structure, given a known K. In 
comparison to [7] this research makes the following extensions: 

• Analysis of the influence of different normalization 
techniques done prior to clustering on clustering quality; 

• Development and evaluation on microarray datasets of 
divisive hierarchical clustering algorithms that can detect 
the appropriate number of clusters K; and 

• Proposal of a method for identifying the most-suited 
divisive clustering algorithms, when K is not known in 
advance (algorithms investigated in [7] needed user 
defined number of clusters). 

The remainder of this paper is structured as follows. In 
Section 2 we explain the RC-based algorithms framework, and in 
Section 3 we present the experimental results followed by a 
discussion provided .in Section 4. 
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II. REUSABLE-COMPONENT-BASED DIVISIVE CLUSTERING 
ALGORITHMS 

 

The reusable component (RC) design approach proposes 
decomposing algorithms into sub-problems that can be solved 
using different RCs. These are well-documented, frequently 
occurring solutions for specific sub-problems in a family of 
algorithms [6] (in this case representative based clustering). RCs 
have the same I/O structure as the sub-problems (i.e. all RCs for 
the Initialization sub-problem have dataset as an input and cluster 
representatives as output). This allows re-using parts of 
algorithms discussed in the literature for reconstructing original 
algorithms or designing new RC-based algorithms by assembling 
RCs into algorithms.  

In [7], partitioning (k-means like) clustering algorithms based 
on the idea of RC-based design were used to analyze algorithm 
structure that adapts best to dataset “ground truth”. Those 
algorithms were unable to find an optimal K for the data at hand. 
Based on the idea of RC-based clustering algorithms [6], in this 
paper we analyze hierarchical divisive clustering algorithms that 
can reveal the true K. RC-based algorithms have a generic 
clustering structure that allows RCs to be combined. The 
structure of a generic clustering algorithm is made of sub-
problems [6]. Examples of these are representative initialization, 
distance measuring, updating of representatives, etc. Each of 
these sub-problems can be resolved in several ways with RCs 
(e.g. Initialization of representatives can be done randomly, or 
like in X-means [8] or in other ways mentioned later in this 
paper). 

Besides having a generic clustering structure, in RC-based 
design there must exist a generic algorithm that is able to 
assemble RCs into clustering algorithms. The generic clustering 
(GC) algorithm used in this paper consists of three phases: 

1. Initialization, where initial (minK) representatives are 
generated; 

2. Refinement, where objects are iteratively assigned to 
representatives, and representatives recalculated; and 

3. Hierarchical division, where the clusters are being split 
binary, until the desired number (maxK) of clusters has been 
achieved. 

The GC algorithm has three global parameters. These are: 

minK: number of clusters that should be generated in the 
“Initialization” phase, we have set this to 2; 

maxK: number of clusters that should be produced after the  
“Hierarchical division” phase (we set this parameter to 2*K); and 

refinePartitions: defines how clusters should be refined in the 
“Hierarchical division” phase after a cluster has been split binary. 
There are two possibilities usually used in literature: 

Local: to refine child clusters based only on data from the 
parent cluster [8], and 

Global: to refine all clusters again, this time with two newly 
added child representatives (as in [9]). 

 We use the GC algorithm and GC structure to construct 1008 
divisive hierarchical clustering algorithms. Clustering algorithms 
used in our study are designed by varying RCs from the 
following four sub-problems: initializing representatives, 
measuring distance, updating representatives and evaluating 
clusters [6]. Additionally, we used both strategies for refinement 
(local and global). We have also normalized data prior to 
clustering with 4 different methods (RCs), namely L1, L2, 
MAXMIN (subtracting each column value from the minimal 
value, and dividing with max-min value), and AVGSTD 
(standard score normalization). 

Note that in the GC algorithm, “evaluating clusters” is used 
during the execution of the algorithms (as a model selector that 
influences cluster division).  

The pseudocode for the GC algorithm is shown in Algorithm 
1.  

Algorithm 1.Generic representative-based clustering algorithm 
Input: Dataset
Output: Cluster model 
Parameters: 

minK = 2 
maxK = 2K 
refinePartitions: local/globa) 

GC algorithm (Dataset, minK, maxK, refinePartitions) 
1. // Initialization 
2. Use “Initialize representatives” to initialize minK representatives 
3. // Refinement 
4. repeat 
5. for each randomly (without replacement) sampled case 
6.     for each representative 
7.        “Measure distance” (instance, representative) 
8.     end 
9      Assign instance to nearest representative 
10.   If  “Update representatives”.isOnline() then 
11.              “Update representatives”.update() 
12.end 
13. If  not “Update representatives”.isOnline() then 
14.     “Update representatives”.update() 
15.until“Stop criterion” 
16.// Hierarchical division 
17. If maxK>minK 
18.  Split each cluster binary using “Initialize representatives” 
19.    repeat 
20.        Do “Evaluate clusters” on child clusters and parent clusters 
21         Choose best child and parent clusters difference evaluation 
22        If difference is positive 
23               If refinePartitions is local 
24                 .Do Refinement (Parent cluster dataset, child centroids) 
25               If refinePartitions is global 
26.                 Do Refinement (Whole dataset, all centroids) 
27.    until number of clusters = maxK or no splitting in last loop
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1008 algorithms represent the space of algorithms that are 
formed by reusing parts of various representative-based (k-means 
like) and hierarchical divisive algorithms from the literature. 
Now we will explain this in more detail. 

In particular, for initialization of cluster representatives (IR) 
we considered seven RCs: (DIANA); (RANDOM); (XMEANS); 
(GMEANS); (PCA); (KMEANS++) more detailed description of 
the RCs is available upon request. 

 

The following four distances (similarities) were considered in 
this study as RCs: Euclidean distance (EUCLIDEAN); City block 
distance (CITY); Correlation similarity (CORREL); and Cosine 
similarity (COSINE). This sub-problem is abbreviated in 
following text as MD (Measure distance). 

We used the following three RCs for representative update 
(UR): MEAN, MEDIAN and ONLINE. 

By combining RCs, original algorithms can be reproduced, 
but new algorithms can also be created. E.g. the K-means 
algorithms can be reconstructed as RANDOM-EUCLIDEAN-
MEAN-COMPACT. An example of a new algorithm would be 
PCA-COSINE-ONLINE-SILHOU, that uses PCA to “initialize 
representatives”, COSINE to “measure distance”, ONLINE to 
“update representatives, and SILHOU to “evaluate clusters”. 

We integrated internal cluster evaluation measures’ RCs into 
algorithms and in that way influenced the retrieved cluster 
models. For the “Evaluate clusters” (EC) sub-problem. we used 
six RCs: Akaike information criteria (AIC), Bayesian 
information criteria (BIC), silhouette index (SILHOU), 
intracluster distance from K-means (COMPACT), XB index 
(XB), and connectivity (CONN).  

By combining RCs from the four aforementioned sub-
problems we designed 504 (7*4*3*6) algorithms, which form a 
space of RC-based divisive cluster algorithms. As we used two 
strategies for cluster refinement in hierarchical clustering (local 
and global, to be explained in the next Section) we tested in total 
1008 RC-based algorithms. 

III. EVALUATION 

A. Experimental setting 
For evaluation of the proposed generic algorithm we used 

four synthetic and six real world gene expression data sets. These 
datasets are often used in microarray data analysis, where 
biological samples are clustered based on gene expression data 
([10]; [11]; [12]). However, for the real world datasets, number 
of clusters is estimated and the researches are referenced in Table 
1. 

Table 1 shows a summary of datasets for synthetic and real 
world problems, respectively. 

 

TABLE I.  DATASETS SUMMARY, SOURCE: [6]  

 Clusters Samples Attributes 
Synthetic datasets [11]    

Gaussian 3  3 60 600 
Gaussian4 4 400 2 

Gaussian5delta3 5 500 2 
Simulated 6 6 60 600 

Real world datasets    
Leukemia [13] 3 38 999 
Novartis [14] 4 103 1000 

Lung cancer [15] 4+ 197 1000 
CNS Tumors [16] 5 48 1000 

St. Jude [17] 6 248 985 
Normal [18] 13 90 1277 

 
By using an RC based approach, we designed 1008 clustering 

algorithms (as explained in previous section) and evaluated them 
on all datasets with different normalization techniques (totally 
10x1008x4 runs). All algorithms, including stochastic RCs (e.g. 
for initialization of representatives RANDOM), were ran 10 
times, and the average results are reported. 

In order to evaluate the suggested approach, we inspected 
whether RC based algorithms can find the true number of clusters 
in data. Cluster quality was measured with two external indices: 
Adjusted mutual index (AMI) [10] and Adjusted Rand Index 
(ARI) [19]. Both indexes compare two clustering solutions 
(ground truth vs. structure detected by the clustering algorithm). 
If the resulting partitions are identical, the value of both indices is 
1 and if the partitions are completely different from one another, 
the index has an expected value of 0.  

Here we describe used measures, by using notation from [10]. 
Let S be a set of N data items, then a (partitional) clustering U on 
S is a way of partitioning S into non-overlap subsets 
{U1,U2,...,UR}. The information on the overlap between two 
clusterings U={U1,U2,...,UR} and V={V1,V2,...,VR} can be 
described in contingency table as described in Table 2. 

ARI is a pair counting based measure are built upon counting 
pairs of items on which two clusterings agree or disagree. item 
pairs in S can be classified into one of the 4 types-N11: the 
number of pairs that are in the same cluster in both U and V; N00: 
the number of pairs that are in different clusters in both U and V; 
N01: the number of pairs that are in the same cluster in U but in 
different clusters in V; and N10: the number of pairs that are in 
different clusters in U but in the same cluster in V. 
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TABLE II.  CONTIGENCY MATRIX FOR CALCULATING ARI INDEX  

U/V V1 V2 … VC Sums

U1 n11 n12 … n1C a1 

U2 n21 n22 … n2C a1 

… … …  … …

UR nR1 nR2 … nRC aR 

Sums b1 b2 … bC  

 

When contingency matrix is defined, ARI is calculated as: 

00 11 01 10

00 01 01 11 00 10 10 11
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AMI is information theoretic based measure [10]. Given two 
clusterings U and V, their entropies, joint entropy, conditional 
entropies and mutual information (MI) are defined naturally via 
the marginal and joint distributions of data items in U and V 
respectively as: 
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Finally, AMI is calculated as: 

( , ) { ( , )}
max{ ( ), ( )} { ( , )}}

I U V E I U VAMI
H U H V E I U V

−=
−

 

 

We use AMI because it was recently suggested by [10] as a 
general purpose validation index and it showed valid 
performance on microarray datasets. Additionally we adopt ARI 
index in order to compare the results with already published work 
(since we are not aware of any research on clustering microarray 
data that reported AMI as validation measure).  

B. Results 
In Table 3, we show that on all datasets there are algorithms 

that found the appropriate K and identified real cluster structures 
(have high values of external indices). However, on “CNS 

Tumors” and “Normal” datasets the algorithms didn’t find the 
“ground truth” hidden in the data, although there were algorithms 
that found the right K. For the Normal dataset, this is expected 
since this problem has a large number of clusters (13) with 
respect to number of samples (90) and other clustering algorithms 
also failed to capture real cluster structure ([11]; [12]). “CNS 
Tumors” does not have this problem and so we assume that some 
other type of clustering algorithms could be better adopted for its 
distribution. 

TABLE III.  NUMBER OF ALGORITHMS ON EACH DATASET THAT FOUND THE 
RIGHT K. MAXIMAL AND AVERAGE VALUES FOR ARI AND AMI ARE ALSO 

SHOWN.  

 # Alg. 
found K

% Alg. 
found K 

ARI 
(max) 

ARI
(avg) 

AMI
(max)

AMI
(avg) 

Synthetic datasets       
Gaussian 3 462 22.92% 1.00 0.55 1.00 0.55 
Gaussian4 240 11.90% 0.90 0.74 0.87 0.73 

Gaussian5delta3 132 6.55% 0.94 0.84 0.92 0.84 
Simulated 6 96 4.76% 1.00 0.22 1.00 0.26 

Real world datasets       
Leukemia 23 1.14% 0.45 0.28 0.47 0.33 
Novartis 491 24.36% 1.00 0.43 1.00 0.44 

Lung cancer 128 6.35% 0.92 0.50 0.87 0.54 
CNS Tumors 7 0.35% 0.28 0.17 0.40 0.26 

St. Jude 194 9.62% 0.96 0.68 0.96 0.71 
Normal 73 3.62% 0.95 0.40 0.94 0.44 

 

Also, we can notice that there is a discrepancy between 
maximal and average ARI and AMI values. Therefore, we 
generalize the results on algorithms where both the number of K 
was correct and AMI values were within 10% of the best AMI 
value, as these algorithms show similar results on a dataset. E.g. 
on “Leukemia” (max AMI = 1) all algorithms within the range of 
ARI values [1, 0.9] will be analyzed. 

In order to inspect if the best RC based algorithms are 
comparable with other algorithms reported in literature, we 
compared our results with the results of ([11]; [12]) who 
proposed two ensemble-based clustering algorithms. Ensemble 
clustering is a very popular method in microarray data analysis 
and showed better results than single clustering algorithms that 
they are using for making a consensus ([11]; [12]). We compared 
the results with the graph-based consensus clustering (GCC) 
methods that use correlation clustering and K-means (GCCcorr 
and GCCkmeans) from [12] and with consensus clustering based 
on SOM and hierarchical clustering (CCsom and CCkmeans) by 
[11] in Table 4. In Table 4, the structures of the best performing 
RC based algorithms on each dataset are shown. Comparisons are 
made based on ARI values (even though it is showed that AMI is 
more adequate for clustering evaluation) since they are reported 
in referenced papers. ARI values of the best algorithms are 
showed in bold.  
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TABLE IV.  COMPARISON WITH RESULTS FROM (MONTI ET AL., 2003; YU ET 
AL., 2007)  

 GCCcorr GCC 
Kmeans CChc CCsom Best RC-based 

algorithm 
CNSTumors 0,658 0,718 0,549 0,429 0.597 

Leukemia 0,831 0,831 1 0,721 1 
Lung cancer 0,544 0,562 0,31 0,233 0,921 

Novartis x x 0,921 0,897 0,960 
Normal x x 0,572 0,487 0,572 
St.Jude 0,873 0,86 0,948 0,825 0.955 

 

The results show that algorithms designed with RC 
interchange produced the best results or equally good results as 
other algorithms on five out of six datasets (datasets that are 
tested in [11], but not in [12] are marked with “x”). Since 
consensus-based clustering uses single algorithms (often 
representative-based) and re-sampling techniques, or several 
different algorithms for creating consensus partitions and 
identification of the “true” number of clusters, this experiment 
indicates that inclusion of RC based algorithms in consensus 
frameworks could lead to even better results.  

TABLE V.  STRUCTURE OF THE BEST RC BASED ALGORITHMS  

 Normal IR MD UR EC glob/loc
CNSTumors MEANSTD PCA COSINE ONLINE COMPACT glob 

Leukemia MAXMIN GMEANS COSINE ONLINE SILHOU glob 
Lung cancer MEANSTD DIANA EUCLID ONLINE AIC glob 

Novartis L2 XMEANS CITY MEAN SILHOU glob 
Normal MEANSTD GMEANS CORREL ONLINE SILHOU glob 
St.Jude L2 PCA CITY ONLINE AIC glob 

 

Presented results provide evidence that RC based algorithms 
are comparable with the state-of-the-art algorithms for clustering 
microarray data. However, structure of the best RC based 
algorithms (Table 5) suggests that on different datasets, different 
RCs participated in building the best algorithm. From Table 5, it 
can be noticed that AIC and SILHOU are the only RCs used for 
“Evaluate clusters” sub-problems (which is a result also 
suggested by [7], ONLINE was the most frequent for “Update 
representatives”. Still, detailed inspection of the results showed 
that there were a lot of algorithms that showed minimal 
difference in performance from the best one, but had a quite 
different structure. Because of that and the fact that a large 
number of algorithms is evaluated, we further employ some rule 
extraction techniques to generalize our results by identification of 
rules for building good performing algorithms for clustering 
microarray data.   

C. Discussion   
It is very hard to make general conclusions based on the 

obtained experimental results because there is no one-fit-all 
clustering algorithm, and algorithms are usually dataset-tailored. 
However, some fairly general observations can be made. As said 
in the previous sub-section, in our experiments there was large 

discrepancy between maximal and average performance of 
algorithms that found the true K. That is why we focus only on 
the best algorithms (algorithms whose AMI values were within 
10% of the best AMI value). High values of the AMI index mean 
that most of the samples that should be clustered together are 
really in the same cluster. But this does not mean that in all cases 
algorithms with high AMI value recognized the true number of 
clusters. In our case, after selection of the algorithms with best 
AMI values there were 333 algorithms that found the real number 
of clusters and 342 that didn’t. This is why we employed the 
famous A priori algorithm for finding association rules that 
identify which algorithms (or RCs) that had good AMI values 
have recognized the true number of clusters.  

Association rules provide the rules in the following form: “if 
antecedent(s) then consequent(s)”. 

As input variables (antecedents) we defined all algorithmic 
sub-problems, while the output variable (consequent) was a 
binary indicator (true/false) of the right number of clusters. 

We measured the quality of the association rules by support 
and confidence. Support shows the ratio between the number of 
cases, for which the entire rule, (antecedent(s) and 
consequent(s)), is true and the total number of cases in the 
dataset. 

Confidence shows the ratio between the number of cases for 
which the entire rule is true, and the number of cases for which 
antecedent(s) is/are true.  

After filtering out the rules that had low confidence and 
support and redundant rules we end up with four interesting rules 
that are showed in Table 6. 

TABLE VI.  ASOCIATION RULES FOR GENERALIZATION OF THE RESULTS 

IF THEN 
True K Supp. Conf. 

ND =MEANSTD 
UR=MEAN 

MD =CORREL 
FALSE 12.44 91.67 

ND =MEANSTD 
UR=MEDIAN 
MD =CORREL 

FALSE 12.44 91.67 

ND = MAXMIN 
UR=ONLINE TRUE 15.41 80.01 

ND = MAXMIN 
UR=ONLINE 
G/L = LOCAL 

TRUE 8.44 82.46 

 

From Table 6 we can conclude that MEAN and MEDIAN 
RCs from the update representative sub-problem shouldn’t be 
used in an algorithm that finds the right K structure. On the other 
side, the true number of K and the right cluster structure is found 
if ONLINE RC is combined with MAXMIN normalization and 
more specifically with “local” divisive strategy. 

Normalization done prior to clustering can also have 
influence on clustering algorithms. From Figure 1 we can see that 
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L1 as normalization never shows up in algorithms that can reveal 
the true clustering structure, so it is not a good idea to use this RC 
prior to clustering microarray datasets. On the “Lung” dataset, 
using L2 can also fail to reveal true clustering results. 

 

Figure 1.  AMI values for different normalizations on real world datasets 

We further investigated the influence of different RC 
combinations on algorithms’ ability to find the appropriate 
number of clusters by using the C4.5 decision tree. Input and 
output variables were the same as for the A priori algorithm. The 
decision tree identified the evaluate clusters sub-problem as the 
most significant one, because the first level of the decision tree 
was created based on RCs from this sub-problem (Figure 2) 

 

Figure 2.  Branching the decision tree by different “evaluate clusters” RCs 

From Figure 2, it is clear that BIC, CONN and XB evaluate 
clusters RCs shouldn’t be used in algorithms, because in 113 out 
of 114 cases they induced the wrong number of clusters. 

Algorithms that contained AIC were most frequently able to find 
the right number of clusters, but not with all combinations of RCs 
(201 times out of 318 algorithms with AIC found the right K). 
Further inspection of the decision tree showed that AIC together 
with ONLINE RC most frequently revealed the ground truth. If 
combined with MEAN, good results are achieved with 
RANDOM and XMEANS initializations (Figure 3). 

 

Figure 3.  Rules about algorithms that include AIC RC  

The decision tree model also revealed interesting rules about 
algorithms that include SILHOU RC (Figure 4). When using this 
RC, data should be normalized with MAXMIN normalization. 
Second, if data is normalized with L2 metric, distance should be 
measured with CITY, COSINE or EUCLID. 

 

Figure 4.  Rules about algorithms that include SILHOU RC  
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IV. CONCLUSION AND FUTURE RESEARCH 
In this paper, we used the component-based approach 

clustering algorithm design [6] to build generic divisive 
clustering algorithms that can be applied on microarray data. 
With this approach, we constructed 1008 algorithms and tested 
them on 10 datasets with 4 different normalization types.  

Experiments conducted in this paper provide evidence that a 
component-based design of data-specific algorithms are a 
promising approach for clustering microarray data when the true 
number of clusters is not known in advance.  

On the other side, the GC based framework with RCs used in 
this paper can produce 1008 algorithms, and adding new RCs 
would make the number of available algorithms grow. In this 
paper we addressed the problem of algorithm overflow with more 
general rules by which RCs should be assembled (or not) in order 
to design well-performing clustering algorithms. 

Experiments also suggest that divisive hierarchical based 
algorithms built from RCs are competitive with alternative 
clustering algorithms. These experiments also indicated that 
extension of RC repository could improve quality of clustering 
algorithms. Furthermore, single algorithms composed from RCs 
showed better performance than consensus clustering 
frameworks that use traditional single algorithms (e.g. K-means, 
SOM) [11] [12]. This implies that even better clustering could be 
achieved if RC based algorithms were to be integrated in 
consensus-based frameworks. Integration of RC based clustering 
algorithms into consensus frameworks is an interesting research 
topic to be tackled in the future. 

Another direction of future work could be integration of RC 
based algorithms in meta-learning frameworks. Meta-learning 
relates performance of algorithms to data distribution and enables 
automatic selection and ranking of algorithms for a given 
problem. Even though this is a common approach for 
selection/ranking of supervised learning algorithms [20], in the 
area of clustering this is a relatively new and unexplored topic 
[21]. Still, preliminary results in the area of microarray data 
clustering [21], [22] are promising. These studies explicitly 
concluded that clustering meta-learning frameworks would 
benefit from including a larger number of algorithms. Integration 
of a large number of RC-based algorithms in the meta-learning 
framework would be beneficial for solving the problem of 
algorithm selection for clustering microarray data because 
recommendations for using an algorithm or specific RCs could 
be made on the basis of dataset properties.  
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