
NEUROCOMPUTINC

ELSEVIER Neurocomputing 10 (1996) 275-290

A multi-component nonlinear prediction system
for the S&P 500 Index

Tim Chenoweth alb,c- * , Zoran ObradoviC a, *

a School of Electrical Engineering and Computer Science, Washington State University,
Pullman WA 99164-2752, USA

b Department of Management and Systems, Washington State University, Pullman WA 99164-2752, USA
’ Department of Economics, Washington State University, Pullman WA 99164-2752, USA

Received 19 May 1995; accepted 30 September 1995

Abstract

The proposed stock market prediction system is comprised of two preprocessing compo-
nents, two specialized neural networks, and a decision rule base. First, the preprocessing
components determine the most relevant features for stock market prediction, remove the
noise, and separate the remaining patterns into two disjoint sets. Next, the two neural
networks predict the market’s rate of return, with one network trained to recognize positive
and the other negative returns. Finally, the decision rule base takes both return predictions
and determines a buy/sell recommendation. Daily and monthly experiments are conducted
and performance measured by computing the annual rate of return and the return per
trade. Comparison of the results achieved by the dual neural network system to that of the
single neural network shows that the dual neural network system gives much larger returns
with fewer trades. In addition, dual neural network experiments with the appropriately
selected filtering and decision thresholds managed to achieve an almost twice larger annual
rate of return when compared to that of the buy and hold strategy over a seventy month
period. However, no claims are made that the proposed system is better than the buy and
hold strategy when considering transaction costs.

Keywords: Stock market prediction; Hierarchical systems; Hybrid systems; Neural networks

1. Introduction

Financial markets in general and the stock market in particular are extremely

efficient, meaning that at any given point in time the market does a very good job

* Corresponding author. Email: zoran@eecs.wsu.edu

0925-2312/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved
SSDZ 0925-2312(95)00109-3

276 T. Chenoweth, Z. ObradooiC/Neurocomputing 10 (1996) 275-290

reflecting the actual value of the underlying stocks. In fact, the efficient market
hypotheses states that any new information which affects this value is accounted
for by the market before the general public can make trades based on it [131. This
hypothesis seems reasonable prouided that the relationship between the new
information and the value of the underlying stock is fully understood. Most
quantitative methods attempting to capture such relationships are based on simple
stochastic linear time series models [2,14,16]. This research, similar to [12], hypoth-
esizes that there might be nonlinear relationships between market information and
the value of stocks that so far have not been identified and therefore are not
reflected in stock prices. In other words, there might still be inefficiencies in the
market. It is important to note that if this is true and nonlinear relationships do
exist, once their existence (and the means for identifying them) becomes public
knowledge, traders will have a better understanding of the relationship between
information and stock values, which means both a more efficient market and the
elimination of these nonlinear relationships. The long term results then will not be
higher returns, but a more efficient market.

If these nonlinear relationships exist, it may be possible to capture them using a
nonparametric machine learning approach of multilayer artificial neural networks
(NN). Such NNs are powerful computational systems that theoretically can approx-
imate any nonlinear continuous function on a compact domain to any desired
degree of accuracy [91. In addition, a NN can account for fundamental changes in
the underlying function through incremental retraining. However, the stock market
is a highly complex system which takes a very large quantity of information
(fundamentals, news, etc.) and produces a price movement. What a NN is trying to
do is model this system using only a very small portion of the total information.
The other information not accounted for now plays the role of noise, resulting in a
problem domain that is extremely noisy. In addition, due to the continuous
evolution of the market, historical data may represent patterns of behavior that no
longer hold [l].

One approach to modeling the stock market is to preprocess the data using
formal feature selection and noise removal techniques and then train a NN on the
preprocessed data. However, results from this study indicate that the combination
of a noisy environment and non-stationarity makes it very difficult for a single NN
to learn a function which generalizes when applied to new data. While the data
preprocessing did improve the results of the single NN system, the system still did
not achieve a satisfactory annual rate of return when compared to that achieved
using the simple buy and hold strategy. Therefore, this paper proposes a hybrid
multi-component nonlinear system for S&P 500 stock market predictions that
utilizes two NNs, one trained on patterns corresponding to up movements in the
market and the other trained on patterns corresponding to down movements.

The system goals are to earn a larger annual return than the buy and hold
strategy and to keep the number of trades low to reduce transaction costs. The
system details are explained in Section 2 followed by results and analysis in Section
3, and conclusions in Section 4. An extended abstract of this paper using only daily

T. Chenoweth, Z. ObradoviC/Neurocomputing 10 (1996) 275-290 277

data appears in [6]. The reader is also referred to companion papers [5’,7] dealing
with the specific issue of feature selection.

2. Methodology

The proposed system consists of a statistical feature selection component for
identification of the most relevant data, a data filtering component for removing
noise and splitting the remaining data, two specialized NNs for extraction of
nonlinear relationships from the selected data, and high level decision rules for
determining buy/sell recommendations (see Fig. 1).

2.1. Feature selection

The objective of the feature selection component is to identify a small subset of
the most relevant features from a larger pool for designing the system in a manner

Data Filter

Down NN Up NN

11
Redined Rate

I
Predicted Rate

I

Decision Rule

I
Trading Acdon

Fig. 1. System architecture.

278 T. Chenoweth, Z. ObradoviC/ Neurocomputing 10 (1996) 275-290

that preserves as much information as possible. This issue is important because
fewer features per pattern lead to faster computation and require less training
patterns for successful generalization. Most feature selection processes rely on
fundamentally sound statistically based techniques [ll]. These techniques are
practical, easy to understand, and easily implemented. However, they suffer from
instability problems, meaning that small data perturbations lead to drastic changes
in the final reduced feature set [3]. This problem is especially pronounced for stock
market models because the data is non-stationary and very noisy. For these
reasons, the feature selection procedure adopted in this paper is to use several
selection techniques and criteria, then combine the partial results using a ranking
process proposed in [7]. Techniques are discussed in Section 2.1.1, criteria in
Section 2.1.2, and the ranking process in Section 2.1.3.

2.1.1. Selection techniques
Each feature selection technique is a search algorithm that attempts to deter-

mine a subset of the existing features which maximizes the differences between the
classes based on some criteria. This section briefly describes the selection tech-
niques used in the proposed feature selection process, all of which are described in
more detail in [ll].

The Sequential Forward Search selection technique is a greedy algorithm that
begins with an empty feature set and adds features to it one at a time. The first
feature added is the one deemed to be the best according to the selection criteria.
The next feature added is the one which results in the largest improvement when
considered in conjunction with the first feature. Similarly, the ith feature added is
the one that results in the largest improvement when considered in conjunction
with the previous i - 1 features. The Sequential Backward Search selection tech-
nique is similar to the sequential forward search, except that the initial set contains
all the features, and features are removed from this set one at a time. The first
feature removed is the one that results in the smallest degradation when the
remaining features are considered together. This process repeats until the feature
set reaches a predetermined size.

Although both the Sequential Forward Search and the Sequential Backward
Search consider features in combination and as such are fine grained techniques,
both require significant computing time. In addition, with Sequential Forward
Search once a feature is added to the features set it cannot be removed. With
Sequential Backward Search once a feature is removed it cannot be added later.
As such, neither Sequential Forward Search nor Sequential Backward Search
guarantee that an optimal set of features is achieved.

2.1.2. Selection criteria
Each feature selection criterion is based either on a measure of the distance

between classes or an estimation of the classification error. Therefore the selection
criteria objective is to either maximize the separation between classes using some
distance measure of intra-class separation or to minimize the estimated classifica-

T. Chenoweth, Z. ObradoviC/Neurocomputing 10 (1996) 275-290 279

tion error. This Section describes the selection criteria used in the proposed
feature selection process, all of which are described in more detail in [ll].

The Euclidean, Patrick-Fisher, Mahalanobis, and Bhattacharyya distances used
in this study are all means of measuring the multidimensional separation between
classes. The Euclidean distance is measured as

and the Patrick-Fisher distance as

c,+c, -l
i 1 - (K-M,), 2

(1)

(2)

where M, and M2 are the mean vectors of class one and two respectively (e.g. M,
is computed by averaging each feature’s values for data in class one) and C, and

x2 are the corresponding covariance matrices. The Mahalanobis distance is
measured as

where the data from both classes is used to compute one covariance matrix C. And
finally, the Bhattacharyya distance is measured as

Notice that the Bhattacharyya distance does not assume equal covariance matrices
like the Mahalanobis distance. The first term in Eq. (4) measures the class
separability due to the mean difference, while the second term measures the class
separability due to the covariance-difference.

The final selection criterion used in this study is the Estimated Minimal Error
Probability that estimates Bayes error for the data set by applying the K-nearest
neighbor classifier [8] to the training set utilizing the leave one out approach. This
criterion uses the Euclidean distance to determine the K training patterns closest
to the selected pattern. The selected pattern is assigned to the class that the
majority of the identified K training patterns belong to. This process is repeated
for all patterns in the training set and the percentage of missclassifications
computed, which becomes the estimate for Bayes error. This tends to overestimate
the error and as such gives a very conservative error estimate. The selection
criterion then becomes finding a set of features that minimizes the estimated
Bayes error.

2.1.3. The ranking feature selection process
The approach proposed here for dealing with the instability of statistically based

feature selection techniques for noisy and non-stationary data is to perform feature
selection using several combinations of selection techniques and selection criteria

280 T. Chenoweth, Z. ObradoviC / Neurocomputing IO (1996) 275-290

and to integrate the obtained partial results using a ranking process. The ranking
process uses a specific technique and criterion combination to determine a rank
ordering of the features from best to worst with scores assigned to the features
based on this ordering (one is the best, p is the worst, where p is the total number
of features). The process is repeated using combinations of other techniques and
criteria explained earlier and the scores are summed. The reduced feature set is
then comprised of the 4 features with the lowest scores.

For example, first the minimization of the Euclidean distance might be used as
the selection criterion for the sequential forward search technique, which rank
orders all the features from best to worst. A score is assigned to each feature based
on this ranking (a score of 1 is the best), and the process repeated using the
minimization of the Euclidean distance as the selection criterion for the sequential
backward search technique, with the resulting score added to the previous score.
The process continues using the forward and backward search techniques with
other criteria (Bhattacharyya, Mahalanobis, Patrick-Fisher, and Estimated Mini-
mal Error). The result of the process is a ranking of all features from best to worst
according to the aggregated results of all eight combinations of selection tech-
niques and criterion.

Had the initial data set been too large, this process would have been pro-
hibitively expensive. For such cases, a two-stage ranking process is proposed in
which the first phase reduces the initial feature set to an intermediate set of
manageable size using coarser, computationally less demanding feature selection
techniques. Then in the second phase the finer but more expensive Sequential
Forward and Sequential Backward selection techniques are applied to the interme-
diate feature set to derive the final set [7].

2.2. Return rate prediction

The return rate prediction sub-system consists of a data filtering component and
two NNs that are trained using the backpropagation algorithm and an on-line
learning scheme (see Fig. 1). The filtering component’s objective is to reduce the
degree of noise in the data and then split the remaining patterns into two disjoint
sets. The Up NN is trained on the set containing patterns with positive target
returns and the Down NN on the set containing patterns with negative target
returns. Once both NNs are trained, the test pattern is presented to each and the
corresponding predictions are collected. A decision rule base is applied to these
predictions and a buy/sell recommendation made as explained in Section 2.3.

The on-line learning scheme consists of a sequence of training/prediction
sessions where the NNs are retrained after each session using more recent
information. This is achieved by training the NNs using the backpropagation
algorithm [15] and patterns from a fixed size window covering a continuous time
segment of historic data. The target return for the time unit immediately following
the window is predicted by both NNs and the predictions used by the rule base.
Then the training window is shifted forward one time unit (i.e. one trading day or
one month), the patterns from the new window used to retrain the NNs, and a

T. Chenoweth, 2. ObradoviC/Neurocomputing 10 (1996) 275-290 281

prediction made for the next time unit. This process is repeated until the data set
is exhausted.

For each training session the target return corresponding to each pattern in the
window is compared to a filtering threshold value h. If the return is greater than h
the corresponding pattern is added to the Up NN training set, if the return is less
than -h the pattern is added to the Down NN training set. Any pattern with a
target return between -h and h is discarded.

For example, suppose that the training window size is m and that at time t the
test pattern is d,, which means that the training window contains patterns d,_,
through d,_,. First, the patterns in the training window Cd,_, through d,_,) are
separated into Up NN and Down NN training sets using the threshold value h as
described. Next, both NNs are trained using their respective training sets, and
asked to predict the target return for the test pattern d,. Once the predictions are
collected and sent to the decision rule base, the training window is shifted forward
one time unit so that the new test pattern is d,,, and the new training window
contains patterns d, _m + 1 through d,, and the process repeated. This continues
unti1 the end of the ordered data set is reached.

2.3. Decision rule base

The predicted returns from both NN components are used as input to the
decision rule base component (see Fig. 1). This component analyzes the predicted
returns and outputs a buy/sell recommendation that is used to establish either a
long or short position in the market. A long position means purchasing an asset for
later resale, while a short position means seliing a borrowed asset now and
purchasing it later.

This study examines three different decision rule bases. For each rule base the
predicted market return from the Up NN (denoted by rJ is compared to the
predicted market return from the Down NN (denoted by rd). Each rule base
recommends a long position in the market if r,, > 0 and r, 2 0, and a short position
if ru s 0 and rd < 0. Otherwise the rule base computes the normalized difference
diff, which is a measure of the spread between r, and r,, normalized into a range
from 0 to 1. It reflects the degree of confidence each NN has in its prediction with
respect to the other. A large diff means that one of the two NNs is more confident
in its prediction than the other, while a diff closer to zero means that each has
about the same degree of confidence in its prediction. Diff is computed as

diff =
~~{l~,l,l~~l)-~~~{l~,l,l~,I)

max{ I ru I, I rd I) ’

Each rule base compares diff to a predefined decision threshold value y, and
determines a buy/sell recommendation as follows:

0 Rule base 1: Maintain current position until a clear buy/sell recommenda-
tion is received.
This rule base specifies that if the system is unsure as to what recommenda-
tion to make, the action is to do nothing and maintain the old position. Under

282 T. Chenoweth, Z. ObradoviC / Neurocotnputing 10 (19%) 275-290

these rules, if ru I 0 and rd 2 0 the system recommends maintaining the
current position (i.e., do nothing). If ru > 0, rd < 0, and diff > y the rule base
recommends a long position providing ru > I rd I, and a short position provid-
ing ru < I rd I. Otherwise diff I y and the recommendation is to maintain the
current market position.

0 Rule base 2: Hold a long position in the market unless a clear sell recommen-
dation is received.
This rule base takes advantage of the common a prioti knowledge that over
the past 65 years the market has increased at an average annual rate greater
than 10%. Stated another way, this means that given no other information the
odds are that the market will increase. This is, in fact, the whole premise
behind the buy and hold strategy. The difference between rule base two and
rule base one is the actions taken under uncertainty. In this instance the
action is to take a long position in the market. Under these rules, if ru > 0,
rd < 0, diff > y, and r, < 1 rd I, the system recommends a short position.
Otherwise the recommendation is to take a long position.

0 Rule base 3: Stay out of the market unless a clear buy / sell recommendation
is received.
Again, the difference between rule base three and the previous rules is the
action taken when the system is uncertain as to what recommendation to
make. In case of uncertainty, the rule base three action is to exit the market.
More precisely, if r,, I 0 and rd 2 0 the system recommends exiting the
market (i.e. if the current position is long then sell, if it is short then buy). If
ru > 0, rd < 0, and diff > y the system recommends a long position providing
r, > (rd I, and a short position providing ru < I rd I. Otherwise diff I y and the
recommendation is to exit the market.

2.4. Performance measures

The most important criterion when measuring the performance of a stock
market prediction model is whether it will make money and how much. Therefore
the model’s annual rate of return (AH?) is computed as

where:
- k is the number of trading time units per year (i.e. 253 for daily trading, 12 for

monthly trading);
- n is the total number of trading time units for the experiment (e.g. 2,530 for

daily trading, 120 for monthly trading in an experiment lasting 10 years);
- ri is the rate of return for time unit i.

The sum, Cyzlri, is computed by either adding, subtracting, or discarding the
actual returns for the S&P 500 index. If the system recommends a long position,
the actual return is added to the sum; if a short position is recommended, the

T Chenoweth, Z. ObradouiC/Neurocomputing 10 (1996) 275-290 283

return is subtracted; or if the recommendation is to exit the market, the return is
discarded.

It is also important to minimize transaction costs by controlling excessive
trading (e.g. a 10% return with 50 trades is more profitable than a 10% return with
100 trades). Therefore the break even transaction cost (BETC), which may be
viewed as the return per trade, is computed as

where s is the total number of trading transactions, while ri and II are defined as
previously [12]. A trade is defined as any action that changes a market position.
For example, exiting the market constitutes a single trade (i.e. a buy trade to cover
a short position or a sell trade to cover a long position), while switching from a
short position to a long position constitutes two trades (i.e. one buy trade to cover
the short position and another buy to establish the long position).

3. Results and analysis

The system described in Section 2 is used for both daily and monthly S&P 500
stock market buy/sell recommendations. The daily historic data used in this
experiment is 2,273 ordered financial time series patterns from the period January
1, 1985 to December 31, 1993. The first 1,000 patterns from January 1, 1985 to
December 19, 1988 comprised the initial training window, whereas actual predic-
tions were made for the 1,273 patterns from December 20, 1988 to December 31,
1993. Each pattern in the initial data set contained 24 monthly and 8 daily features
as shown in the Appendix (Table 3). This was reduced to six features in the final
data set, also shown in Table 3, by using the ranking feature selection process
described in Section 2.

The monthly historic data consisted of an initial training window of 162 patterns
formed using the data from January 1973 to February 1987 and actual predictions
made for the 70 month period from March 1987 to December 1992. The initial
monthly data set containing 29 monthly features was reduced to eight in the final
data set by using the feature selection process described in Section 2. Both the
initial and the reduced feature sets are shown in the Appendix (Table 4).

3.1. Daily results

The importance of the proposed feature selection and noise removal compo-
nents were first tested using a single NN system. In this system the data was not
split into up and down sets and a single NN replaced the dual NN component,
making the decision rule base unnecessary. Results for a single NN system using
the initial set of features, the reduced set, and the reduced set with a filtering
threshold value of 0.5% are shown in Table 1 with the system parameters

284 T. Chenoweth, Z. ObradoviC / Neurocomputing IO (1996) 275-290

Table 1
Results for the single NN system

Daily Monthly

Preprocessing

Initial features
Reduced features
Reduced features and
0.5% noise removal

ARR

- 2.16%
2.86%
5.61%

BETC

- 0.00%
0.00%
0.01%

Trades ARR

905 - 1.67%
957 - 3.33%
476 - 2.97%

BETC Trades

-0.00% 62
-0.01% 56
-0.01% 52

described in Table 2. All system parameter values were determined experimentally
through the trial and error approach on a small subset of the training data (3
month period). It is important to note that the NN parameters where determined
in the initial stage and fiied for the remainder of the experiment. To simplify the
experimentation process, no effort was made to optimize these parameters dynam-
ically as the training window shifted. In these experiments the ARR improves with
feature reduction and noise removal. This provides evidence that in daily trading
both feature selection and data filtering improve the NN predictive capability.

Several experiments with the dual NN system described in Section 2 were
conducted using the reduced feature set from Table 3 and the system parameters
from Table 2. Note that the training window size for the dual NN experiments is
larger than for the single NN. This window size increase is needed since the
training window for the dual NN system is split into 3 disjoint sets. The first set,
consisting of all patterns with a target rate greater than a filtering threshold h, is
used to train the Up NN. The second set, consisting of all patterns with a target
rate less than -h, is used to train the ‘Down NN’. Finally, the third set, consisting
of all patterns with a target return between -h and h, is discarded. Consequently,
to ensure an adequately sized training set for both NN components in the dual NN

Table 2
System parameter values

Parameter Daily Monthly

Topology
(Single NN, initial features)
Topology
(Single NN, reduced features)
Topology
(dual NN)
Training window size
(dual NN)
Training window size
(single NN)
Activation function
Learning rate
Tolerance
Number of iterations

32-4-l

6-4-l

6-4-l

1000

250

Tangent hyperbolic
0.3
0.00001
5000

29-4-l

8-3-l

8-3-l

162

162

Tangent hyperbolic
0.05
0.00001
5000

T. Chenoweth, Z. ObradoviC/Neurocomputing 10 (1996) 275-290 285

10

5
A 0 Rule 1
R 0

R cl El Rule 2

-5

-10

._
0 2 2 2 cu 3 2 R t v) s 6

8 x 8 h ? al

d d
6

d d
6

6 d d
6

d
6

Decision Threshold Value

Fig. 2. ARR comparison using daily data and filtering threshold h = 0.5%.

system, it is necessary to have a larger window size. For the dual NN system,
extensive experiments are conducted varying the filtering and decision thresholds
h and y. The filtering threshold h is varied from 0.25% to 1.25% in increments of
0.25% with the best results obtained using a filtering threshold h = 0.5%. The
decision threshold y is varied from 0 to 0.80 in increments of 0.05. The upper
boundary valued of 0.80 is used because larger values did not improve the results.
A comparison between the ARR for rule one and rule two and the number of
trades for rule one and rule two using a filtering threshold value h = 0.5% are
shown in Figs. 2 and 3 respectively. The best annual rate of return was 13.35% and
was obtained using rule base two with thresholds h = 0.5% and y = 0.80. l[n
comparison, the annual rate of return for the same period using the buy and hold
strategy is 11.23% and the best return for the single NN is only 5.61%. Results for
decision rule three are significantly less than the results using decision rules one
and two (best ARR and BETC are 6.50% and 0.08% respectively) and as such are
not presented.

0 Rule 1 El 0 Rule 2

Decleion Threshold Value

Fig. 3. Number of trades comparison using daily data and filtering threshold h = 0.5%.

286 T. Chenoweth, Z. ObradoviC / Neurocomputing 10 (1996) 275-290

18 T I
16

14

12

A 10
R a

R 6
4

2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Declrlon Threshold Value

Fig. 4. ARR comparison using monthly data and filtering threshold h = 0.0%.

3.2. Monthly results

Results for a single NN system using the initial set of features, the reduced set,
and the reduced set with a filtering threshold value of 0.5% are also shown in
Table 1 while the system parameters for both single NNs are shown in Table 2.
Similar to the daily experiments, system parameter values were determined experi-
mentally on a small subset of the training data with no effort made to optimize
these values for each training window. The reduced feature set gave results that
were worse than those achieved using the complete feature set, but without drastic
information loss. In addition, noise removal did not significantly improve the
results, indicating that noise removal may not be necessary for the smoother
monthly data.

Several experiments with the dual NN system described in Section 2 were
conducted using the reduced feature set from the Appendix (Table 4) and the
system parameters from Table 2. For the dual NN system, extensive experiments
are conducted varying the thresholds h and y. The filtering threshold h is varied
from 0.0% to 3.00%. Observe that for daily experiments a corresponding upper

8OT I
70

TW

r50

a4a
d
e 30
SC3

10

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Decision Threshold Value

Fig. 5. Number of trades comparison using monthly data and filtering threshold h = 0.0%.

T. Chenoweth, Z. ObradouiE / Neurocomputing 10 (I 9%) 275-290 287

bound is 1.25% versus the 3.00% used here. This 3.00% study interval is not
feasible for daily data since it woufd remove too much data. For ail rules the best
results were achieved using a filtering value h = O%, meaning that there was no
need for noise reduction as earlier indicated by the single NN results. The decision
threshold y is varied from 0 to 0.95 in increments of 0.05. The upper boundary
value of 0.95 is used because larger values did not improve the results. A
comparison between the ARR for rule one and rule two and the number of trades
for rule one and rule two are shown in Figs. 4 and 5 respectively. The best annual
rate of return was 16.39% and was obtained using rule base two with thresholds
h = 0% and y = 0.95. In comparison, the annual rate of return for the buy and
hold strategy was 8.76% and the best return for the single NN was - 1.67%.
Results for decision rule three are significantly less than the results using decision
rules one and two (best ARR and BETC are 8.76% and 1.51% respectively) and as
such are not presented.

4. Conclusions and future research

The system proposed in this paper is comprised of a preprocessing component
for feature selection, a filtering component for noise removal and pattern separa-
tion, two specialized NN components for return predictions, and a decision rule
component for buy/sell recommendation. Various experiments using this system
to predict S & P 500 index movements were conducted and associated annual rates
of return and returns per transaction computed. Although the obtained results are
promising, it is important to note that no claims are made that the proposed
system is better than the buy and hoId strategy when considering transaction costs.

Comparison of the results achieved by the dual-NN system to that of the single
NN shows that the dual NN system gives a larger return with fewer trades. In
addition, dual NN experiments with the appropriately selected filtering and
decision thresholds managed to achieve an annual rate of return greater than that
of the buy and hold strategy. Comparing the daily to the monthly experimental
results, it seems evident that the proposed system yields better returns when using
slower data sampling (e.g. monthly rather than daily data).

The proposed system is still in development and research in progress might lead
to further improvements. For instance, sampling rates other than those used in this
study are also possible (e.g. inter-day trading, quarterly trading). Further research
is needed to determine the optimal sampling rate for the proposed trading system.
In addition, no attempt was made to optimize the NN parameters dynamically as
the training window shifted. It is possible that optimized learning parameters such
as the learning rate may lead to better results. It may also be possible to improve
system performance through optimization of the system specific filtering threshold
parameter. In this study, several experiments utilizing different values for the
filtering threshold parameter were performed, but no effort was made to deter-
mine the optimal value for this parameter as this would be computationally
prohibitively expensive. Each new filtering threshold value determines a different
partitioning of the data set requiring extensive retraining of both NNs.

288 T. Chenoweth, 2. ObradoviC/Neurocomputing 10 (1996) 275-290

This study did attempt to optimize the decision threshold parameter as new
values of the parameter did not require NN retraining and as such this optimiza-
tion was computationally less expensive. However, the current decision rule bases
are fairly simplistic. Possible improvements might be obtained by incorporating
technical information like moving averages and exponential averages into the
system.

It also might be possible to improve results by further restricting the scope of
each NN by incorporating additional NNs. For example, in a four network system
the first NN can be trained on large down movements, the second NN on small
down movements, the third on small up movements, and the fourth on large up
movements. Further improvements might also be obtained by incorporating prior
knowledge and constructive NN learning [lo], or a recurrent network topology [4].
Experiments using additional NNs, an expert system, and combinations of the two
to analyze the existing system information and determine a market direction are in
progress.

Acknowledgments

We would like to thank Dr. Wayne Joerding, Dr. Jeff Schlimmer, Dr. Bernie
Han, Dr. Craig Tyran, Radu Drossu, and the anonymous reviewers for their
constructive comments on the preliminary version of this manuscript. Partial
support by the NSF research grant NSF-IRI-9308523 to Zoran ObradoviC is
gratefully acknowledged.

Appendix

Table 3
Features for daily experiments

Initial Features

Return on 30 year Government Bonds
30 year Government Bond index

Reduced

X

Rate of change in the return on Government Bonds
Rate of change in the return on Government Bonds lagged 1 month
Rate of change in the return on Government Bonds lagged 2 months
Rate of change in the return on Government Bonds lagged 3 months
Rate of change in the return on Government Bonds lagged 4 months
Rate of change in the return on Government Bonds lagged 5 months
Return on U.S. Treasury Bills
US Treasury Bill Index
Rate of change in the return on T-bills
Rate of change in the return on U.S Treasury bills lagged 1 month
Rate of change in the return on US Treasury bills lagged 2 months
Rate of change in the return on U.S Treasury bills lagged 3 months
Rate of change in the return on U.S Treasury bills lagged 4 months
Rate of change in the return on US Treasury bills lagged 5 months
The CPI

X
X

T. Chenoweth, Z. ObradouiC/Neurocomputing 10 (1996) 275.-290 289

The percentage increase in the CPI
The rate of change in the percentage increase in the CPI
The rate of change in the percentage increase in the CPI lagged 1 month
The rate of change in the percentage increase in the CPI lagged 2 months
The rate of change in the percentage increase in the CPI lagged 3 months
The rate of change in the percentage increase in the CPI lagged 4 months
The rate of change in the percentage increase in the CPI lagged 5 months
The S&P Composite Index
The S&P Composite Index lagged 1 day
The S&P Composite Index lagged 2 days
The return on the S&P Composite Index
The return on the S&P Composite Index lagged 1 day
The return on the S&P Composite Index lagged 2 days
The return on the S&P Composite Index lagged 3 days
The return on the S&P Composite Index lagged 4 days

X
X
X

Table 4
Features for monthly experiments

Initial Features Reduced
-

Return on 30 year Government Bonds
30 year Government Bond index
Rate of change in the return on Government Bonds
Rate of change in the return on Government Bonds lagged 1 month
Rate of change in the return on Government Bonds lagged 2 months
Rate of change in the return on Government Bonds lagged 3 months
Rate of change in the return on Government Bonds lagged 4 months
Rate of change in the return on Government Bonds lagged 5 months
Rate of change in the return on Government Bonds lagged 6 months
Return on U.S. Treasury Bills
U.S Treasury Bill Index

X

X
X
X

X
Rate of change in the return on T-bills
Rate of change in the return on U.S Treasury bills lagged 1 month
Rate of change in the return on U.S Treasury bills lagged 2 months
Rate of change in the return on U.S Treasury bills lagged 3 months
Rate of change in the return on U.S Treasury bills lagged 4 months
Rate of change in the return on US Treasury bills lagged 5 months
Rate of change in the return on U.S Treasury bills lagged 6 months
The CPI
The percentage increase in the CPI

X

X

The rate of change in the percentage increase in the CPI
The rate of change in the percentage increase in the CPI lagged 1 month
The rate of change in the percentage increase in the CPI lagged 2 months
The rate of change in the percentage increase in the CPI lagged 3 months
The rate of change in the percentage increase in the CPI lagged 4 months
The rate of change in the percentage increase in the CPI lagged 5 months
The rate of change in the percentage increase in the CPI lagged 6 months
The S&P Composite Index X
The return on the S&P Composite Index

.-

References

[ll Y.S. Abu-Mostafa, Financial market applications of learning from hints, in A.N. Refenes, ed.,
Neural Networks in the Capital Markets (Willey, England, 1994).

290 T. Chenoweth, 2. ObradoviC / Neurocomputing 10 (1996) 275-290

[2] F. Black and M. Scholes, The pricing of options and corporate liabilities, L Political Economy 81
(May-June 1973).

131 L. Breiman, The heuristics of instability in model selection, Technical Report No. 416, Statistics
Department, University of California, Berkeley, CA, 1994.

141 A. Burgess and D. Bunn, The use of error feedback terms in neural network modeling of financial
time series, Proc. 1994 Neural Networks in the Capital Markets Conf Pasadena, CA (1994).

[S] T. Chenoweth and Z. Obradovic, Feature selection for predictive models of the stock market,
Proc. 1994 Neural Networks in the Capital Markets Conf , Pasadena, CA (1994).

[6] T. Chenoweth and Z. Obradovic, A multi-component approach to stock market predictions, Proc.
Third Int. Conf on Artificial Intelligence Applications on Wall Street, New York, NY (1995) 74-79.

[7] T. Chenoweth and Z. Obradovic, An explicit feature selection strategy for predictive models of the
S & P 500 Index, NeuroVe$st7;” I. 3 (6) (1995) 14-21.

[B] T.M. Cover and P.E. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform. Theory
IT-13 (1967) 21-27.

[9] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control, Signals, and
Systems 2 (1989) 303-314.

[lo] J. Fletcher and Z. Obradovic, Combining prior symbolic knowledge and constructive neural
networks, Connection Science: J. Neural Computing, Artificial Intelligence and Cognitive Research 5
(3-4) (1993) 365-375.

[ll] K. Fukunaga, Zntroduction to Statistical Pattern Recognition (Academic Press, San Diego, CA,
1990).

[12] J. Hutchinson, A radial basis function approach to financial time series analysis, PhD Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 1993.

[13] M. Jensen, Some anomalous evidence regarding market efficiency, J. Financial Economics 6 (1978)
95-101.

[14] J. Markowitz, Portfolio Selection: Efficient Diversification of Investments (John Wiley & Sons, New
York, NY, 1959).

[15] Rumelhart et al. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1
and 2 (MIT Press, Cambridge, MA, 1986).

[16] W. Sharpe, Capital asset prices: A theory of market equilibrium, J. Finance (Sep. 1964).

Tim Chenoweth (tchenowe@eecs.wsu.edu) received a B.S. degree in Mathe-
matics in 1981 from the Coast Guard Academy, a M.B.A. in Finance from
Washington State University in 1991, and is currently completing a M.S. in
Computer Science and an Individual Interdisciplinary Ph.D. combining Busi-
ness and Computer Science, both from Washington State University. He was an
active duty officer in the Coast Guard from 1981 to 1989. The objective of his
current research is to use advanced technologies to model financial markets.

Zoran Obradovic (zoran@eecs.wsu.edul received the B.S. degree in Applied
Mathematics, Information and Computer Sciences in 1985; the MS. degree in
Mathematics and Computer Science in 1987, both from the University of
Belgrade; and the Ph.D. degree in Computer Science from the Pennsylvania
State University in 1991. He was a systems programmer at the Department for
Computer Design at the Vinca Institute, Belgrade, from 1984 to 1986, and has
been a research scientist at the Mathematical Institute of the Serbian Academy
of Sciences and Arts, Belgrade, since then. At present, he is an Assistant
Professor in the School of Electrical Engineering and Computer Science,
Washington State University, Pullman,, WA 99164-2752, USA. The objective of
his current research is to explore apphcability of neural networks technology to
large scale classification and time series prediction problems in very noisy
domains.

