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Abstract 

The proposed stock market prediction system is comprised of two preprocessing compo- 
nents, two specialized neural networks, and a decision rule base. First, the preprocessing 
components determine the most relevant features for stock market prediction, remove the 
noise, and separate the remaining patterns into two disjoint sets. Next, the two neural 
networks predict the market’s rate of return, with one network trained to recognize positive 
and the other negative returns. Finally, the decision rule base takes both return predictions 
and determines a buy/sell recommendation. Daily and monthly experiments are conducted 
and performance measured by computing the annual rate of return and the return per 
trade. Comparison of the results achieved by the dual neural network system to that of the 
single neural network shows that the dual neural network system gives much larger returns 
with fewer trades. In addition, dual neural network experiments with the appropriately 
selected filtering and decision thresholds managed to achieve an almost twice larger annual 
rate of return when compared to that of the buy and hold strategy over a seventy month 
period. However, no claims are made that the proposed system is better than the buy and 
hold strategy when considering transaction costs. 

Keywords: Stock market prediction; Hierarchical systems; Hybrid systems; Neural networks 

1. Introduction 

Financial markets in general and the stock market in particular are extremely 

efficient, meaning that at any given point in time the market does a very good job 
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reflecting the actual value of the underlying stocks. In fact, the efficient market 
hypotheses states that any new information which affects this value is accounted 
for by the market before the general public can make trades based on it [131. This 
hypothesis seems reasonable prouided that the relationship between the new 
information and the value of the underlying stock is fully understood. Most 
quantitative methods attempting to capture such relationships are based on simple 
stochastic linear time series models [2,14,16]. This research, similar to [12], hypoth- 
esizes that there might be nonlinear relationships between market information and 
the value of stocks that so far have not been identified and therefore are not 
reflected in stock prices. In other words, there might still be inefficiencies in the 
market. It is important to note that if this is true and nonlinear relationships do 
exist, once their existence (and the means for identifying them) becomes public 
knowledge, traders will have a better understanding of the relationship between 
information and stock values, which means both a more efficient market and the 
elimination of these nonlinear relationships. The long term results then will not be 
higher returns, but a more efficient market. 

If these nonlinear relationships exist, it may be possible to capture them using a 
nonparametric machine learning approach of multilayer artificial neural networks 
(NN). Such NNs are powerful computational systems that theoretically can approx- 
imate any nonlinear continuous function on a compact domain to any desired 
degree of accuracy [91. In addition, a NN can account for fundamental changes in 
the underlying function through incremental retraining. However, the stock market 
is a highly complex system which takes a very large quantity of information 
(fundamentals, news, etc.) and produces a price movement. What a NN is trying to 
do is model this system using only a very small portion of the total information. 
The other information not accounted for now plays the role of noise, resulting in a 
problem domain that is extremely noisy. In addition, due to the continuous 
evolution of the market, historical data may represent patterns of behavior that no 
longer hold [l]. 

One approach to modeling the stock market is to preprocess the data using 
formal feature selection and noise removal techniques and then train a NN on the 
preprocessed data. However, results from this study indicate that the combination 
of a noisy environment and non-stationarity makes it very difficult for a single NN 
to learn a function which generalizes when applied to new data. While the data 
preprocessing did improve the results of the single NN system, the system still did 
not achieve a satisfactory annual rate of return when compared to that achieved 
using the simple buy and hold strategy. Therefore, this paper proposes a hybrid 
multi-component nonlinear system for S&P 500 stock market predictions that 
utilizes two NNs, one trained on patterns corresponding to up movements in the 
market and the other trained on patterns corresponding to down movements. 

The system goals are to earn a larger annual return than the buy and hold 
strategy and to keep the number of trades low to reduce transaction costs. The 
system details are explained in Section 2 followed by results and analysis in Section 
3, and conclusions in Section 4. An extended abstract of this paper using only daily 
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data appears in [6]. The reader is also referred to companion papers [5’,7] dealing 
with the specific issue of feature selection. 

2. Methodology 

The proposed system consists of a statistical feature selection component for 
identification of the most relevant data, a data filtering component for removing 
noise and splitting the remaining data, two specialized NNs for extraction of 
nonlinear relationships from the selected data, and high level decision rules for 
determining buy/sell recommendations (see Fig. 1). 

2.1. Feature selection 

The objective of the feature selection component is to identify a small subset of 
the most relevant features from a larger pool for designing the system in a manner 
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I 

Decision Rule 
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Trading Acdon 

Fig. 1. System architecture. 



278 T. Chenoweth, Z. ObradoviC/ Neurocomputing 10 (1996) 275-290 

that preserves as much information as possible. This issue is important because 
fewer features per pattern lead to faster computation and require less training 
patterns for successful generalization. Most feature selection processes rely on 
fundamentally sound statistically based techniques [ll]. These techniques are 
practical, easy to understand, and easily implemented. However, they suffer from 
instability problems, meaning that small data perturbations lead to drastic changes 
in the final reduced feature set [3]. This problem is especially pronounced for stock 
market models because the data is non-stationary and very noisy. For these 
reasons, the feature selection procedure adopted in this paper is to use several 
selection techniques and criteria, then combine the partial results using a ranking 
process proposed in [7]. Techniques are discussed in Section 2.1.1, criteria in 
Section 2.1.2, and the ranking process in Section 2.1.3. 

2.1.1. Selection techniques 
Each feature selection technique is a search algorithm that attempts to deter- 

mine a subset of the existing features which maximizes the differences between the 
classes based on some criteria. This section briefly describes the selection tech- 
niques used in the proposed feature selection process, all of which are described in 
more detail in [ll]. 

The Sequential Forward Search selection technique is a greedy algorithm that 
begins with an empty feature set and adds features to it one at a time. The first 
feature added is the one deemed to be the best according to the selection criteria. 
The next feature added is the one which results in the largest improvement when 
considered in conjunction with the first feature. Similarly, the ith feature added is 
the one that results in the largest improvement when considered in conjunction 
with the previous i - 1 features. The Sequential Backward Search selection tech- 
nique is similar to the sequential forward search, except that the initial set contains 
all the features, and features are removed from this set one at a time. The first 
feature removed is the one that results in the smallest degradation when the 
remaining features are considered together. This process repeats until the feature 
set reaches a predetermined size. 

Although both the Sequential Forward Search and the Sequential Backward 
Search consider features in combination and as such are fine grained techniques, 
both require significant computing time. In addition, with Sequential Forward 
Search once a feature is added to the features set it cannot be removed. With 
Sequential Backward Search once a feature is removed it cannot be added later. 
As such, neither Sequential Forward Search nor Sequential Backward Search 
guarantee that an optimal set of features is achieved. 

2.1.2. Selection criteria 
Each feature selection criterion is based either on a measure of the distance 

between classes or an estimation of the classification error. Therefore the selection 
criteria objective is to either maximize the separation between classes using some 
distance measure of intra-class separation or to minimize the estimated classifica- 
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tion error. This Section describes the selection criteria used in the proposed 
feature selection process, all of which are described in more detail in [ll]. 

The Euclidean, Patrick-Fisher, Mahalanobis, and Bhattacharyya distances used 
in this study are all means of measuring the multidimensional separation between 
classes. The Euclidean distance is measured as 

and the Patrick-Fisher distance as 

c,+c, -l 
i 1 - (K-M,), 2 

(1) 

(2) 

where M, and M2 are the mean vectors of class one and two respectively (e.g. M, 
is computed by averaging each feature’s values for data in class one) and C, and 

x2 are the corresponding covariance matrices. The Mahalanobis distance is 
measured as 

where the data from both classes is used to compute one covariance matrix C. And 
finally, the Bhattacharyya distance is measured as 

Notice that the Bhattacharyya distance does not assume equal covariance matrices 
like the Mahalanobis distance. The first term in Eq. (4) measures the class 
separability due to the mean difference, while the second term measures the class 
separability due to the covariance-difference. 

The final selection criterion used in this study is the Estimated Minimal Error 
Probability that estimates Bayes error for the data set by applying the K-nearest 
neighbor classifier [8] to the training set utilizing the leave one out approach. This 
criterion uses the Euclidean distance to determine the K training patterns closest 
to the selected pattern. The selected pattern is assigned to the class that the 
majority of the identified K training patterns belong to. This process is repeated 
for all patterns in the training set and the percentage of missclassifications 
computed, which becomes the estimate for Bayes error. This tends to overestimate 
the error and as such gives a very conservative error estimate. The selection 
criterion then becomes finding a set of features that minimizes the estimated 
Bayes error. 

2.1.3. The ranking feature selection process 
The approach proposed here for dealing with the instability of statistically based 

feature selection techniques for noisy and non-stationary data is to perform feature 
selection using several combinations of selection techniques and selection criteria 
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and to integrate the obtained partial results using a ranking process. The ranking 
process uses a specific technique and criterion combination to determine a rank 
ordering of the features from best to worst with scores assigned to the features 
based on this ordering (one is the best, p is the worst, where p is the total number 
of features). The process is repeated using combinations of other techniques and 
criteria explained earlier and the scores are summed. The reduced feature set is 
then comprised of the 4 features with the lowest scores. 

For example, first the minimization of the Euclidean distance might be used as 
the selection criterion for the sequential forward search technique, which rank 
orders all the features from best to worst. A score is assigned to each feature based 
on this ranking (a score of 1 is the best), and the process repeated using the 
minimization of the Euclidean distance as the selection criterion for the sequential 
backward search technique, with the resulting score added to the previous score. 
The process continues using the forward and backward search techniques with 
other criteria (Bhattacharyya, Mahalanobis, Patrick-Fisher, and Estimated Mini- 
mal Error). The result of the process is a ranking of all features from best to worst 
according to the aggregated results of all eight combinations of selection tech- 
niques and criterion. 

Had the initial data set been too large, this process would have been pro- 
hibitively expensive. For such cases, a two-stage ranking process is proposed in 
which the first phase reduces the initial feature set to an intermediate set of 
manageable size using coarser, computationally less demanding feature selection 
techniques. Then in the second phase the finer but more expensive Sequential 
Forward and Sequential Backward selection techniques are applied to the interme- 
diate feature set to derive the final set [7]. 

2.2. Return rate prediction 

The return rate prediction sub-system consists of a data filtering component and 
two NNs that are trained using the backpropagation algorithm and an on-line 
learning scheme (see Fig. 1). The filtering component’s objective is to reduce the 
degree of noise in the data and then split the remaining patterns into two disjoint 
sets. The Up NN is trained on the set containing patterns with positive target 
returns and the Down NN on the set containing patterns with negative target 
returns. Once both NNs are trained, the test pattern is presented to each and the 
corresponding predictions are collected. A decision rule base is applied to these 
predictions and a buy/sell recommendation made as explained in Section 2.3. 

The on-line learning scheme consists of a sequence of training/prediction 
sessions where the NNs are retrained after each session using more recent 
information. This is achieved by training the NNs using the backpropagation 
algorithm [15] and patterns from a fixed size window covering a continuous time 
segment of historic data. The target return for the time unit immediately following 
the window is predicted by both NNs and the predictions used by the rule base. 
Then the training window is shifted forward one time unit (i.e. one trading day or 
one month), the patterns from the new window used to retrain the NNs, and a 
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prediction made for the next time unit. This process is repeated until the data set 
is exhausted. 

For each training session the target return corresponding to each pattern in the 
window is compared to a filtering threshold value h. If the return is greater than h 
the corresponding pattern is added to the Up NN training set, if the return is less 
than -h the pattern is added to the Down NN training set. Any pattern with a 
target return between -h and h is discarded. 

For example, suppose that the training window size is m and that at time t the 
test pattern is d,, which means that the training window contains patterns d,_, 
through d,_,. First, the patterns in the training window Cd,_, through d,_,) are 
separated into Up NN and Down NN training sets using the threshold value h as 
described. Next, both NNs are trained using their respective training sets, and 
asked to predict the target return for the test pattern d,. Once the predictions are 
collected and sent to the decision rule base, the training window is shifted forward 
one time unit so that the new test pattern is d,,, and the new training window 
contains patterns d, _m + 1 through d,, and the process repeated. This continues 
unti1 the end of the ordered data set is reached. 

2.3. Decision rule base 

The predicted returns from both NN components are used as input to the 
decision rule base component (see Fig. 1). This component analyzes the predicted 
returns and outputs a buy/sell recommendation that is used to establish either a 
long or short position in the market. A long position means purchasing an asset for 
later resale, while a short position means seliing a borrowed asset now and 
purchasing it later. 

This study examines three different decision rule bases. For each rule base the 
predicted market return from the Up NN (denoted by rJ is compared to the 
predicted market return from the Down NN (denoted by rd). Each rule base 
recommends a long position in the market if r,, > 0 and r, 2 0, and a short position 
if ru s 0 and rd < 0. Otherwise the rule base computes the normalized difference 
diff, which is a measure of the spread between r, and r,, normalized into a range 
from 0 to 1. It reflects the degree of confidence each NN has in its prediction with 
respect to the other. A large diff means that one of the two NNs is more confident 
in its prediction than the other, while a diff closer to zero means that each has 
about the same degree of confidence in its prediction. Diff is computed as 

diff = 
~~{l~,l,l~~l)-~~~{l~,l,l~,I) 

max{ I ru I, I rd I) ’ 

Each rule base compares diff to a predefined decision threshold value y, and 
determines a buy/sell recommendation as follows: 

0 Rule base 1: Maintain current position until a clear buy/sell recommenda- 
tion is received. 
This rule base specifies that if the system is unsure as to what recommenda- 
tion to make, the action is to do nothing and maintain the old position. Under 
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these rules, if ru I 0 and rd 2 0 the system recommends maintaining the 
current position (i.e., do nothing). If ru > 0, rd < 0, and diff > y the rule base 
recommends a long position providing ru > I rd I, and a short position provid- 
ing ru < I rd I. Otherwise diff I y and the recommendation is to maintain the 
current market position. 

0 Rule base 2: Hold a long position in the market unless a clear sell recommen- 
dation is received. 
This rule base takes advantage of the common a prioti knowledge that over 
the past 65 years the market has increased at an average annual rate greater 
than 10%. Stated another way, this means that given no other information the 
odds are that the market will increase. This is, in fact, the whole premise 
behind the buy and hold strategy. The difference between rule base two and 
rule base one is the actions taken under uncertainty. In this instance the 
action is to take a long position in the market. Under these rules, if ru > 0, 
rd < 0, diff > y, and r, < 1 rd I, the system recommends a short position. 
Otherwise the recommendation is to take a long position. 

0 Rule base 3: Stay out of the market unless a clear buy / sell recommendation 
is received. 
Again, the difference between rule base three and the previous rules is the 
action taken when the system is uncertain as to what recommendation to 
make. In case of uncertainty, the rule base three action is to exit the market. 
More precisely, if r,, I 0 and rd 2 0 the system recommends exiting the 
market (i.e. if the current position is long then sell, if it is short then buy). If 
ru > 0, rd < 0, and diff > y the system recommends a long position providing 
r, > ( rd I, and a short position providing ru < I rd I. Otherwise diff I y and the 
recommendation is to exit the market. 

2.4. Performance measures 

The most important criterion when measuring the performance of a stock 
market prediction model is whether it will make money and how much. Therefore 
the model’s annual rate of return (AH?) is computed as 

where: 
- k is the number of trading time units per year (i.e. 253 for daily trading, 12 for 

monthly trading); 
- n is the total number of trading time units for the experiment (e.g. 2,530 for 

daily trading, 120 for monthly trading in an experiment lasting 10 years); 
- ri is the rate of return for time unit i. 

The sum, Cyzlri, is computed by either adding, subtracting, or discarding the 
actual returns for the S&P 500 index. If the system recommends a long position, 
the actual return is added to the sum; if a short position is recommended, the 
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return is subtracted; or if the recommendation is to exit the market, the return is 
discarded. 

It is also important to minimize transaction costs by controlling excessive 
trading (e.g. a 10% return with 50 trades is more profitable than a 10% return with 
100 trades). Therefore the break even transaction cost (BETC), which may be 
viewed as the return per trade, is computed as 

where s is the total number of trading transactions, while ri and II are defined as 
previously [12]. A trade is defined as any action that changes a market position. 
For example, exiting the market constitutes a single trade (i.e. a buy trade to cover 
a short position or a sell trade to cover a long position), while switching from a 
short position to a long position constitutes two trades (i.e. one buy trade to cover 
the short position and another buy to establish the long position). 

3. Results and analysis 

The system described in Section 2 is used for both daily and monthly S&P 500 
stock market buy/sell recommendations. The daily historic data used in this 
experiment is 2,273 ordered financial time series patterns from the period January 
1, 1985 to December 31, 1993. The first 1,000 patterns from January 1, 1985 to 
December 19, 1988 comprised the initial training window, whereas actual predic- 
tions were made for the 1,273 patterns from December 20, 1988 to December 31, 
1993. Each pattern in the initial data set contained 24 monthly and 8 daily features 
as shown in the Appendix (Table 3). This was reduced to six features in the final 
data set, also shown in Table 3, by using the ranking feature selection process 
described in Section 2. 

The monthly historic data consisted of an initial training window of 162 patterns 
formed using the data from January 1973 to February 1987 and actual predictions 
made for the 70 month period from March 1987 to December 1992. The initial 
monthly data set containing 29 monthly features was reduced to eight in the final 
data set by using the feature selection process described in Section 2. Both the 
initial and the reduced feature sets are shown in the Appendix (Table 4). 

3.1. Daily results 

The importance of the proposed feature selection and noise removal compo- 
nents were first tested using a single NN system. In this system the data was not 
split into up and down sets and a single NN replaced the dual NN component, 
making the decision rule base unnecessary. Results for a single NN system using 
the initial set of features, the reduced set, and the reduced set with a filtering 
threshold value of 0.5% are shown in Table 1 with the system parameters 
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Table 1 
Results for the single NN system 

Daily Monthly 

Preprocessing 

Initial features 
Reduced features 
Reduced features and 
0.5% noise removal 

ARR 

- 2.16% 
2.86% 
5.61% 

BETC 

- 0.00% 
0.00% 
0.01% 

Trades ARR 

905 - 1.67% 
957 - 3.33% 
476 - 2.97% 

BETC Trades 

-0.00% 62 
-0.01% 56 
-0.01% 52 

described in Table 2. All system parameter values were determined experimentally 
through the trial and error approach on a small subset of the training data (3 
month period). It is important to note that the NN parameters where determined 
in the initial stage and fiied for the remainder of the experiment. To simplify the 
experimentation process, no effort was made to optimize these parameters dynam- 
ically as the training window shifted. In these experiments the ARR improves with 
feature reduction and noise removal. This provides evidence that in daily trading 
both feature selection and data filtering improve the NN predictive capability. 

Several experiments with the dual NN system described in Section 2 were 
conducted using the reduced feature set from Table 3 and the system parameters 
from Table 2. Note that the training window size for the dual NN experiments is 
larger than for the single NN. This window size increase is needed since the 
training window for the dual NN system is split into 3 disjoint sets. The first set, 
consisting of all patterns with a target rate greater than a filtering threshold h, is 
used to train the Up NN. The second set, consisting of all patterns with a target 
rate less than -h, is used to train the ‘Down NN’. Finally, the third set, consisting 
of all patterns with a target return between -h and h, is discarded. Consequently, 
to ensure an adequately sized training set for both NN components in the dual NN 

Table 2 
System parameter values 

Parameter Daily Monthly 

Topology 
(Single NN, initial features) 
Topology 
(Single NN, reduced features) 
Topology 
(dual NN) 
Training window size 
(dual NN) 
Training window size 
(single NN) 
Activation function 
Learning rate 
Tolerance 
Number of iterations 

32-4-l 

6-4-l 

6-4-l 

1000 

250 

Tangent hyperbolic 
0.3 
0.00001 
5000 

29-4-l 

8-3-l 

8-3-l 

162 

162 

Tangent hyperbolic 
0.05 
0.00001 
5000 
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Fig. 2. ARR comparison using daily data and filtering threshold h = 0.5%. 

system, it is necessary to have a larger window size. For the dual NN system, 
extensive experiments are conducted varying the filtering and decision thresholds 
h and y. The filtering threshold h is varied from 0.25% to 1.25% in increments of 
0.25% with the best results obtained using a filtering threshold h = 0.5%. The 
decision threshold y is varied from 0 to 0.80 in increments of 0.05. The upper 
boundary valued of 0.80 is used because larger values did not improve the results. 
A comparison between the ARR for rule one and rule two and the number of 
trades for rule one and rule two using a filtering threshold value h = 0.5% are 
shown in Figs. 2 and 3 respectively. The best annual rate of return was 13.35% and 
was obtained using rule base two with thresholds h = 0.5% and y = 0.80. l[n 
comparison, the annual rate of return for the same period using the buy and hold 
strategy is 11.23% and the best return for the single NN is only 5.61%. Results for 
decision rule three are significantly less than the results using decision rules one 
and two (best ARR and BETC are 6.50% and 0.08% respectively) and as such are 
not presented. 

0 Rule 1 El 0 Rule 2 

Decleion Threshold Value 

Fig. 3. Number of trades comparison using daily data and filtering threshold h = 0.5%. 
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Fig. 4. ARR comparison using monthly data and filtering threshold h = 0.0%. 

3.2. Monthly results 

Results for a single NN system using the initial set of features, the reduced set, 
and the reduced set with a filtering threshold value of 0.5% are also shown in 
Table 1 while the system parameters for both single NNs are shown in Table 2. 
Similar to the daily experiments, system parameter values were determined experi- 
mentally on a small subset of the training data with no effort made to optimize 
these values for each training window. The reduced feature set gave results that 
were worse than those achieved using the complete feature set, but without drastic 
information loss. In addition, noise removal did not significantly improve the 
results, indicating that noise removal may not be necessary for the smoother 
monthly data. 

Several experiments with the dual NN system described in Section 2 were 
conducted using the reduced feature set from the Appendix (Table 4) and the 
system parameters from Table 2. For the dual NN system, extensive experiments 
are conducted varying the thresholds h and y. The filtering threshold h is varied 
from 0.0% to 3.00%. Observe that for daily experiments a corresponding upper 
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Fig. 5. Number of trades comparison using monthly data and filtering threshold h = 0.0%. 



T. Chenoweth, Z. ObradouiE / Neurocomputing 10 (I 9%) 275-290 287 

bound is 1.25% versus the 3.00% used here. This 3.00% study interval is not 
feasible for daily data since it woufd remove too much data. For ail rules the best 
results were achieved using a filtering value h = O%, meaning that there was no 
need for noise reduction as earlier indicated by the single NN results. The decision 
threshold y is varied from 0 to 0.95 in increments of 0.05. The upper boundary 
value of 0.95 is used because larger values did not improve the results. A 
comparison between the ARR for rule one and rule two and the number of trades 
for rule one and rule two are shown in Figs. 4 and 5 respectively. The best annual 
rate of return was 16.39% and was obtained using rule base two with thresholds 
h = 0% and y = 0.95. In comparison, the annual rate of return for the buy and 
hold strategy was 8.76% and the best return for the single NN was - 1.67%. 
Results for decision rule three are significantly less than the results using decision 
rules one and two (best ARR and BETC are 8.76% and 1.51% respectively) and as 
such are not presented. 

4. Conclusions and future research 

The system proposed in this paper is comprised of a preprocessing component 
for feature selection, a filtering component for noise removal and pattern separa- 
tion, two specialized NN components for return predictions, and a decision rule 
component for buy/sell recommendation. Various experiments using this system 
to predict S & P 500 index movements were conducted and associated annual rates 
of return and returns per transaction computed. Although the obtained results are 
promising, it is important to note that no claims are made that the proposed 
system is better than the buy and hoId strategy when considering transaction costs. 

Comparison of the results achieved by the dual-NN system to that of the single 
NN shows that the dual NN system gives a larger return with fewer trades. In 
addition, dual NN experiments with the appropriately selected filtering and 
decision thresholds managed to achieve an annual rate of return greater than that 
of the buy and hold strategy. Comparing the daily to the monthly experimental 
results, it seems evident that the proposed system yields better returns when using 
slower data sampling (e.g. monthly rather than daily data). 

The proposed system is still in development and research in progress might lead 
to further improvements. For instance, sampling rates other than those used in this 
study are also possible (e.g. inter-day trading, quarterly trading). Further research 
is needed to determine the optimal sampling rate for the proposed trading system. 
In addition, no attempt was made to optimize the NN parameters dynamically as 
the training window shifted. It is possible that optimized learning parameters such 
as the learning rate may lead to better results. It may also be possible to improve 
system performance through optimization of the system specific filtering threshold 
parameter. In this study, several experiments utilizing different values for the 
filtering threshold parameter were performed, but no effort was made to deter- 
mine the optimal value for this parameter as this would be computationally 
prohibitively expensive. Each new filtering threshold value determines a different 
partitioning of the data set requiring extensive retraining of both NNs. 
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This study did attempt to optimize the decision threshold parameter as new 
values of the parameter did not require NN retraining and as such this optimiza- 
tion was computationally less expensive. However, the current decision rule bases 
are fairly simplistic. Possible improvements might be obtained by incorporating 
technical information like moving averages and exponential averages into the 
system. 

It also might be possible to improve results by further restricting the scope of 
each NN by incorporating additional NNs. For example, in a four network system 
the first NN can be trained on large down movements, the second NN on small 
down movements, the third on small up movements, and the fourth on large up 
movements. Further improvements might also be obtained by incorporating prior 
knowledge and constructive NN learning [lo], or a recurrent network topology [4]. 
Experiments using additional NNs, an expert system, and combinations of the two 
to analyze the existing system information and determine a market direction are in 
progress. 

Acknowledgments 

We would like to thank Dr. Wayne Joerding, Dr. Jeff Schlimmer, Dr. Bernie 
Han, Dr. Craig Tyran, Radu Drossu, and the anonymous reviewers for their 
constructive comments on the preliminary version of this manuscript. Partial 
support by the NSF research grant NSF-IRI-9308523 to Zoran ObradoviC is 
gratefully acknowledged. 

Appendix 

Table 3 
Features for daily experiments 

Initial Features 

Return on 30 year Government Bonds 
30 year Government Bond index 

Reduced 

X 

Rate of change in the return on Government Bonds 
Rate of change in the return on Government Bonds lagged 1 month 
Rate of change in the return on Government Bonds lagged 2 months 
Rate of change in the return on Government Bonds lagged 3 months 
Rate of change in the return on Government Bonds lagged 4 months 
Rate of change in the return on Government Bonds lagged 5 months 
Return on U.S. Treasury Bills 
US Treasury Bill Index 
Rate of change in the return on T-bills 
Rate of change in the return on U.S Treasury bills lagged 1 month 
Rate of change in the return on US Treasury bills lagged 2 months 
Rate of change in the return on U.S Treasury bills lagged 3 months 
Rate of change in the return on U.S Treasury bills lagged 4 months 
Rate of change in the return on US Treasury bills lagged 5 months 
The CPI 

X 
X 
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The percentage increase in the CPI 
The rate of change in the percentage increase in the CPI 
The rate of change in the percentage increase in the CPI lagged 1 month 
The rate of change in the percentage increase in the CPI lagged 2 months 
The rate of change in the percentage increase in the CPI lagged 3 months 
The rate of change in the percentage increase in the CPI lagged 4 months 
The rate of change in the percentage increase in the CPI lagged 5 months 
The S&P Composite Index 
The S&P Composite Index lagged 1 day 
The S&P Composite Index lagged 2 days 
The return on the S&P Composite Index 
The return on the S&P Composite Index lagged 1 day 
The return on the S&P Composite Index lagged 2 days 
The return on the S&P Composite Index lagged 3 days 
The return on the S&P Composite Index lagged 4 days 

X 
X 
X 

Table 4 
Features for monthly experiments 

Initial Features Reduced 
- 

Return on 30 year Government Bonds 
30 year Government Bond index 
Rate of change in the return on Government Bonds 
Rate of change in the return on Government Bonds lagged 1 month 
Rate of change in the return on Government Bonds lagged 2 months 
Rate of change in the return on Government Bonds lagged 3 months 
Rate of change in the return on Government Bonds lagged 4 months 
Rate of change in the return on Government Bonds lagged 5 months 
Rate of change in the return on Government Bonds lagged 6 months 
Return on U.S. Treasury Bills 
U.S Treasury Bill Index 

X 

X 
X 
X 

X 
Rate of change in the return on T-bills 
Rate of change in the return on U.S Treasury bills lagged 1 month 
Rate of change in the return on U.S Treasury bills lagged 2 months 
Rate of change in the return on U.S Treasury bills lagged 3 months 
Rate of change in the return on U.S Treasury bills lagged 4 months 
Rate of change in the return on US Treasury bills lagged 5 months 
Rate of change in the return on U.S Treasury bills lagged 6 months 
The CPI 
The percentage increase in the CPI 

X 

X 

The rate of change in the percentage increase in the CPI 
The rate of change in the percentage increase in the CPI lagged 1 month 
The rate of change in the percentage increase in the CPI lagged 2 months 
The rate of change in the percentage increase in the CPI lagged 3 months 
The rate of change in the percentage increase in the CPI lagged 4 months 
The rate of change in the percentage increase in the CPI lagged 5 months 
The rate of change in the percentage increase in the CPI lagged 6 months 
The S&P Composite Index X 
The return on the S&P Composite Index 

.- 
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