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Abstract

In many applications, including climate science, power sys-

tems, and remote sensing, multiple input variables are ob-

served for each output variable and the output variables are

dependent. Several methods have been proposed to improve

prediction by learning the conditional distribution of the out-

put variables. However, when the relationship between the

raw features and the outputs is nonlinear, the existing meth-

ods cannot capture both the nonlinearity and the underlying

structure well. In this study, we propose a structured model

containing hidden variables, which are nonlinear functions

of inputs and which are linearly related with the output

variables. The parameters modeling the relationships be-

tween the input and hidden variables, between the hidden

and output variables, as well as among the output variables

are learned simultaneously. To demonstrate the effective-

ness of our proposed method, we conducted extensive exper-

iments on eight synthetic datasets and three real-world chal-

lenging datasets: forecasting wind power, forecasting solar

energy, and forecasting precipitation over U.S. The proposed

method was more accurate than state-of-the-art structured

regression methods.

1 Introduction

Structured learning models such as Conditional Ran-
dom Fields (CRFs) [3]) have been widely used for classi-
fication and segmentation, since their inception a decade
ago. However, use of structured models for regres-
sion is less explored. Recent years witnessed develop-
ment of Gaussian CRFs (GCRFs) [10, 8, 13, 14], which
are elegant and powerful models for prediction of in-
terdependent continuous output variables given high-
dimensional input variables. GCRFs model the condi-
tional probability of outputs given inputs as a multi-
variate Gaussian distribution. The originally proposed
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GCRFs [8, 13] can model linear dependencies between
inputs and outputs. Such models result in convex opti-
mization, but might be too rigid for practical applica-
tions. To improve the representational power, the au-
thors of [12] train GCRF on transformed features that
are non-linearly projected from the original features us-
ing unsupervised methods such as radial basis functions
(RBFs). However, the representations learned by un-
supervised methods are not necessarily optimized for
regression. Another recently proposed idea are Neural
GCRFs [9], which is a model used for expert integra-
tion. The idea of Neural GCRF is to allow experts to
be a nonlinear combination of inputs. The limitation
of the Neural GCRF is that it is constrained to a spe-
cific class of experts integration problems, and it cannot
learn underlying structure among output variables.

The objective of this paper is to improve the repre-
sentational power of a general class of GCRFs proposed
in [13]. Our proposed solution relies on introduction
of hidden variables that are nonlinear functions of in-
put variables, such that our probabilistic framework for
structured regression learns more informative represen-
tations and structural dependencies simultaneously. In
such manner, our model can (1) model complex relation-
ships between inputs and outputs; (2) improve modeling
of relationships between outputs; and (3) enhance the
structure learning with better representations.

It should be mentioned that modeling of complex
relationships in CRFs used for classification is well stud-
ied, and that some of those ideas serve as inspirations for
our proposed approach. However, our proposed model-
ing is different from any of previously published works.
A common way to increase representational power of
classification CRFs is to exploit kernels in the poten-
tial functions of CRFs [4, 11], but it comes at the price
of scalability. Another type of methods, called hidden
state CRFs [5, 7] introduce discrete hidden variables
between outputs and inputs to model high order depen-
dencies, and allow for more flexible decision boundaries
of CRFs. In contrast the proposed model introduces
continuous hidden variables to stand for new input vari-
ables. Neural CRFs [1, 6] for structured classification
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were also proposed for introducing nonlinear features,
but our proposed approach aims for solving structured
regression.

2 Sparse Gaussian Conditional Random Fields

In this paper, we use capital letters to denote matrices,
bold lower-case letters to denote column vectors and
lower-case letters to denote scalars. For example, x
represents a column vector and X represents a matrix.
The ith row of X is denoted as Xi:.

Suppose we are given a dataset with m i.i.d graph
instances, where each graph instance has n input vari-
ables and p output variables. Let x ∈ Rn denote the
input variables and y ∈ Rp denote the output variables.
Gaussian Conditional Random Fields (GCRF)[8, 10]
model the conditional distribution of y given x as a mul-
tivariate Gaussian distribution. The probability density
function (pdf) of GCRF over a single graph instance as
defined in [13] is

(2.1) P (y|x,Λ,Θ) =
1

Z(x)
exp(−yT Λy − 2xT Θy),

where the inverse covariance matrix Λ ∈ Rp×p models
the structure (or conditional dependencies) among p
output variables, and Θ ∈ Rn,p models the dependency
of p output variables on n input variables. Z(x) is
the partition function, which is the integral of the
exponent term over y. The pdf of GCRF in (2.1) is a
multivariate Gaussian with expectation −Λ−1ΘTx and
covariance Λ−1. Therefore, the negative log-likelihood
logP (y|x; Λ,Θ) is given by
(2.2)

l(Λ,Θ) =
1

2
(y + Λ−1ΘTx)T Λ(y + Λ−1ΘTx)− 1

2
log|Λ|,

where |Λ| is the determinant of Λ.
Let X ∈ Rm×n and Y ∈ Rm×p denote the input

variables and the output variables of m graph instances,
respectively. The negative log-likelihood function over
m graph instances can be expressed as
(2.3)

L =
1

2m

m∑
i=1

logP (Yi:|Xi:)

=
1

2
{− log|Λ|+ tr(SyyΛ + 2SyxΘ + Λ−1ΘTSxxΘ)},

where Syy = 1
mY

TY , Syx = 1
mY

TX and Sxx = 1
mX

TX
correspond to empirical covariance terms. Given m
training graph instances, the objective is to find Θ and
Λ that minimize negative log-likelihood (2.2). Sparse
GCRF (SGCRF) assumes that both Λ and Θ are sparse,
therefore, the objective function is defined as [13]:

(2.4) argmin
Λ,Θ

2L(Λ,Θ) + λ(‖Λ‖1,∗ + ‖Θ‖1),

where ‖Λ‖1,∗ and ‖Θ‖1 are `1 norms over off-diagonal
elements of Λ, and `1 norms of Θ, respectively. The
problem (2.4) is a constrained nonsmooth convex op-
timization due to the sparsity of parameters and posi-
tive definiteness constraint over Λ. Many solutions have
been proposed to solve this problem [10, 13, 14]. In case
of SGCRF, Newton coordinate descent was used[2, 13].

3 Representation Learning based Structured
Regression

In real life applications, raw features might not be lin-
early dependent with output variables. As SGCRF can
only model linear dependencies, the structure among
data is possibly not revealed correctly. To improve the
representational power of SGCRF, we propose a novel
iterative approach called Representation Learning based
Structured Regression (RLSR) that is able to learn hid-
den representation of inputs, and structure among out-
puts simultaneously. This approach is motivated of
two aspects: First, by considering structure informa-
tion, representation learning can learn more predictive
input features than raw features. Second, given more in-
formative representations, structure learning can reveal
intrinsic structure among data.

3.1 RLSR Model Our proposed approach can
model nonlinear dependency. To achieve this, we intro-
duce hidden variables h ∈ Rq, which are learned based
on input variables, and model the conditional probabil-
ity of outputs given learned hidden variables as a multi-
variate Gaussian distribution. The pdf of RLSR is given
by

(3.5) P (y|h,Λ,Θ) =
1

Z(h)
exp(−yT Λy − 2hT Θy),

where h is a nonlinear mapping of x. The mapping is
formulated as a parametric function

(3.6) h = f(x,w),

where w is a vector of parameters of f . Note that
Λ ∈ Rp×p still models the dependency among outputs y,
but Θ ∈ Rq×p models the dependency of outputs y on
the new representation h. A general illustration of the
proposed model on a single graph instance is presented
in Figure 1a, where each of q hidden variables is learned
based on n input variables, and p output variables are
dependent on hidden variables.

Given m graph instances, the negative log-
likelihood of the model defined in (3.5) and (3.6) is
(3.7)

L =
1

2
{− log|Λ|+ tr(SyyΛ + 2SyhΘ + Λ−1ΘTShhΘ)},
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Figure 1: Illustration of RLSR model on a single graph instance with (a)x ∈ Rn, h ∈ Rq and y ∈ Rp, (b) optimized
architecture: r = n/p and l = q/p, (c) optimized architecture: r = n/p and q = p.

where Syy = 1
mY

TY , Syh = 1
mY

TH, Shh = 1
mH

TH
and H ∈ Rm×q denotes the learned hidden variables of
m graph instances, whose ith row are values of hidden
variables h of the ith graph instance. Then the expec-
tation and covariance of Y |H becomes −Λ−1ΘTHT and
Λ−1, respectively. Therefore, the optimization prob-
lem is to find w, Λ and Θ that minimize negative log-
likelihood

(3.8) argmin
w,Λ,Θ

2L(w,Λ,Θ) + λ(‖Λ‖1,∗ + ‖Θ‖1),

where we added a sparsity-inducing regularization term.
Note that the optimization function (3.8) is convex

with respect to Λ and Θ, but not convex with respect
to w, because H is a nonlinear function of X. A nat-
ural approach to solve this optimization problem is to
alternately update a subset of parameters. In the pro-
posed RLSR model, w is learned by fixing Λ,Θ, then
Λ,Θ are learned by fixing w, and the process is repeated
until termination(Algorithm 1). The optimization prob-
lem Lr in (3.9), is obtained by removing constant terms
(w.r.t w) from (3.7). Minimizing Ls in (3.10) is equiv-
alent to minimizing (3.8) while fixing w.

3.2 Representation Learning The representation
learning phase(R.L. in Figure 1a). The nonlinear map-
ping function (3.6) is modeled using feedforward neural
network (NN). Since there may be multiple hidden lay-
ers in feedforward neural network, the indirect connec-
tions in Figure 1a are represented as dashed lines. w
refers to the parameters of neural network. The gradi-
ent of (3.9) with respect to w is

∂Lr

∂w
=
∂Lr

∂H

∂H

∂w

=
1

m
(2YΘT + 2HΘΛ−1ΘT )

∂H

∂w
,(3.11)

where the derivative ∂H
∂w depends on the structure of

NN and is calculated using backpropagation. Since the
optimization of NN is not convex, we use stochastic
gradient descent as the learning algorithm.

Algorithm 1 RLSR

Input: X ∈ Rm×n, Y ∈ Rm×p, λ ∈ R.
Output: w, Λ and Θ
1: Initialization: w0, Λ0 and Θ0 . See Section 3.5.1
2: do
3: t = t+ 1
4: Representation Learning: . See Section 3.2

(3.9)
wt = argmin

w
Lr

Lr =
1

m
tr(2Y THΘt−1 + Λ−1

t−1ΘT
t−1H

THΘt−1)

(where H = f(X,wt−1))

5: Structure Learning: . See Section 3.3
(3.10)

(Λt,Θt) = argmin
Λ,Θ

Ls = L(wt,Λ,Θ)+λ(|Λ|+ |Θ|)

6: while not (stopping criteria) . See Section 3.5.2

3.3 Structure Learning The structure learning
phase (S.L. in Figure 1a), which aims to learn the sparse
dependency (Θ) between h and y, and sparse structure
(Λ) among y. Those sparse dependencies are repre-
sented as solid connections in Figure 1a. The optimiza-
tion problem of structure learning Ls, which is formu-
lated as a `1-regularized quadratic programming prob-
lem (3.10), is similar to SGCRF. Hence, we adopt New-
ton coordinate descent in [13] for solving (3.10). The
gradients with respect to Λ and Θ are given by

∂Ls

∂Λ
= Y TY − Λ−1ΘTHTHΘΛ−1 − Λ−1,(3.12)

∂Ls

∂Θ
= 2HTY + 2HTHΘΛ−1,(3.13)

3.4 Optimized Architecture in Representation
Learning When the number of input variables is large,
the proposed model in Figure 1a will be less efficient. In
particular, the number of parameters in w is k(n + q)
assuming there is a hidden layer in neural network
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with k hidden neurons between x and h. As a result,
the model could become unstable, easy to overfit and
computationally costly. In order to resolve this issue,
we propose to modify the architecture in representation
learning procedure, such that the number of weights is
reduced. In practice, each output variable is explicitly
associated with its own r = n/p input variables. So,
we propose to reserve l = q/p hidden variables for each
such group of inputs. Two typical cases of proposed
architecture are presented in Figure 1b and Figure 1c.

In Figure 1b, there are r input variables correspond-
ing to each output variable y. Therefore, n = p× r and
q = p × l. The number of parameters in representa-
tion learning is reduced to k

p (r+ l)p = k
p (n+ q) assum-

ing there is a hidden layer in each neural network with
k/p hidden neurons. The architecture presented in Fig-
ure 1c is a special case of the one presented in Figure
1b, where there is only one hidden variable per output.
Hence l = 1, q = p and the number of parameters in
representation learning drops to k

p (n+p). We note that
the dimensionality of Θ in this case becomes p×p. Fur-
thermore, by sharing structure, all data instances are
used to train the same neural network, which leads to a
more robust representation.

3.5 Implementation Details

3.5.1 Initialization Since the objective in represen-
tation learning is to minimize negative log-likelihood
(3.9), neural network can handle arbitrary dimension
of output. If there is only one output, then W0 is ini-
tialized by learning neural network through minimizing
mean square error. Λ0 and Θ0 are initialized using the
estimated Λ and Θ from SGCRF by using H0 as in-
put. This typical case is illustrated in Figure 1c, and
it is used as the setting in all of our experiments. It
can be easily extended to initialize the case with mul-
tiple output, H0 is initialized using the hidden neurons
of neural network, then Λ0 and Θ0 can be initialized by
using H0 as input of SGCRF. Figure 1b presents the
corresponding architecture.

3.5.2 Stopping Criteria Since (3.9) is not convex,
RLSR is not guaranteed to converge to a global opti-
mum, hence, a part of the data is used for validation
and the model stops when the accuracy on the valida-
tion data does not improve in the consecutive K itera-
tions. After stopping, the estimated parameters of the
current iteration are chosen as the optimized parame-
ters of RLSR. In case the stopping criteria is not met,
RLSR stops when the maximum number of iterations
T is reached. In our implementation, we set K = 10

(a) Chain Structure (b) Spatial Structure

(c) ST Structure (d) Random Structure

Figure 2: Four different structures of precision matrix Λ.

and T = 30. In addition, Newton coordinate descent
converges when subgradient is less than a small toler-
ance 1e− 6.

4 Synthetic Data Experiments

4.1 Data Generation We generated data with 4 dif-
ferent structures and 2 different relationships betweenX
and representation H, resulting in 8 different datasets.
The 4 versions of Λ ∈ Rp×p included chain structure,
spatial (grid) structure, spatiotemporal (cube) struc-
ture, and random structure (see Figure 2). Each output
variable y corresponds to a node. For chain structure,
there are p = 50 nodes in each graph instance. The spa-
tial structure is generated as 7× 7 grid, with a total of
p = 49 nodes. Each node is connected to its 4 nearest
neighbours. For spatiotemporal structure, we assume
a 4 × 4 grid is observed in 3 consecutive timestamps,
which resulted in p = 48 nodes. In addition to being
connected to its 4 nearest spatial neighbour nodes, each
node was also connected to its two temporal neighbours.
For random structure, there are p = 50 nodes in each
graph instance. In order to ensure sparsity of Λ, each
entry of Λ was generated as 1 with probability 0.1, and
as 0 with probability 0.9. To guarantee positive definite-
ness, we performed a line search to increase the values
of diagonal entries until Λ became diagonally dominant.

For each structure, Θ ∈ Rq×p was generated as a
diagonally dominant sparse matrix. For each column
of Θ, each entry was generated as 0.2 with probability
0.1, and 0 otherwise. The diagonal entries of Θ were
generated as 1. We used this setting due to the fact
that each h always contributes the most in predicting
corresponding y, which reflects many real data. X ∈
Rm×n was generated as a uniform distribution from −1
to 1, where m = 1600. Y was generated according to
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nnz = 1376, dist = 0.698

(a) Λ-2

nnz = 2142, dist = 0.391

(b) Λ-3

nnz = 2072, dist = 0.323

(c) Λ-4

nnz = 258, dist = 0

(d) Λ-5

nnz = 2500, dist = 0.196

(e) ΘΛ−1-2

nnz = 2500, dist = 0.134

(f) ΘΛ−1-3

nnz = 2500, dist = 0.124

(g) ΘΛ−1-4

nnz = 2456, dist = 0

(h) ΘΛ−1-5

Figure 3: Left (Right)4 figures are the learned Λ (ΘΛ−1) from four models on ‘R-Non’ dataset, respectively. dist is the
distance between the estimated Λ and the ground truth Λ. 2: SGCRF. 3:NN+SGCRF. 4: RLSR. 5:GT

Table 1: Evaluation of RLSR versus 3 alternatives on 8 synthetic data.

Datasets C-Lin C-Non S-Lin S-Non ST-Lin ST-Non R-Lin R-Non
NN 0.6949 0.9484 2.9373 19.1401 1.9242 9.1369 0.8961 2.8797

SGCRF 8.734 3.3549 2.4648 27.6782 1.5427 12.7278 1.8053 6.1107
NN+SGCRF 0.2477 0.3088 0.4429 0.8312 0.3594 0.5615 0.3053 0.3995

RLSR 0.2308 0.2305 0.4395 0.6603 0.3365 0.4381 0.2867 0.2746
GT 0.2181 0.2192 0.4044 0.411 0.3034 0.2984 0.2624 0.254

a multivariate Gaussian distribution (3.5). In synthetic
data, we assumed n = q for simplicity of presentation.
Regarding the dependency between X and H, it was
generated either as a linear relationship H = 5X + 5,
or as nonlinear relationship H = 10 sin(5X). The first
row of Table 1 lists the resulting 8 datasets. ‘Lin’
and ‘Non’ refer to linear and nonlinear relationship
between X and H, respectively. C stands for chain
structure, S stands for spatial structure, ST stands
for spatiotemporal structure, and R stands for random
structure.

4.2 Effectiveness of RLSR To investigate the ef-
fectiveness of RLSR, we evaluated the model on all 8
datasets we generated and compared it with 3 baseline
methods:
• Feedforward Neural Network (NN). NN is a com-

petitive unstructured baseline. We trained a neural
network to predict each output directly using its
corresponding input.
• SGCRF [13]. A baseline for structured models,

which can only model linear relationship between
inputs and outputs.
• NN + SGCRF. Similar to [12], in this baseline,

NN is first trained in a supervised way to learn
a mapping from X to Y . The outputs of NN
are treated as hidden variables and SGCRF is
applied to learn relationship between the hidden
and output variables.
• Ground Truth (GT). It is the generated expectation

of P (Y |H) and represents the optimal model.
In this experiment, we used 1, 000 graph instances

for training, 300 graph instances for validation and 300
graph instances for testing. The regularization parame-

ter λ = {10−4, 10−3, 10−2, 10−2, 1} was optimized using
the validation data for SGCRF and NN+SGCRF.

Mean square error (MSE) of all models is shown
in Table 1. The results indicate that NN works worse
in the dataset with complicated underlying structure.
SGCRF was not able to handle nonlinear relationship
between X and H, while NN+SGCRF was able to han-
dle such relation, and outperformed SGCRF. However,
RLSR outperformed all other baselines on all datasets.
This observation reveals the fact that learning simulta-
neously the representation and structure in RLSR is mu-
tually beneficial, and that it outperforms NN+GCRF,
where learning representation and structure are per-
formed independently. We also notice that RLSR per-
forms close to GT predictions on many datasets, which
indicates the robustness of RLSR in achieving good per-
formance even though the optimization is non-convex.

4.3 Analysis of RLSR In addition to conducting
regression, another important task of RLSR is structure
learning. We analyzed the results of RLSR on the ‘R-
Non’ dataset because it mimics real applications. The
visualization of Λ of SGCRF, NN+SGCRF, RLSR, and
GT are presented in Figure 3{(a),(b),(c) and (d)}.

It is clear that the estimated Λ from SGCRF,
NN+SGCRF, and RLSR exhibited the pattern of true
Λ, however, they are estimated with different levels
of noise. This is also noticed when computing the
Euclidean distance dist between the estimated Λ and
the true Λ. The estimated Λ from SGCRF contains
more noise (dist = 0.698) than other baselines because
it uses the raw features as input, while other baselines
use estimated representation as input. The estimated Λ
of RLSR has less noise (dist = 0.323) than Λ estimated
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from NN+SGCRF (dist = 0.391). This is because the
representation of RLSR is learned along with structure
learning. In contrast, in NN+SGCRF, structure is not
taken into consideration in learning ’representation’.

Figure 3{(e),(f),(g),(h)} shows the dependency be-
tween X or H and Y . As we can see, the depen-
dency matrix of SGCRF which uses the raw input X
is far (dist = 0.196) from the true dependency matrix.
Both NN+SGCRF and RLSR present more precise pat-
tern, however, the estimated ΘΛ−1 from RLSR is closer
(dist = 0.124) to the true one.

5 Real Data Experiments

We evaluated RLSR and the baseline models on 3 real-
world challenging datasets: forecasting wind power for
multiple farms, forecasting solar energy, and forecasting
precipitation for multiple locations in U.S.

In all 3 datasets, the task is to forecast the target
variable in the future, therefore, k-fold cross validation
is no longer a suitable experimental setting because it
is not reasonable to use future data to predict the past.
Hence, we applied the following settings. We consider
a window with r+ v + t graphs, where we train models
on the first r graphs using the following v graphs for
validation. Then, we forecast the final t graphs using the
tuned model. Afterwards, we shift the window forward
by t graphs and repeat the same process on the new
window. Therefore, with m graphs in total, we are able

to evaluate models on
⌊
m−(r+v)

t )
⌋

windows.

5.1 Wind Power Forecasting Wind power data
is obtained from the Global Energy Forecasting 2012
competition1. The task is to hourly predict wind power
at 7 nearby wind farms for the next 48-hour period.
Each farm has 4 features (zonal and meridional wind
components, wind speed, and wind direction). The data
is available for 1080 days (36 months) from 2009/07
to 2012/06. We used 48 hours of data to generate a
single graph, resulting in 540 graphs. Each graph has
4 ∗ 7 ∗ 48 = 1344 features and 7 ∗ 48 = 336 outputs
(X ∈ R540×1344 and Y ∈ R540×336). Missing values
in Y are imputed using the average of the non-missing
values from the same farm in the same or neighbor day.

In wind power forecasting, we compared pro-
posed model with NN, SGCRF, NN+SGCRF and
RBF+SGCRF, which is used in [12] on same dataset.
For the NN+SGCRF model, we tuned λ on each win-
dow with values taken from [10−4, 10−3, 10−2, 10−1, 1].
The best λ is chosen as the regularization parameter for
all other baselines. For RBF+SGCRF, we used 10 RBF
functions as suggested in [12] on same data.

1https://www.kaggle.com/c/GEF2012-wind-forecasting
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Figure 4: Generalization performance for wind data.

First, we evaluated the effect of varying training
sizes on the performance of all models. In order to
have fair comparison among all models with different
training sizes, we created 8 windows, each of which
is created by setting v = 30, t = 30. We consider 4
different training sample sizes r = {180, 210, 240, 270},
Under this setting, each chunk of test data contains
wind energy record of 60 days. In this way, all models
with different training sizes will use exactly the same
validation and will be evaluated on exactly the same
test data. The results are shown in Figure 4. It is
evident that by increasing the training data up to 240
graph instances, the model has better MSE. However,
the MSE increased when r = 270 due to noise from past
1.5 years when predicting 2 months. As NN is subject
to overfiting with noise, both NN+SGCRF and RLSR
are effected. Error of RBF+SGCRF has not increased
when learning from 270 graph instances, but it was still
the least accurate of four methods compared at Figure
4. Due to the much larger error of SGCRF, we removed
the performances of SGCRF for Figure 4 for the ease of
presentation.

In the subsequent experiments, we compare all
models using 16 months (240 graphs) for training.
Table 2 shows the comparison between our model and
the baseline models. In addition, we compared our
proposed model with RBF + SGCRF, which is used for
forecasting wind power [12]. Raw inputs are mapped to
a new space using Radial Basis Functions and SGCRF is
directly trained with the new inputs. As shown in Table
2, RLSR outperforms SGCRF NN + SGCRF, NN, and
RBF + SGCRF by 47 times, 6.1%, 18.3%, and 34.7%,
respectively.

Finally, we compared Λ and Θ learned by all of the
baseline methods in window 7 (where RLSR wins the
most) as shown in Figure 5 and Figure 6, respectively.
It is clear that Λ are learned similarly in all of the other
3 models except in SGCRF model. SGCRF barely learn
right Λ or Θ, which results in its poor performance. We
noticed that RLSR learns denser Θ than NN + SGCRF,
although they used the same λ value. Our conclusion
is that RLSR not only learns better representation, but
also reveals underlying dependency more precisely.
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(a) SGCRF (b) RBF+SGCRF (c) NN + SGCRF (d) RLSR

Figure 5: Λ learned by all baselines on window 7 of the wind data.

(a) SGCRF (b) RBF+SGCRF (c) NN + SGCRF (d) RLSR

Figure 6: Θ learned by all baselines on window 7 of the wind data.

Table 2: MSE of NN, NN + SGCRF, RLSR on wind data for all 8 windows.

Win1 Win2 Win3 Win4 Win5 Win6 Win7 Win8 mean± std
SGCRF 2.188 2.99 2.159 1.726 1.787 2.256 3.579 2.456 2.393± 0.6204
RBF + SGCRF 0.067 0.060 0.042 0.058 0.086 0.072 0.075 0.067 0.066± 0.013
NN 0.074 0.061 0.040 0.041 0.057 0.059 0.079 0.054 0.058± 0.014
NN + SGCRF 0.064 0.055 0.031 0.045 0.052 0.058 0.063 0.046 0.052± 0.011
RLSR 0.065 0.044 0.032 0.042 0.050 0.063 0.056 0.039 0.049± 0.012

5.2 Solar Energy Forecasting The task is to
predict the daily solar energy income at 98 Ok-
lahoma Mesonet sites. The features come from
the NOAA/ESRL Global Ensemble Forecast System
(GEFS) Reforecast Version 2, collected over 144 sites in
United States. Both the Mesonet data and GEFS data
are available every day for 14 years from 1994 − 2007.
The data for this task is available on the website of AMS
2013-2014 Solar Energy Prediction Contest2. The data
we used for experiments contain X ∈ R5110×7350, Y ∈
R5110×98. Missing Y are imputed using the average of
non-missing data of Y from same days over all years.
Also, the values of both X and Y of raw data vary a lot
in a large range. We did logarithm smoothing over the
values of X and Y .

We observed seasonal patterns with solar energy
income within each year as shown in Figure 7. (y of
the same day of different years have similar values.)
Therefore, in our experiment, graphs from January to
April belong to the first season, graphs from May to
August belong to the second season and graphs from
September to December belong to the third season. In
such a partitioning all peak values were in the second

2https://www.kaggle.com/c/ams-2014-solar-energy-
prediction-contest
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Figure 7: Seasonal patterns of solar energy income.

season. And three seasons have 1680, 1708, 1722 graphs,
respectively. We created 8 windows in each season
by setting r = 600, v = 120, t = 120. We used the
same settings for hyperparameter selection as in wind
forecasting.

We report the mean and stand deviation of MSE on
8 windows in Table 3. Our proposed model outperforms
all baselines by at least 50%. Since the raw input
variable x ∈ R7×350 has high dimension, we didn’t
get the result of SGCRF in 48 hours. The learned Λ
and Θ of RLSR and NN + SGCRF are compared at
Figure 8. There is little conditional dependency among
y (Λ is diagonal), so the dependencies between y and
h dominate. Therefore, when RLSR learns a better

Copyright © by SIAM 
Unauthorized reproduction of this article is prohibited.

852



Table 3: mean and std of MSE on 8 windows on the solar energy forecasting application.

Season 1 Season 2 Season 3
SGCRF - - -
NN 0.078± 0.021 0.056± 0.017 0.024± 0.007
NN + SGCRF 0.074± 0.024 0.054± 0.018 0.024± 0.006
RLSR 0.049± 0.015 0.034± 0.007 0.016± 0.002

(a) Λ of NN + SGCRF (b) Λ of RLSR

(c) Θ of NN + SGCRF (d) Θ of RLSR

Figure 8: Λ and Θ learned by NN + SGCRF and RLSR on
window 7 season 3 of the energy data.

representation and dependencies than NN + SGCRF,
predictions of y become much more accurate.

5.3 Precipitation Forecasting The task is to fore-
cast daily precipitation across multiple locations based
on several climatological features. We used the ground-
based precipitation data from 1948 to 2007, collected
on 1, 218 sites over U.S. It is downloaded from NOAA’s
National Climate Data Center (NCDC) website3. For
the climate features, we used the product from the
NCEP/NCAR Reanalysis 1 project [6] in the same du-
ration. It provides 6 climate indicators for 124 sites
across the U.S. everyday, which are omega (Lagrangian
tendency of air pressure), precipitable water, relative
humidity, temperature, u-wind, and w-wind (zonal and
meridional components of the wind). In order to collo-
cate the climate indicators and the precipitation data,
we took out only 124 sites, such that for each site, both
precipitation and indicators are available. We also in-
corporated the following 3 geographical features for each
site: latitude, longitude and the distance between the
climate features and precipitation. After aggregating
monthly data from the daily recordings, we have 124

3http://www.ncdc.noaa.gov/

nodes on each graph, i.e, Y ∈ R708×124, X ∈ R708×1116.
Missing values in Y are imputed using the average of
the non-missing data from same month over all years.

Our assumption is that precipitation is controlled
by seasonal effects, which suggests training models for
Spring, Summer, Fall and Winter separately. The
number of graphs for each season is 177. We were also
able to create 10 windows for each season, by setting
r = 90, v = 6, t = 6. In total, we tested precipitation
forecasting on 60 graphs for each season. The results
are shown in Table 4.

The last column of Table 4 shows the performance
on annual rain forecasting where 10 windows were
created, with r = 360, v = 24, t = 24, such that we
tested 240 graphs in total. For model learning and
hyperparameter tuning, we used the same settings as
in other real data experiments. Our proposed RLSR
mdoel outperformed NN + SGCRF by as much as 6.2%
and was much more accurate than SGCRF.

The estimated Λ of RLSR of yearly precipitation
data is presented in Figure 9a, which exhibits obvious
spatial dependency among 124 stations over U.S. As
Λ is the precision matrix, each nonzero blue entry Λij

indicates the conditional dependency between the ith
station and the jth station. The sparse structure of
learned Λ is shown at Figures 9b,9c and 9d as red edges
on the U.S. map for low, medium and high thresholds
on the values of Λ, respectively. As we can see, the
connections in the northern U.S. present for increased
threshold. This implies the meteorological similarity
across certain regions of North America.

6 Conclusion

In this paper, we proposed the RLSR model for joint
learning of representation and structure in sparse re-
gression. The experiments on synthetic data provide
evidence that joint learning is mutually beneficial for
discovering a more predictive representation and struc-
ture. This is further confirmed by experiments on chal-
lenging real-world applications which demonstrated the
effectiveness of our proposed model.
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Table 4: mean and std of MSE on 10 windows of seasonal rain forecasting application.

Spring Summer Fall Winter Year
SGCRF 65.289± 85.192 154.717± 114.962 > 1000 > 1000 50.952± 159.882
NN 0.325± 0.047 0.417± 0.057 0.399± 0.042 0.376± 0.038 0.292± 0.025
NN + SGCRF 0.189± 0.017 0.213± 0.013 0.391± 0.514 0.161± 0.033 0.200± 0.025
RLSR 0.178± 0.012 0.209± 0.021 0.241± 0.034 0.159± 0.024 0.189± 0.010

(a) Λ of RLSR (b)

(c) (d)

Figure 9: Visualization of estimated Λ of yearly precipitation
graph on continental U.S. Learned graph structure is shown
for low, medium and high threshold Λ at panels (b), (c) and
(d), respectively.
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