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Abstract. Landslides pose significant risks to infrastructure, ecosys-
tems, and human lives, making accurate prediction crucial for disaster 
preparedness and mitigation. We integrate multimodal environmental 
data to enhance landslide prediction using machine learning. Specifically, 
we combine temporal weather data from ASOS, static vegetation data 
from NLCD, static soil composition data from SOLUS100, and temporal 
soil attributes from ERA5-Land to estimate landslide probability within 
a 5 km radius of ASOS weather stations across six U.S. states. We frame 
this as a multiclass classification problem, predicting high, low, or no 
landslide probability. Given the inherent imbalance in landslide occur-
rence, we explore various techniques such as SMOTE oversampling, class-
weighted training, and dimensionality reduction to improve model perfor-
mance. Our results indicate that XGBoost trained on SMOTE-balanced, 
PCA-reduced data incorporating all four datasets achieves the highest 
macro F1-score of 0.70. Analysis of feature importance reveals that signif-
icant predictors span all datasets, highlighting the necessity of integrat-
ing diverse environmental variables. Additionally, we conduct state-wise 
and seasonal comparisons to assess regional variations in model effec-
tiveness. This research demonstrates the potential of multimodal data 
fusion and machine learning in landslide forecasting, paving the way 
for more robust and interpretable predictive models for natural hazard 
assessment. 

Keywords: Landslides · Multimodal · Machine Learning · Feature 
selection 

1 Introduction 

Landslides triggered by heavy rainfall pose a significant threat to public infras-
tructure, resulting in substantial human, material, and economic losses world-
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wide [ 12]. Detecting these shallow, rainfall-induced landslides is critical for effec-
tive disaster management and risk mitigation. These events are influenced by a 
complex interplay of natural factors, including topography, geology, soil compo-
sition, and climatic conditions. Understanding the multimodal mechanisms driv-
ing landslide formation is, therefore, essential for developing predictive models 
and mitigation strategies. 

Machine learning and deep neural networks have been shown to be useful in 
many geo-based applications, specifically landslides. Many works have focused 
on change detection-based algorithms [ 7], but it is resource-intensive. It requires 
both pre-event and post-event images, which can be difficult to obtain in a 
timely manner, particularly in regions with persistent cloud cover or adverse 
weather conditions. Similar aerial images have been used to detect landslides, 
but they have proven ineffective in areas with heavy vegetation. In Minnesota, 
with 35% forest cover, and in Wisconsin, with 48.98% forest cover [ 1], a sig-
nificant portion of the land is hidden from aerial view, thus making imaging 
ineffective. Even with high-resolution imagery, the pixel size may not be suffi-
cient to detect smaller landslides, which tree canopies can hide. Some studies 
have utilized ground-based measurements to assess landslide occurrences. These 
approaches leverage environmental and geotechnical data, such as soil properties, 
precipitation levels, and terrain characteristics, to predict landslide susceptibility 
[ 13]. However, most of these studies focus on regions outside the United States 
and often lack a detailed analysis of the factors influencing their models’ decision-
making processes. Understanding which environmental variables contribute the 
most to landslide predictions is crucial for improving the interpretability and 
reliability of the model, particularly in diverse regions. 

In this study, we integrate multimodal data sources to enhance landslide 
prediction by leveraging both static and temporal environmental variables. 
Specifically, we incorporate temporal weather data from the Automated Sur-
face Observing Systems (ASOS) [ 4], static vegetation data from the National 
Land Cover Database (NLCD) [ 11], static soil composition data from the Soil 
Landscapes of the United States (SOLUS) [ 16], and temporal soil attributes 
from ERA5-Land [ 15]. By combining these diverse datasets, we aim to develop 
a robust machine learning framework to estimate landslide probability within a 
5 km radius of ASOS weather station coordinates across six U.S. states: Min-
nesota, North Dakota, South Dakota, Iowa, Michigan, and Wisconsin. We frame 
this as a multiclass classification problem, where each instance is categorized into 
one of three classes: high probability of landslide, low probability of landslide, 
or no landslide. However, since landslides are rare events, our dataset is highly 
imbalanced, which presents challenges for predictive modeling. To address this, 
we explore various imbalance mitigation techniques and analyze their impact on 
classification performance. In this work, we make the following key contributions: 

– We integrate diverse data sources, combining meteorological, soil, and vege-
tation attributes to improve landslide prediction accuracy. 

– We employ multiple traditional and deep learning models to classify landslide 
probability while addressing challenges posed by data imbalance.
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– We conduct a dimension reduction analysis to assess whether reducing feature 
space improves classification performance. 

– We analyze model explainability by identifying the most influential features 
contributing to landslide prediction. 

– We compare model performance across different states and seasons to evaluate 
whether localized models outperform general predictive models. 

Through this comprehensive approach, we aim to provide insights into the key 
environmental factors influencing landslides and assess the effectiveness of dif-
ferent modeling strategies for handling highly imbalanced geospatial data. 

2 Related Works 

Landslide prediction has been explored using various methodologies, includ-
ing traditional machine learning, deep learning, and heuristic-based approaches. 
However, many of these studies rely solely on image-based models, overlooking 
the integration of multimodal environmental data or focusing on geographically 
constrained regions, limiting their generalizability. 

Several studies have employed machine learning techniques on aerial imagery 
for landslide detection. For instance, traditional machine learning models were 
used but primarily focused on images, overlooking other environmental factors 
such as soil composition, vegetation, and meteorological data [ 10]. While effective 
in certain regions, this approach lacks robustness in areas with dense vegetation 
or limited image availability due to cloud cover or adverse weather conditions. 

Other studies have focused on heuristic-based models rather than machine 
learning. In particular, Weather and Research Forecast (WRF) models were 
employed alongside geomorphological features to detect landslides [ 20]. However, 
that approach only considered two classes (landslide and no landslide) and did 
not incorporate machine learning techniques, limiting the ability to adapt to 
complex, nonlinear relationships within the data. 

Deep learning models have also been used for landslide prediction, particu-
larly in image-based approaches. PlanetScope, Sentinel-2 imagery, and ALOS-
PALSAR2 elevation models were leveraged to predict landslides using convolu-
tional neural networks (CNNs) [ 19]. However, this method is both costly and 
ineffective in regions with dense forest cover, such as Wisconsin, where tree 
canopies obscure terrain features critical for landslide detection. 

Hydrological models have also been explored, but their applicability remains 
uncertain across different geographic regions. A hydrological model was devel-
oper for landslide prediction in Chile [ 9], but the findings may not generalize 
well to other regions, including the Midwestern United States, due to differences 
in terrain, climate, and geological features. The challenges of generalizing land-
slide prediction models across different geographical areas were further empha-
sized, highlighting the need for localized datasets and models tailored to specific 
environmental conditions [ 8]. Additionally, the prior study lacked soil moisture 
measurements and relied on traditional data collection methods instead of real-
time IoT sensors, which could improve predictive accuracy. Multimodal studies
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have been shown to help in various weather-based problems [ 2,17,18]. Future 
advancements in landslide modeling, such as those proposed by [ 14], suggest 
integrating IoT sensor networks to enhance data granularity and timeliness. 

Some research has explored alternative approaches, such as clustering and 
early warning systems. [ 6] investigated landslide clustering, but their work had 
limited application as a real-time warning system and did not analyze the 
explainability of contributing factors. Similarly, an initial landslide detection 
model was developed and provided insights into contributing factors [ 5]. Still, 
the study was confined to Seattle, Washington, and did not account for veg-
etation data, which plays a critical role in stabilizing slopes and influencing 
landslide susceptibility. Our work bridges the gap between traditional and deep 
learning approaches by proving that multimodal data fusion enhances prediction 
accuracy and generalizability across different geographic regions. 

3 Data 

In this study, we integrate multimodal data from multiple sources to enhance 
the accuracy of landslide detection. Specifically, we incorporate temporal weather 
data from the Automated Surface Observing Systems (ASOS), static vegetation 
data from the National Land Cover Database (NLCD), static soil composition 
data from the Soil Landscapes of the United States (SOLUS100), and temporal 
soil attributes data from ERA5-Land. Each of these datasets contributes unique 
and complementary information relevant to landslide susceptibility. 

Our objective is to predict the probability of landslides using labels derived 
from the NASA Global Landslide Nowcast database, which provides high-
resolution landslide hazard predictions. By integrating diverse data sources, we 
aim to capture environmental factors influencing landslide occurrence. The fol-
lowing subsections detail each data source, including its attributes and spatial 
and temporal resolution. 

3.1 NASA Global Landslide Nowcast Dataset 

The NASA Global Landslide Nowcast, generated by the Landslide Hazard Anal-
ysis for Situational Awareness (LHASA) model, identifies regions with a high 
likelihood of landslide occurrence on a daily basis [ 3]. LHASA integrates satellite-
based precipitation estimates with a landslide susceptibility map to assess risk. 
While the model has the capability to run every 30 min, the dataset used in this 
study consists of a daily archive derived from past runs, covering latitudes from 
60◦N to 60◦S. 

For this analysis, we retrieved data from 2018 to 2020. Given a specific coor-
dinate, we extracted relevant raster files and identified all data points within a 
5 km radius, using the Haversine distance formula to account for Earth’s curva-
ture. The Haversine formula is given by: 

d = 2R arcsin

(√
sin2

(
Δϕ 
2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
Δλ 
2

))
(1)
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where d is the great-circle distance between two points, R is Earth’s radius 
(approximately 6371 km), ϕ1, ϕ2 are the latitudes of the two points in radi-
ans, λ1, λ2 are the longitudes of the two points in radians, Δϕ = ϕ2 − ϕ1 and 
Δλ = λ2 − λ1. After obtaining the relevant points, we calculated the landslide 
probability by dividing the total number of labeled landslide occurrences by the 
total number of labels. A probability greater than 0.5 was classified as a high 
probability of landslide occurrence, while a probability between 0 and 0.5 was 
considered low. If no occurrences were detected, the area was classified as having 
no landslide risk. 

3.2 Automated Surface Observing Systems Dataset 

This study seeks to detect landslides occurring within a 5 km radius of an Auto-
mated Surface Observing Systems (ASOS) weather station. ASOS is the primary 
surface weather network in the United States, providing critical meteorological 
data that are essential for aviation safety [ 4]. The network consists of over a 
thousand weather stations distributed nationwide. For this analysis, we identified 
ASOS sensors located in Minnesota, Wisconsin, North Dakota, South Dakota, 
Iowa, and Michigan. We extracted various meteorological variables, including air 
temperature, dew point temperature, wind speed (in knots), one-hour precipi-
tation, pressure altimeter, wind gust speed (in knots), sky altitude at various 
levels, ice accretion over 1, 3, and 6 h, and peak wind gust speed. 

The ASOS data is recorded at varying temporal resolutions, ranging from 1-
minute to 5-minute intervals. Given the focus of this study on landslide detection 
at the end of each day, it was necessary to aggregate the data to a daily resolution. 
This aggregation was performed by calculating each attribute’s mean, standard 
deviation, minimum, and maximum values. The daily summary statistics provide 
a standardized representation of the weather conditions over time, aligning the 
temporal scale of the weather data with that of the landslide occurrences. 

3.3 ERA5-Land Dataset 

ERA5-Land is a high-resolution reanalysis dataset that consistently represents 
land surface variables over time with a spatial resolution of approximately 9 km 
[ 15]. The dataset offers vertical coverage extending from 2 m above the surface to 
a soil depth of 289 cm and is available at an hourly temporal resolution. For this 
study, we collected 28 meteorological and land surface attributes per location. 
These attributes include forecast albedo, snow layer temperature, soil temper-
ature at various depths, surface temperature, skin reservoir content, dew point 
temperature, and air temperature at 2 m above the surface. Additionally, we 
extracted wind speed in different directions, surface pressure, leaf area index, 
soil water volume at multiple depths, and snow-related variables such as cover, 
mass, and depth. Furthermore, we incorporated lake-related parameters, includ-
ing depth, temperature, and the thickness of the uppermost lake layer. 

For this study, we acquired ERA5-Land data for the six selected states and 
refined the dataset by retaining only the data points located within a 5 km
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radius of ASOS weather stations. To ensure consistency with the temporal scale 
of the analysis, the hourly data was aggregated to a daily resolution. This was 
achieved by computing each attribute’s mean, standard deviation, minimum, 
and maximum values, providing a comprehensive statistical representation of 
daily variations in land surface and meteorological conditions. 

3.4 Soil Landscapes of the United States 100-Meter Dataset 

The Soil Landscapes of the United States (SOLUS) dataset provides high res-
olution (100 m) maps documenting 20 key soil properties [ 16]. These properties 
include bulk density (oven dry), calcium carbonate content, cation exchange 
capacity, clay content, coarse sand, electrical conductivity (saturated paste), 
effective cation exchange capacity, fine sand, gypsum, medium sand, pH, rock 
content, total sand content, sodium adsorption ratio, silt content, soil organic 
carbon, very coarse sand, very fine sand and depth to bedrock. 

The dataset is stored as raster files and covers the conterminous United 
States. Soil properties are documented at multiple depths, specifically at 0, 5, 15, 
30, 60, 100, and 150 cm. For this study, we extracted soil property data for loca-
tions within a 5 km radius of ASOS weather stations. To maintain consistency 
with other datasets, we aggregated these attributes using the same approach, 
computing each property’s mean, standard deviation, minimum, and maximum 
values. 

3.5 National Land Cover Database 

The National Land Cover Database (NLCD) provides comprehensive land cover 
classification and tree canopy cover data for the United States, offering area 
coverage statistics at the county level for 20 land cover categories [ 11]. These 
categories include open water, perennial ice/snow, developed land (ranging from 
open space to high intensity), barren land, various forest types (deciduous, ever-
green, and mixed), shrubland, grassland, pasture/hay, cultivated crops, and wet-
land types (woody wetlands and emergent herbaceous wetlands). To integrate 
NLCD data into this study, we identified the county corresponding to each ASOS 
weather station and mapped the respective land cover attributes accordingly. 

4 Experimental Setup 

We integrate multiple datasets, including soil composition data (SOLUS100), 
vegetation data (NLCD), soil attributes (ERA5), and weather data (ASOS), to 
detect landslides within a 5 km radius of an ASOS weather station. The weather 
stations are distributed across six states: Minnesota, North Dakota, South 
Dakota, Wisconsin, Michigan, and Iowa. Initially, we identified 360 weather sta-
tions; however, we narrowed our analysis to locations that experienced at least 
one landslide event between 2018 and 2020, ultimately reducing the dataset to 
43 stations.
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We performed a temporal split, using all records from 2018 and 2019 for 
training and those from 2020 for testing. We also partitioned the training set, 
allocating 80% for model training and 20% for validation. We frame this task 
as a multiclass classification problem, where each instance is assigned one of 
three labels: ‘0’ (no landslide), ‘1’ (low probability of landslide), and ‘2’ (high 
probability of landslide). A key challenge in this study is the class imbalance 
in the dataset: out of a total of 46,904 samples, 43,864 instances (93.51%) are 
labeled as ‘0’, 2,970 instances (6.33%) are labeled as ‘1’, and only 70 instances 
(0.14%) are labeled as ‘2’. 

In this study, we experiment with various machine learning models to assess 
their performance in detecting landslides. The models tested include ensemble 
methods such as Random Forest, LightGBM, and XGBoost, as well as simpler 
linear models like logistic regression and Support Vector Classifier (SVC). Ran-
dom Forest, an ensemble learning technique, is known for its robustness and 
ability to handle non-linear relationships, while LightGBM and XGBoost are 
gradient-boosting methods that are effective in handling large datasets with 
complex interactions. Logistic regression, a widely used linear classifier, provides 
a benchmark for performance in simpler, less complex datasets. SVC is consid-
ered for performing well with high-dimensional data and small sample sizes. 

In addition to these traditional machine learning algorithms, we also train 
deep learning models, specifically neural networks, to explore their ability to 
capture non-linear patterns in the data. These neural networks are regularized 
using kernel methods to prevent overfitting, dropout techniques are employed 
to randomly drop units during training, improving generalization. The ReLU 
activation function is used for introducing non-linearity, which helps the model 
learn complex representations, and batch normalization is applied to accelerate 
training by normalizing the inputs to each layer. This combination of regulariza-
tion and activation functions allows the model to learn from the data effectively 
while preventing overfitting and ensuring convergence. 

Given the inherent class imbalance in our dataset, where landslides are rare 
events, we employ several techniques to address this issue and improve the 
model’s ability to predict the minority classes correctly. We first utilize the Syn-
thetic Minority Over-sampling Technique (SMOTE), which generates synthetic 
instances for the minority class by interpolating between existing minority class 
samples. This method helps balance the distribution of the classes without losing 
any information from the majority class. We also experiment with SMOTEEN, 
a hybrid approach that combines both oversampling of the minority class and 
undersampling of the majority class. This hybrid technique aims to provide a 
more balanced dataset while avoiding the loss of potentially important majority 
class data. Finally, we incorporate class weights into the training process, where 
the each class’s weight is inversely proportional to its frequency in the training 
data. This method adjusts the model’s learning process, ensuring that it places 
greater emphasis on the minority classes during training. 

To further improve model performance and computational efficiency, we 
explore dimensionality reduction techniques due to the diverse nature of the
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data sources and the high number of features involved. Principal Component 
Analysis (PCA) is used to reduce the dimensionality of the data by projecting it 
onto a lower-dimensional space that captures the most variance in the dataset. 
Similarly, Singular Value Decomposition (SVD) is employed to decompose the 
data matrix and reduce its rank, which can help capture the essential information 
while discarding noise. We train models using both PCA- and SVD-reduced data, 
and the original feature set to compare the impact of dimensionality reduction on 
model performance. These techniques help mitigate overfitting and computation 
time issues, especially in high-dimensional datasets. 

4.1 Evaluation Metrics 

Given the imbalanced nature of our dataset, where most samples are labeled as 
‘no landslide’ (class 0) and the landslides are much less frequent, we assess the 
performance of our models using the macro F1 score. The macro F1 score is 
a valuable metric in imbalanced classification problems, as it computes the F1 
score for each class independently and then averages them without considering 
the class distribution. This allows us to equally evaluate the performance across 
all classes (no landslide, low probability of landslide, and high probability of 
landslide), ensuring that the model’s performance on the minority classes is 
adequately reflected. 

In addition to the macro F1 score, we also report the false alarm rate and hit 
rate. The false alarm rate (FAR) is defined as the proportion of non-landslide 
instances (class 0) that are incorrectly predicted as landslides (class 1 or class 
2). It can be calculated using the following formula: 

False Alarm Rate = False Positives (FP) 
False Positives (FP) + True Negatives (TN) 

(2) 

The hit rate (HR), on the other hand, quantifies the proportion of actual land-
slides (classes 1 and 2) that the model correctly identifies. It is calculated using 
the formula: 

Hit Rate = True Positives (TP) 
True Positives (TP) + False Negatives (FN) 

(3) 

Both metrics provide valuable insight into the model’s ability to detect landslides 
while minimizing the number of incorrect predictions. 

5 Results 

We conducted extensive experiments to assess how dataset combinations, imbal-
ance handling, dimensionality reduction, and model choice affect landslide pre-
diction. We tested each setup with and without oversampling and dimension 
reduction and reported the best model and configuration for each dataset combi-
nation. As shown in Table 1, integrating all four datasets (ASOS, ERA5, NLCD,
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Table 1. Landslide detection in six states (2020) using 2018–2019 data. Performance 
comparison with oversampling, dimensionality reduction, and ML models. 

Data Oversampling Dimension Best Model Macro F1 
Technique Reduction Score 

ASOS SMOTE - Random Forest 0.63 
ERA5 - - XGBoost 0.62 
ASOS+NLCD SMOTE - Random Forest 0.67 
ERA5+NLCD - SVD XGBoost 0.64 
ASOS+SOLUS - - XGBoost 0.66 
ERA5+SOLUS SMOTE PCA XGBoost 0.64 
ASOS+ERA5 - - XGBoost 0.64 
ASOS+ERA5+NLCD - PCA XGBoost 0.66 
ASOS+NLCD+SOLUS SMOTE PCA XGBoost 0.68 
ERA5+NLCD+SOLUS SMOTE - Neural Net 0.61 
ASOS+ERA5+NLCD 
+SOLUS 

SMOTE PCA XGBoost 0.70 

SOLUS) achieved the highest Macro F1 Score of 0.70, highlighting the value 
of multimodal environmental data. Our findings indicate that as the number of 
datasets increases, it leads to a higher number of input features. In these cases, 
SMOTE and PCA become particularly useful in improving classification perfor-
mance. XGBoost without PCA achieved an F1 macro of 0.68, whereas without 
oversampling, it reached 0.64. Furthermore, our results consistently show that 
XGBoost outperforms other models, making it the most effective choice for land-
slide prediction across different dataset configurations. The highest-performing 
model (XGBoost trained on the full dataset with SMOTE and PCA) achieves a 
Macro F1 Score of 0.70. XGBoost approach is able to capture complex interac-
tions between environmental variables better than simpler models. Interestingly, 
neural networks underperformed in our experiments, likely due to high-class 
imbalance. Even though we used weighted cross entropy and trained on synthet-
ically oversampled data, our experiments showed that neural networks could 
not generalize well. Our experiments demonstrate that combining multiple data 
sources, leveraging oversampling techniques, and applying dimensionality reduc-

Table 2. Individual class performance. Hit rate measures correctly detected positives, 
while false alarm rate measures incorrectly detected negatives as positives. 

Metric No landslide Low probability High probability 
Hit Rate 96.5% 52.2% 76.5% 
False Alarm Rate 2.7% 54.7% 43.5%
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tion contribute to enhanced predictive accuracy. These findings underscore the 
importance of multimodal data integration and preprocessing to improve land-
slide prediction models. 

To further evaluate the best model’s performance (XGBoost with SMOTE 
and PCA trained on 4 datasets combined), we conduct a class-wise analysis of 
hit and false alarm rates, as shown in Table 2. For the “No Landslide” class, the 
model achieves a high hit rate (96.5%) and a low false alarm rate (2.7%), indi-
cating strong performance in identifying non-landslide events. This suggests that 
the model is well-calibrated for detecting stable conditions but may be biased 
toward the majority class due to dataset imbalance. The hit rate for the “Low 
Probability” class is 52.2%, meaning nearly half of the low-probability land-
slides are missed. The false alarm rate (54.7%) is high, indicating that many 
events are incorrectly classified as low probability when they belong to other 
classes. For the “High Probability” class, the model performs better, with a hit 
rate of 76.5%, meaning it detects most of the high-risk landslide cases. How-
ever, the false alarm rate of 43.5% suggests that many non-landslide events are 
misclassified as high probability, leading to potential over-warning situations. 
From a disaster management perspective, these results are acceptable if the pri-
mary goal is to predict high-risk landslides, as the model successfully captures 
most major events. Additionally, the low detection of low-probability landslides 
(HR = 52.2%) means that smaller-scale events are often overlooked, which could 
be a concern in regions where even minor landslides pose significant risks. 

Next, we investigate which features contribute the most to the landslide 
detection, and the results are shown in Table 4. For this experiment, we analyze 
the best-performing model, XGBoost with SMOTE and PCA. After training 
the model, we analyze the principal components that had the highest influ-
ence on predictions and backtrack their contributions to the original attributes. 
The results reveal that important features originate from all four datasets, 
demonstrating that an integrated approach leveraging multiple data modalities 
enhances predictive performance. Notably, land cover attributes from NLCD and 
soil composition features from SOLUS appear frequently, highlighting the strong 
influence of terrain and soil properties on landslide susceptibility. Additionally, 
meteorological attributes from ERA5 and ASOS, such as horizontal wind speed, 
lake bottom temperature, and cloud layer height, emphasize the role of atmo-
spheric conditions in triggering landslides. These findings reinforce the impor-
tance of combining static environmental features and dynamic weather patterns 
to improve landslide risk assessment, ultimately supporting the development of 
more accurate and reliable predictive models (Table 3). 

To assess individual feature contributions without dimensionality reduction, 
we train XGBoost on the original dataset with class weights. The results, shown 
in Table 4, reveal that while some features remain consistent with the PCA-
transformed model, such as evergreen forest area (NLCD) and coarse sand 
percentage (SOLUS), others differ. Notably, features like precipitation amount 
(ASOS), soil moisture content (ERA5), and soil chemistry such as pH and 
gypsum content (SOLUS) emerges, indicating that training on raw data high-
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Table 3. Top features ranked by importance from the model trained on the PCA-
reduced dataset, listed in decreasing order. 

Feature Source 
Area of Evergreen Forest NLCD 
Lake bottom temperature ERA5 
Fine sand% (5cm depth) SOLUS 
Horizontal speed of air (mean) ERA5 
Horizontal speed of air (max) ERA5 
Very Coarse sand% (15cm depth) SOLUS 
Developed, Low Intensity NLCD 
Areas dominated by shrubs NLCD 
Area of Barren Land (Rock/Sand/Clay) NLCD 
Thickness of the uppermost layer of inland water bodies ERA5 
Height of the lowest cloud layer ASOS 
Coarse sand% (5cm depth) SOLUS 
Area of Open Water NLCD 
Area of Pasture/Hay NLCD 

lights additional factors that PCA de-emphasized. Despite variations in indi-
vidual features, key environmental patterns persist. Water availability in soil 
remains critical, as reflected in soil moisture, precipitation, and soil water vol-
umecfeatures, while soil composition plays a significant role. Additionally, soil 
temperature variations at different depths (ERA5) emerge as important factors, 
further emphasizing the role of subsurface conditions in landslide susceptibil-
ity. Crucially, significant features continue to originate from all four datasets, 
reinforcing the importance of an integrated approach. While PCA enhances fea-
ture abstraction, training on original data with class weights preserves explicit 
environmental variables, ensuring interpretability in landslide risk assessment. 
These results highlight how different modeling strategies influence feature selec-
tion while maintaining consistency in broader predictive patterns. 

In the next experiment, we evaluate landslide detection performance across 
six states using the macro F1 score, comparing three model setups: state-specific 
models trained individually for each state, an all-states model trained on data 
from all six states, and a model trained on all states except Minnesota (MN). 
Minnesota is the only state with three classes, while all other states have two 
classes. The results in Table 5 show that state-specific models generally perform 
well, as they are tailored to the unique characteristics of each region. However, 
the all-states model improves performance in MN (0.68 vs. 0.66 in the state 
specific model) by providing additional training examples for the underrepre-
sented class. In contrast, states with only two classes experience a decline in 
performance with the all-states model, as the introduction of an additional class
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Table 4. Top features ranked by importance from the model trained on the original 
dataset, listed in decreasing order. 

Feature Source PCA Top Feature? 
Area of Evergreen Forest NLCD Yes 
1 h precipitation amount (mean) ASOS No 
Volume of water in soil layer 1 (0–7 cm) ERA5 No 
Silt content% (30 cm depth) SOLUS No 
Oven-dry bulk density (60 cm depth) SOLUS No 
Amount of rain intercepted by foliage and 
water from dew (mean) ERA5 No 
Sodium Adsorption Ratio (5 cm depth) SOLUS No 
Air temperature ASOS No 
Temperature of the surface of the Earth (std) ERA5 No 
Soil temperature at 28–100 cm (std) ERA5 No 
Soil pH(60 cm depth) SOLUS No 
Gypsum content (100 cm depth) SOLUS No 
Coarse sand% (5 cm depth) SOLUS Yes 
Soil pH(0 cm depth) SOLUS No 
Coarse sand% (15 cm depth) SOLUS Yes 

creates confusion. Notably, excluding MN from training enhances performance 
in certain two-class states, such as North Dakota, where the macro F1 increases 
from 0.76 to 0.81. These results indicate that class distribution differences across 
states impacts model performance and a single model trained on all states may 
not be optimal for every region. 

Next, we compare the performance of seasonal models with that of the overall 
model. To achieve this, we categorize the data into four seasons: Summer (June– 

Table 5. Performance comparison between state-specific models and an overall model 
trained on all states. 

State Classes State Model All-States Model 
Model Excluding MN 

Minnesota (MN) 3 0.66 0.68 -NA-

Iowa (IA) 2 0.72 0.70 0.73 

North Dakota (ND) 2 0.76 0.68 0.81 

South Dakota (SD) 2 0.63 0.68 0.65 
Michigan (MI) 2 0.67 0.67 0.68 

Wisconsin (WI) 2 0.74 0.73 0.73
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Table 6. Performance comparison between season-specific all-states models and an 
overall all-states model. 

Season Time period Seasonal model Overall model 
Summer Jun-Aug 0.56 0.72 

Fall Sep-Nov 0.47 0.49 

Winter Dec-Feb 0.50 0.50 
Spring Mar-May 0.64 0.65 

August), Winter (December–February), Fall (September–November), and Spring 
(March–May). The results of this comparison are presented in Table 6. Our anal-
ysis indicates that all seasonal models are affected by temporal splitting. Except 
for Winter, the overall model consistently outperforms the seasonal models. In 
the Winter months, performance remains unchanged due to the limited number 
of landslide occurrences in the testing year. Only two landslides were recorded 
in these months, and neither model successfully identified them. 

6 Conclusion 

In this study, we develop a machine learning framework for landslide predic-
tion by integrating multimodal environmental datasets, combining static and 
temporal attributes from ASOS, NLCD, SOLUS, and ERA5-Land. By fram-
ing landslide detection as a multiclass classification problem, we evaluate vari-
ous machine learning models while addressing the challenges of data imbalance 
through oversampling techniques such as SMOTE and class-weighted training. 
Our results demonstrate that integrating all four datasets enhances predictive 
performance, with XGBoost trained on SMOTE-balanced, PCA-reduced data 
achieving the highest macro F1-score. 

Our analysis highlights the importance of both meteorological and land-based 
attributes, with features from all datasets contributing significantly to model pre-
dictions. But despite achieving strong overall performance, our class-wise evalu-
ation reveals limitations in detecting low-probability landslides, emphasizing the 
trade-off between reducing false alarms and capturing rare events. We provide 
insights into how environmental conditions impact landslide susceptibility by 
comparing models across states and seasons. This work underscores the value of 
integrating diverse data sources and applying advanced machine learning tech-
niques to predict natural disasters more effectively. Future work could explore 
further improvements in the model in generalization, including using additional 
remote sensing data and dynamic aggregation of features. 
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