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Abstract

The American health care system is rife with perverse

incentives. Providers are reimbursed for providing more

care rather than preventive or higher quality care. Starting

in 2012, the Affordable Care Act (ACA) sets Medicare

reimbursement rates based on hospital performance for 30-

day preventable readmissions relative to expectations using

3 specific target diagnoses (AMI, CHF, and PN). This may

have introduced an incentive for hospitals to under-diagnose

these illnesses by substituting related diagnoses for which

they will not be held accountable. We identify Markov

blankets, diagnoses that can shield target diagnoses from

the rest of the disease network. Each target diagnosis

can be accurately identified and inferred from a small

subset of related diagnoses. This work suggests several

important directions for evaluating implementation of this

component of the ACA. Specifically, this method can be

used for problems such as identifying true cases with target

diagnoses, estimating the extent of gaming via substitute

diagnoses, and also to suggest related sets of diagnoses

which, in combination, may provide more stable methods

for setting reimbursement rates.

1 Introduction

Under §3025 of the Affordable Care Act (ACA), as
of October 1, 2012 hospital reimbursements have been
based on performance relative to preventable 30-day
Medicare hospital readmission rates observed in hospi-
tals with similar predicted risk profiles. Three specific
diagnoses are used to track reimbursement rates: acute
myocardial infarction (AMI), congestive heart failure
(CHF), and pneumonia (PN). As a direct result of this
change in the structure of Medicare reimbursements,
there is now more focus on problems such as the abil-
ity of health care providers to identify changing pre-
dictors of 30-day hospital readmissions [4, 5, 13], as
well as to identify characteristics of individuals and
providers associated with above-average levels of read-
mission risk. Hospitals that perform below expectations
will see a reduction of up to 1% in Medicare-based reim-
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bursements for services related to all diagnostic-related
groups (DRGs). Based on performance levels in 2010,
these targets would have placed half of all hospitals in
the under-performing group. In coming years, addi-
tional diagnoses will be added to the list used to de-
termine reimbursement rates.

Because hospitals cannot be penalized for diagnoses
they do not make, physicians are incentivized to choose
similar, but distinct, diagnoses for criterion diagnoses.
For example, a patient who is admitted to a hospital
with AMI may initially be diagnosed as having chest
pains or coronary atherosclerosis. If this patient was
subsequently readmitted within the following 30 days,
this diagnosis could not be used to penalize the hospital
for poor performance. Similarly, PN may initially be
diagnosed as having acute bronchitis or an upper res-
piratory infection, and CHF may instead be diagnosed
at first as chronic obstructive pulmonary disease. In
practice, only those assessed as having the lowest risk
of 30-day readmission may be likely to receive the target
diagnosis.

However, several specific diagnoses are likely to co-
occur with the target diagnosis and some procedures
(e.g., angioplasty) may be strongly indicative of a spe-
cific underlying true diagnoses (e.g., AMI), serving as
good proxy indicators of the true diagnosis. Evidence
for changes to clinical practice, diagnoses, and associ-
ated procedures in response to changes in reimburse-
ment has been well-documented for more than 30 years
e.g., [11] and there is reason to suspect that similar
changes are already occurring due to the most recent
changes enacted under the ACA. One way of estimat-
ing the extent of these changes, and identifying cases
that represent the true diagnoses of criterion diagnoses,
is considering diagnoses as a set of connected nodes in
a graph (connected by aspects such as co-occurrence).
The Markov blanket (MB) for a node is the set of nodes
that shield it from the rest of the network. Previous
studies have shown that knowing the Markov blanket of
a diagnosis node is all that is required in order to predict
the value of the criterion, either by classification or re-
gression [10, 7, 8]. If the MB of a specific diagnosis can
be identified prior to a policy change, it may be used to
more accurately identify the set of criterion diagnoses



following the policy change, which can in turn be used
to estimate true cases, as well as the extent of gaming
of diagnoses which will occur due to the policy change.

In this paper, we investigate these issues in a se-
ries of experiments aimed at answering these important
questions: 1) Which diagnoses can be used to approxi-
mate the MB of AMI, CHF, and PN? 2) Can a similar
procedure be used to identify the MB for diagnoses for
which similar policy changes have been enacted in the
past, such as sepsis?

Our experiments used discharge data from the Cal-
ifornia State Inpatient Databases (SID), obtained from
the Healthcare Cost and Utilization Project (HCUP)
provided by the Agency for Healthcare Research and
Quality1. The SID is a component of the HCUP, a
partnership between federal and state governments and
industry, which tracks all hospital admissions at the in-
dividual level. We included all data from January 2003
through December 2011. Patients were excluded from
the analysis if they did not have Medicare or Medicaid
as the primary payer and if they were younger than 19
years of age. The final dataset included 16,736,927 dis-
charge records, with the primary set of features used in
our experiences being the Clinical Classifications Soft-
ware (CCS) diagnoses for ICD9-CM. CCS codes, de-
veloped as part of the HCUP, are designed to clus-
ter patient diagnoses (hereinafter DX) and procedures
(hereinafter PX) into a manageable number of clinically
meaningful categories (272 diagnoses and 231 procedure
codes).

The rest of the paper is organized as follows. The
model that we use in the experiments is described in
Section 3. Data and experimental setup are described
in Section 4, and the results are discussed in Section 5.
We conclude the paper by providing interesting areas of
future studies.

2 Related Work

Some prior research has examined the role of comorbid
conditions with the aim of identifying longer-term ef-
fects and mortality risk with a single target diagnosis in
mind. Each of our target diagnoses has been considered
in this fashion: AMI [12], CHF [1], PN [15], and sep-
sis [14]. To the best of our knowledge, ours is the first
study concerned with identifying co-occurring diagnoses
and procedures that can themselves serve as a proxy in-
dicator of the target diagnosis, something necessary to

1HCUP State Inpatient Databases (SID), Health-
care Cost and Utilization Project (HCUP). 2003-
2011. Agency for Healthcare Research and Quality,

Rockville, MD. www.hcupus.ahrq.gov/sidoverview.jsp

http://www.ahrq.gov/research/data/hcup/index.html

identify potential instances of hospitals gaming the sys-
tem to reduce risk exposure.

3 Model Description

In our quest to find a minimum subset of the most in-
formative diagnoses associated with the diagnoses we
analyse we start with identifying DXs and procedures
that most frequently co-occur with our Target DX. The
most frequent co-occurrence by itself is necessary but
not sufficient to establish appropriate approximation of
the Markov Blanket. Therefore we apply two different
methodologies: a heuristic we defined based on PageR-
ank, and an established approximation of the Markov
Blanket using Hilbert-Schmidt Independence Criterion
(HSIC).

3.1 Approximating the Markov Blanket (MB)
using PageRank We are not able to build a Bayesian
network since it is not clear which diagnoses, procedures
are parents, or children and we therefore opt for a
Markov Network where the dependencies are defined
by co-occurrences. However, every node that co-occurs
with our Target DX is an element of a Markov blanket
by definition. Therefore, we need to make a distinction
between the nodes.

Having the weights defined by co-occurrences and
information from the structure of the network of DXs
and PXs that co-occur with our Target DX we could
use PageRank value as a criterion to identify important
nodes. For a subset of highly important nodes, nodes
with highest PageRank we could then say that it
represents an approximate Markov Blanket for our
Target DX.

3.2 Approximating the Markov Blanket (MB)
using HSIC As an established machine learning ap-
proach we will adopt a feature selection method based
on an efficient approximation of the Markov blanket
(MB), which is a set of variables that can shield a cer-
tain DX from the rest of diagnoses and procedures [9].
MB-based feature selection process has been shown to
result in a theoretically optimal set of features [16].
However, it’s computational cost is prohibitive for ap-
plication to high dimensional Electronic Health Records
(EHR) data.

Therefore, instead of relying on conditional inde-
pendence or network structure learning, we will use
HSIC as a measure of dependence among variables in a
kernel-induced space. This will allow effective approx-
imation of the MB that consists of multiple dependent
features rather than being limited to a single feature.
Benefits of using HSIC include: 1) It can detect any de-
pendence between two variable sets with a universal ker-



nel in high dimensional kernel space; 2) It can measure
the dependence between both discrete and continuous
variables; and 3) It is easy to compute from the kernel
matrices without density estimation. Given a set of fea-
tures, we can check whether the set is the MB (MBi)
of feature Fi.

However, evaluating all subsets of F for this prop-
erty is prohibitively costly. Therefore, to reduce the
search cost we will evaluate some MB candidate sub-
sets. Often, there might not be an exact MB for a
given feature, but we can still identify an approximat-
ing MB, which largely subsumes the information about
this feature, so that we can remove this feature with lit-
tle useful information lost. In this work we use a simple
but effective method to find an approximating MB. The
proposed method consists of 3 steps: 1) Identifying MB
candidates, 2) Screening MB candidates, and 3) Feature
selection.

In particular, we compute a Markov blanket candi-
date MBi for a feature Fi such that each of its features
FMBi

satisfies: argmaxFCHSIC(KFC ,Ki), where FC ∈
Bi −MBi ∪ {FMBi}

In order to determine whether the approximate
candidate MB of feature Fi (referred to as MBi) can
be regarded as an actual approximation of the Markov
blanket, we use the following screen test:

(3.1) HSIC(MBi, C) > HSIC(MBi ∪ Fi, C)

HSIC(MBi, C) > HSIC(Fi, C)

∧ HSIC(MBi, Fi) > HSIC(Fi, C)
(3.2)

In this test, C is the target variable, and HSIC(X,Y )
is defined as the dependence measure between two vari-
able sets X and Y . Condition 3.1 is satisfied by an
irrelevant feature, while Condition 3.2 is satisfied by a
redundant feature. By applying a Markov blanket to
select the minimum subset of the most informative di-
agnoses and procedures associated with diagnoses that
we analyze, we hope to be able to estimate true preva-
lence of various diseases. Additionally we would like to
provide more robust methods to estimate true hospital
readmission rates where intentional under-diagnosis of
such sentinel diagnoses is likely.

4 Data Description and Experimental Setup

4.1 Data Description The data that we use in our
experiments comes from the HCUP family of databases,
and the raw data consists of patient hospital visit
records from California’s SID in the period from Jan-
uary 2003 up to December 2011. Each record consists
of a number of attributes, which are explained in detail
on the HCUP website1. This database contains more

1http://www.hcup-us.ahrq.gov/db/state/siddist/sid_

multivar.jsp

than 35 million (35,844,800) inpatient discharge records
over the specified 9 years for 19,319,350 distinct patients
in 474 hospitals (436 AHAID identified; about 400 per
year). The information is not specific to a group of hos-
pitals, but rather represents the data for the entire state.
The database also includes demographic information for
each patient (like age, birth year, sex, race), diagnosis
(primary and up to 24 secondary), procedures (up to
21), information about hospital stays, and other infor-
mation (including length of stay, total charges, type of
payment and payer, discharge month, and survival in-
formation).

In addition to addressing the problem that we are
considering, using this data could potentially give us
insight into many healthcare problems. For instance, we
can explore and correct global trends of Target diseases
which intrigues many healthcare practitioners [3, 6].

After excluding patients younger than 19 years of
age and patients that did not have Medicare or Medicaid
as the primary payer, we were left with 16,736,927
discharge records. Table 1 shows the frequency of each
Target DX in the SID data set, while Figure 1 displays
this frequency over time.

Target DX
Sepsis AMI CHF PN

Freq. 1,027,088 544,228 2,907,625 1,577,822

Table 1: Each Target DX frequency in the data set

4.2 Experimental Setup We first identified subsets
of records containing each Target DX (Sepsis, AMI,
CHF, PN). Within each subset, diagnoses and proce-
dures were ranked by pagerank values in a network
of co-occurrence with Target DX and networks of co-
occurrences without Target DX were generated as well.

As proof of concept for this method, exactly 50 DX
and PR (roughly 10%, accounting for approximately 95
of records including each Target DX) were identified.
In general, the pagerank value of the first selected DX
is approximately 10 times higher than the last DX
selected.

10 replicate experiments were performed using a
randomly selected set of 1000 examples with each Target
DX and a set of 1000 examples where the Target DX
does not appear. The goal of these analyses was to
identify the subset of DXs that can be used to accurately
predict the presence of Target DX in the records. To
achieve this goal we identified the approximate MB
for each Target DX. Performance was evaluated by
comparing classification accuracy using only the DXs
in the MB against using the entire set of DXs.



Figure 1: Monthly admission rates in a period 2003 up to 2011 for Target DX (Sepsis, AMI, CHF, PN)

5 Results

Each of the 4 Target DX we examined in this study
was fairly prevalent. As shown in Table 1, CHF was
most common (17.37%), followed by PN (9.43%), sepsis
(6.13%), and AMI (3.25%). There were also consider-
able seasonal and secular trends in these Target DX.
Prevalence of sepsis increased steadily across the study
period. The three other Target DX showed gradual de-
creases in prevalence over time, but also very strong
seasonal trends. Table 4 shows the performance of MB
and PageRank methods in terms of accuracy, precision,
sensitivity, specificity, and F1. Both measures perform
well on accuracy and precision for sepsis. For other di-
agnoses, accuracy is generally higher via MB, but preci-
sion is generally higher for PageRank. Excepting sepsis,
sensitivity and specificity are higher for PageRank than
MB, but F1 values are higher for MB than PageRank.

For consistency with HSIC results (below), based
on page ranks, we provide the top 7 DX/PR for sepsis
and 5 DX/PR identified for each Target DX (see Ta-
ble 2). For sepsis, the list included peritonitis, injuries,
and shock for diagnoses and tracheostomy, non-cardiac
catheterization, ostomy, and intubation. For AMI, no
diagnoses were identified, but CABG, angioplasty, coro-
nary thrombolysis, cardiac catheterization, and urinary
endoscopy were identified. For CHF, heart valve disor-
ders, carditis, and pulmonary heart disease were iden-
tified diagnoses, and heart valve procedures and Swan-
Ganz catheterization were the procedures. Finally, for
PN, respiratory failure and shock were identified diag-
noses and tracheostomy, bronchoscopy, and other respi-
ratory procedures were identified.

As shown in Table 3, the Markov blanket for each

Target DX consisted of a small subset of common diag-
noses and procedures. For sepsis, the MB included hem-
orrhagic disorders; intestinal infection; urinary tract in-
fections; skin ulcers; complications of device, implant, or
graft; and other injuries as diagnoses and non-cardiac
catheterization as a procedure. For AMI, the MB in-
cluded atherosclerosis and rehabilitation care for di-
agnoses and endoscopy of the urinary tract, echocar-
diogram, and other diagnostic procedures. For CHF,
the MB included other nervous system disorders, es-
sential hypertension, hypertension with complications,
atherosclerosis, and respiratory failure as diagnoses; no
procedures were included in the MB. Finally, for PN, the
MB included diabetes without complications, hemor-
rhagic disorders, hypertension with complications, con-
gestive heart failure, and other lower respiratory disease;
no procedures were included in the MB.

6 Conclusion

The US healthcare system is rife with opportunities
for perverse incentives. Implementation of any new
healthcare policy results in changes within healthcare
system in order to minimize the adverse consequences
of the policy change for healthcare providers. Changes
that began in 2012 under the Affordable Care Act can be
expected to reduce the number of individuals receiving
target diagnoses of AMI, CHF, and PN as healthcare
providers move to reduce their exposure to adverse
consequences of hospital readmissions.

In this paper, we propose two novel applications to
the problem of under-diagnosing, specifically, Markov
blankets and page rank. We find that, for each Tar-
get DX, and sepsis, a small number of diagnoses and



Sepsis

Diagnoses

148 Peritonitis and intestinal abscess

244 Other injuries and cond. due to ext. causes

249 Shock

Procedures

34 Tracheostomy; temporary and permanent

54 Other vasc. catheteriz.; not heart

73 Ileostomy and other enterostomy

216 Resp. intub. and mech. vent.

AMI

Diagnoses

None

Procedures

44 Coronary artery bypass graft (CABG)

45 Percutan. translum. coron. angiopl. (PTCA)

46 Coronary thrombolysis

47 Diag. cardiac catheteriz.; coron. arteriogr.

100 Endosc. and endosc. biopsy of the urin. tract

CHF

Diagnoses

96 Heart valve disorders

97 Peri-; endo-; and myoc.;
cardiomyop. (except TB or STD)

103 Pulmonary heart disease

Procedures

43 Heart valve procedures

204 Swan-Ganz catheterization for monitoring

PN

Diagnoses

131 Resp. failure; insufficiency; arrest (adult)

249 Shock

Procedures

34 Tracheostomy; temporary and permanent

37 Diag. bronchosc. and biopsy of bronchus

41 Other non-OR therap. proc. on resp. sys.

Table 2: Table showing the diagnoses used to form the
PageRank approximated MB for each target DX

procedures can serve to shield the target diagnosis from
the rest of the disease network. Performance using this
subset of diagnoses suggests performance that gener-
ally quite high for accuracy and precision. Additionally,
these diagnoses and procedures often point to clinically
meaningful patterns. In general, while nearly all of the
selected diagnoses and procedures make sense, with con-
siderable overlap between MB and PageRank methods,
it is generally the case that the associations are more
directly obvious for selections via PageRank, and some-
what subtler for selections via MB. The results suggest
that page rank may be useful for providing an initial
screening of potentially useful diagnoses. However, it is
unclear which will ultimately prove most useful as the

Sepsis

Diagnoses

62 Coagulation and hemorrhagic disorders

135 Intestinal infection

159 Urinary tract infections

199 Chronic ulcer of skin

237 Complication of device; implant or graft

244 Other injuries and cond. due to ext. causes

Procedures

54 Other vascular catheterization; not heart

AMI

Diagnoses

101 Coron. atheroscl. and other heart dis.

254 Rehab. care; fit. of prosth.; and adj. of devices

Procedures

100 Endosc. and endosc. biopsy of the urinary tract

193 Diag. ultrasound of heart (echocardiogram)

227 Other diagnostic procedures

CHF

Diagnoses

95 Other nervous system disorders

98 Essential hypertension

99 Hypert. with compl. and sec. hypert.

101 Cor. atheroscl. and other heart dis.

131 Resp. fail.; insuffic.; arrest (adult)

Procedures

None

PN

Diagnoses

49 Diabetes mellitus without complication

62 Coagulation and hemorrhagic disorders

99 Hypert. with compl. and sec. hypertension

108 Congestive heart failure; nonhypertensive

133 Other lower respiratory disease

Procedures

None

Table 3: Table showing the diagnoses used to form the
HSIC approximation of MB for each target DX

network of diagnoses and procedures surrounding a Tar-
get DX change in response to policy. To some extent,
this problem is likely to pose a continuously moving tar-
get and so future research should more fully develop un-
derstanding of the temporal forces as well to determine
whether, for example, the indicators of AMI depend on
month of admission.

The approach used here is likely to be useful in the
analysis of healthcare data in several ways. First, it
provides a set of associated diagnoses and procedures
that can be used to “impute” missing or unobserved
data in an effort to estimate true prevalence of various
diseases. Second, it can be used to estimate the extent
of “gaming” of diagnoses in response to policy changes.



DX code
Sepsis AMI CHF PN

Acc (All) 91.4% 79.6% 77.5% 73.4%

Acc (PR) 91.4% 71.2% 65% 64.8%

Acc (HSIC) 91.45% 76% 72.6% 74.3%

Table 4: The classification accuracy for each Target DX
using the MB alone (generated by PageRank (PR) and
generated by HSIC) compared with the entire set of DXs

This suggests that our approach may also prove use-
ful in order to adjust estimates for this kind of gaming
and could also provide more robust methods to esti-
mate true hospital readmission rates where intentional
under-diagnosis of such sentinel diagnoses is likely. His-
torically, there are several precedents for this kind of
under-reporting. The effects of the Omnibus Budget
Reconciliation Act of 1987 (OBRA87) was observed to
have considerable impact of medical practice in nursing
home settings [2].
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