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Abstract

Extended power transmission outages caused by weather events can significantly impact
the economy, infrastructure, and residents’ quality of life in affected regions. One of the
challenges is providing early, accurate warnings for these disruptions. To address this
challenge, we introduce HMN-RTS, a hierarchical multiplex network designed to predict
the duration of a forced transmission outage by leveraging a multi-modal approach. We
investigate outage duration prediction over two years at the county level, focusing on

the states of the Pacific Northwest region, including Idaho, California, Montana, Wash-
ington, and Oregon. The multiplex network layers collect diverse data sources, includ-
ing information about power outages, weather data, weather forecasts, lightning, land
cover, transmission lines, and social media. Our findings demonstrate that this approach
enhances the accuracy of predicting power outage duration. The HMIN-RTS model
improves 3 hours ahead outage predictions, achieving a macro F1 score of 0.79 com-
pared to the best alternative of 0.73 for a five-class classification. The HMN-RTS model
provides valuable predictions of outage duration across multiple time horizons and sea-
sons, enabling grid operators to implement timely outage mitigation strategies. Overall,
the results underscore the HMN-RTS model’s capability to deliver early and practical risk
assessments.

1 Introduction

Adverse weather events, such as thunderstorms and freezing rain, can severely disrupt power
systems, resulting in critical failures, compromised quality of life, and significant financial
losses [1]. Historically, research on power outages has centered on statistical methods, includ-
ing Bayesian additive tree models and regression learning [2]. Several studies have specifically

PLOS One | https://doi.org/10.1371/journal.pone.0326752 June 25, 2025 1/ 21



https://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0326752&domain=pdf&date_stamp=2025-06-25
https://doi.org/10.1371/journal.pone.0326752
https://creativecommons.org/licenses/by/4.0/
https://www.bpa.gov/
https://mesonet.agron.iastate.edu/request/download.phtml
https://mesonet.agron.iastate.edu/request/download.phtml
https://www.nhgis.org/geographic-crosswalks
https://www1.ncdc.noaa.gov/pub/data/swdi/database-csv/v2/
https://www1.ncdc.noaa.gov/pub/data/swdi/database-csv/v2/
https://open-meteo.com/
https://orcid.org/0000-0001-6266-3772
https://orcid.org/0009-0003-7559-3533
mailto:rafaa.aljurbua@temple.edu
https://doi.org/10.1371/journal.pone.0326752

PLOS One

Early severity prediction of forced transmission outages using multi-modal hierarchical multiplex networks

According to Twitter's and Reddit’s Terms of
Service, we may only distribute Tweet IDs,
Reddit IDs. We’re not able to share datasets
containing the content of tweets or Reddit
posts. We also share Twitter and Reddit
embeddings. We provided a list of Tweet IDs,
Reddit IDs along with the embedding in the
following Github repository:
https://github.com/RAljurbua/HMN-RTS.

Funding: This research was sponsored by the
U. S. Army Engineer Research and Development
Center (ERDC) and was accomplished under
Cooperative Agreement Number
W9132V-23-2-0002. The views and conclusions
contained in this document are those of the
authors and should not be interpreted as
representing the official policies, either
expressed or implied, of the U.S. Army
Research Engineer and Development Center
(ERDC) or the U.S. Government. The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of
the manuscript.

Competing interests: The authors have
declared that no competing interests exist.

investigated outage durations, applying traditional machine learning approaches such as ran-
dom forests and Bayesian deep learning to the KSTAR disruption database while identifying
potential precursors [3-7]. In addition, researchers have explored natural factors (for exam-
ple, rainfall) that influence outage duration [8], with some employing adaptive ensemble tech-
niques. For instance, one study evaluated various grid-hardening strategies by developing a
hybrid mechanistic power-outage learning model [9]. Phasor Measurement Unit (PMU) data
has also been a key resource for analyzing power outages [10], and graph-theoretic frame-
works have been leveraged to enhance outage predictions [11,12]. However, many of these
methodologies rely on a single data source, restricting their scope. To address this limita-
tion, we integrate multiple data from multiple sources such as vegetation, weather, and social
Sensors.

Power outage predictions heavily rely on weather data, often becoming incomplete dur-
ing extreme weather events. While previous research explored various methods to address
this issue, the potential advantages of integrating noisy weather data with insights drawn
from social media posts remain unexplored. Social media platforms have increasingly become
central to communication in society [13,14], especially for disseminating urgent informa-
tion during severe weather situations [15]. Studies show that weather conditions significantly
impact social media activity [16]. Social media data can offer valuable insights into the effects
of weather on infrastructure and human behavior while providing real-time feedback to those
monitoring the situation [17]. Furthermore, research indicates a correlation between the
volume of weather-related tweets and prevailing weather conditions [18]. Therefore, merg-
ing social media data with traditional weather sensor data can enhance predictions of power
outages during extreme weather events.

Predicting power outages is critical, but it is equally essential to forecast the duration of
these outages to ensure adequate response and mitigation strategies. Various statistical tech-
niques have been used to estimate the duration of power outages, such as Cox proportional
hazards regression and multivariate adaptive regression [19]. However, these methods are
limited in their ability to capture the dynamic and seasonal variations that may influence out-
age duration, as well as their reliance on simplified assumptions about the underlying data.

In the era of machine learning, several studies have utilized machine learning models [20],
including Random Forest [21] and Extreme Gradient Boosting [22], to predict power outage
durations. However, the potential advantages of multiplex networks that integrate data from
multiple sources to predict outage durations remain largely unexplored. In our previous work
[23], we demonstrated that multiplex networks effectively predict the occurrence of power
outages. In our follow-up study [24], we developed a spatiotemporal multiplex network model
to predict forced power outages in distribution grids. While this work advances outage pre-
diction using multiplex structures, it did not adopt a hierarchical modeling approach (outage
occurrence followed by outage severity) or incorporate social media information. However,
our other study [25], which successfully applied multiplex networks to predict power outage
duration, did not investigate seasonal variations or assess the relative value of the multiplex
network compared to a single-layer model.

In this work, we present HMN-RTS, a hierarchical spatiotemporal multiplex network that
integrates structured data, such as weather, land cover, and transmission line details, with
unstructured data from social sensors collected over time and space. HMN-RTS predicts
power outage durations up to three hours in advance by capturing both environmental condi-
tions and changes in social media activity. Designed to provide early warnings of outage risks,
the model has the potential to enhance outage management and response efforts at the county
level across the U.S. Pacific Northwest.
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We incorporate weather forecast data to build a predictive forecast layer and conduct a
detailed analysis of seasonal patterns in outage prediction across the region. To evaluate the
advantages of our multiplex network over traditional single-layer models, we conduct a com-
parative experiment focused on outage severity prediction. Furthermore, we enhance the
model architecture, resulting in improved performance relative to baseline approaches. The
main contributions of this paper include the following:

1. Enhance the predictive model architecture to improve the accuracy of forced power
outage predictions.

2. Conduct detailed Hierarchical Spatiotemporal Multiplex Network analysis to gain an
in-depth understanding of the network.

3. Investigate the effectiveness of the multiplex network compare to a single-layer model.

4. Integrate weather forecast as an additional data source and construct a forecast layer
to examine seasonal predictions at the county level across the U.S. Pacific Northwest
region.

2 Related work

The related work for the proposed approach can be summarized into four key components: 1)
predicting the duration of power outages, 2) managing missing and incomplete weather data,
3) the significance of the multi-modal approach, and 4) the development of a hierarchical spa-
tiotemporal multiplex network combined with multi-modal data for predicting power outage
durations.

2.1 Weather data

The Automated Surface Observing Systems (ASOS) ceilometer measures clouds up to 12,000
feet (3.6 km). However, it may compromise the accuracy of ASOS data due to incomplete
atmospheric coverage, leading to missing data [26]. Missing data is also a common challenge
resulting from sensor malfunctions and cloud contamination [27]. Several strategies have
been explored for managing missing data. For example, employing regression-based estima-
tion [28] or using multiple imputations to replace missing data [29]. Other common meth-
ods apply mean imputation [30]. However, it is crucial to handle missing data carefully to
ensure an accurate analysis, as ignoring missing instances can lead to significant risks in the
analysis. Further, the hybrid-triggered dynamic-consensus control for DC microgrids [31]
optimizes data efficiency, which is relevant for improving system performance in predicting
power outage durations with diverse data sources.

2.2 Multi-modal approach

Combining multiple forecasts often outperforms the accuracy of the best individual forecast
[32], while ensemble forecasting also provides valuable reliability assessments for predictions
[33]. Building on these advancements, recent research has focused on enhancing power out-
age prediction by employing the multi-modal approach. For example, [34] proposed an inno-
vative approach utilizing multi-level data, including weather observations and forecast infor-
mation. Similarly, [35] examined the impact of forecast uncertainties on outage predictions,
highlighting the significant roles of precipitation and wind gusts as key factors. In addition,
[36] studied the effect of lightning features on the prediction of thunderstorm outages.
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2.3 Power outage duration prediction

For utility companies, predicting power outage duration early and accurately is essential for
planning power restoration more effectively. In recent years, researchers have increasingly
turned to machine learning models to predict the duration of power outages. For instance,

a Random Forest-based model is used to predict the duration of hurricane-related power
outages using variables like wind speed and wind duration [21]. Similarly, the duration of
outages during typhoon disasters has been predicted by integrating models like Extra Tree
(ET) [22], Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (Light-
GBM), Random Forest (RF), Gradient Boosting Regression (GBR), and Decision Tree (DT).
Before the advent of machine learning, statistical methods were commonly employed to pre-
dict power outage durations. These methods include accelerated failure time regression, Cox
proportional hazards regression, Bayesian additive regression trees, regression trees, and mul-
tivariate adaptive regression splines [19]. Furthermore, combining statistical methods with
geographic information systems (GIS) has proven effective in analyzing the performance of
storm-affected urban distribution systems. For example, one study used GIS to plot data on
repair crews during winter storms to study the duration of outages [37]. Other studies have
applied Accelerated Failure Time (AFT) and Cox Proportional Hazard (CPH) models to esti-
mate the duration of storm-caused power outages [38]. Night Time Lights (NTL) imagery
data has also been utilized to assess outage duration, particularly in Puerto Rico [39]. In addi-
tion to weather-related factors, socioeconomic elements have been shown to influence outage
duration [40,41].

2.4 Multi-modal learning in a hierarchical spatiotemporal multiplex
network for predicting power outage duration

Weather data plays a crucial role in predicting power outages [42,43]. However, the high fre-
quency of missing values during severe weather events complicates learning. Our research
integrates weather data with social sensor data to address this challenge. We explore the
impact of social networks (multiplex networks) and social sensor data on predicting power
outage durations. The network structure is crucial for capturing complex interdependencies
between different data sources, thereby enhancing the accuracy and robustness of predictions
[44-47]. Similar hierarchical frameworks have demonstrated resilience under communica-
tion faults, such as in microgrid frequency regulation under PMU failures [48]. Our study is
among the first to predict power outage durations three hours in advance by incorporating
social sensors within a multiplex network framework. Specifically, we evaluate the benefits

of learning from a spatiotemporal multiplex network that combines data from eight sources:
Bonneville Power Administration power outages, Bonneville Power Administration transmis-
sion lines, weather, weather forecast, lightning, land cover, and social sensor data from two
leading platforms, Reddit and Twitter.

3 Methodology

This study evaluates the effectiveness of the proposed HMN-RTS hierarchical model, which
combines multiplex networks with multi-modal data, in improving the prediction of power
outage durations three hours in advance. The HMN-RTS model operates in two distinct
stages: first, assessing the risk of power outage occurrence, and second, estimating the sever-
ity of the predicted outage by predicting its expected duration, as illustrated in Fig 1. The
research is conducted in three main phases: (1) data collection and the construction of spa-
tiotemporal graphs, (2) the development of a spatiotemporal multiplex network for outage
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Fig 1. The HMN-RTS framework, a hierarchical spatiotemporal multiplex network, is designed for multi-modal prediction of power
outage duration.

https://doi.org/10.1371/journal.pone.0326752.g001

risk estimation, and (3) the creation of a model to predict the duration of anticipated out-
ages. Each component of this hierarchical framework is described in detail in the following
subsections.

3.1 Data collection

Previous studies have demonstrated the advantages of integrating data from various sources
to improve the prediction of the severity of power outages [23]. As a first step, we identify and
collect key factors essential for predicting outage duration. These factors include power outage
records, weather data, weather forecast data, lightning data, land cover information, transmis-
sion line data, and social sensor data from two leading platforms: Twitter (now known as X)
and Reddit. This subsection outlines in detail the data collection process.

1. Power outages: This study focuses on the U.S. Pacific Northwest region. We obtain data
on transmission service power outages spanning over 15,000 circuit miles from January
1, 2021, to December 31, 2022. The data is sourced from the Bonneville Power Admin- Al
istration (BPA), a federal agency operating in the Pacific Northwest (https://www.bpa.
gov/). BPA publicly reports all power outages, regardless of the cause. However, this
study specifically targets weather-related outages, such as those caused by ice or light-
ning. To identify these outages, we filtered the data and mapped them to their respective
counties and states using a dictionary that links each county to its Federal Information
Processing Standards (FIPS) code (https://www.nist.gov/itl/fips-general-information).
This process resulted in 2,411 weather-related outages.

2. Weather: We obtain historical weather data from Automated Surface Observing Sys-
tems (ASOS) (https://mesonet.agron.iastate.edu/request/download.phtml) stations
between January 2021 and December 2022 [26]. These stations, situated at airports, are
equipped with sensors to monitor various parameters, including temperature, pressure,
wind, and visibility obstructions. Each station is mapped to its corresponding county
and state using latitude and longitude. This process results in approximately 39 million
weather observations collected across five states. The weather dataset includes features

PLOS One | https://doi.org/10.1371/journal.pone.0326752 June 25, 2025 5/ 21



https://doi.org/10.1371/journal.pone.0326752.g001
https://www.bpa.gov/
https://www.bpa.gov/
https://www.nist.gov/itl/fips-general-information
https://mesonet.agron.iastate.edu/request/download.phtml
https://doi.org/10.1371/journal.pone.0326752

PLOS One Early severity prediction of forced transmission outages using multi-modal hierarchical multiplex networks

such as humidity, dew point temperature, pressure, precipitation, air temperature, wind

speed, wind direction, wind gust, apparent temperature, and ice accretion over 6 hours.

3. Land cover: Rapidly growing or falling trees can pose a threat to power lines, causing
damage and disruptions. To mitigate this risk, we use land cover data from the National
Historical Geographic Information System (NHGIS) [49]. This dataset includes land
cover classifications such as mixed, deciduous, and evergreen forests, sourced from
the National Land Cover Database (NLCD). To integrate this data with other informa-
tion, we utilize the GISJOIN identifier (https://www.nhgis.org/geographic-crosswalks)
provided by [49], which links counties and states using their corresponding FIPS codes.

4. Lightning: Lightning strikes during storms can damage utility assets and lead to faults.
While the ASOS database does not include data from the National Oceanic and Atmo-
spheric Administration (NOAA) (https://www.ncei.noaa.gov), we rely on NOAA’s pub-
licly available database for information specific to the selected counties and time frame.
This database provides daily counts of lightning strikes within a 0.1-degree grid cell,
along with the latitude and longitude of each strike. Using this geographic information,
we map lightning strike events to their corresponding counties and states. Our analysis
focuses on lightning activity during power outages that occurred between January 2021
and December 2022, resulting in the identification of 7,015 lightning strikes in the five
states.

5. Forecast: The ASOS database lacks forecast data. To obtain this, we utilize the Open-
Meteo API, which provides open-source weather forecasts sourced from national
weather services (https://open-meteo.com/). Open-Meteo offers weather models with a
resolution of 11 km and regional models with resolutions of 1.5 km. The database sup-
plies hourly data for various weather features, including temperature, relative humid-
ity, and wind direction. By specifying the latitudes and longitudes of the counties, we
can gather forecast data for each county based on its proximity to the nearest station.
Our analysis has focused on studying forecast data during power outages from January
2021 to December 2022, resulting in the collection of 3,959,520 observations across
five states. The forecast dataset includes features such as temperature, relative humidity,
dewpoint, precipitation, wind speed, and wind direction.

6. Transmission lines: This study emphasizes transmission line outages instead of dis-
tribution line outages. To support this focus, we gather transmission line data from
the Bonneville Power Administration (BPA) service area in the U.S. Pacific North-
west (https://www.bpa.gov/). This information is sourced from the BPA map, which
encompasses over 15,000 miles of transmission lines.

7. Social sensor: From January 2021 to December 2022, we collected social media data
using keywords related to weather and power outages, such as “blackout,” “outage,”
“power outage,” and “storm,” from January 2021 to December 2022 [50].

o Twitter, “now known as X”: Initially, we gather tweets using the snscrape tool, a
Python package designed for scraping historical tweets. We target tweets within a 10-
mile radius of specific geographic coordinates (latitude and longitude) to ensure we
capture a diverse range of posts from the neighborhood. This process results in the
collection of 8.5 million relevant tweets related to weather and power outage events.
In compliance with Twitter’s Terms of Service, we only share Tweet IDs and asso-
ciated embeddings, and we do not distribute the content of tweets. The Tweet IDs
and embeddings used in this study can be found in the GitHub (https://github.com/
RAljurbua/HMN-RTS).

«+ Reddit: We use the Reddit API to gather Reddit posts from county-specific subred-
dits. After collecting all posts and comments from these subreddits, we filtered them
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based on keywords related to weather and power outages. As a result, we obtained
353,421 posts, with 95,144 remaining after applying the keyword filtering and selec-
tion criteria. In compliance with Reddit’s Terms of Service, we only distribute Reddit
IDs and embeddings, not the content of the posts. The Reddit IDs and embeddings
used in this study are also available on the GitHub (https://github.com/RAljurbua/
HMN-RTS).

3.2 Modeling of the spatiotemporal multiplex network

We construct a Hierarchical Spatiotemporal Multiplex Network. Let G represent a spatiotem-
poral multiplex network defined as G(V,E,L,T), where: V = {v1, v, ..., v,, } indicates the set

of vertices (counties), E = {ey, €3, ..., en | indicates the set of edges, L = {l, , 15,13, 15, Is, 17, I3 }
indicates the set of layers, and T'= {#1, ,, ..., t; } indicates a set of time steps. The edges E
within each layer L represent a distinct type of relationship among the vertices V. These rela-
tionships are defined as follows:

L.

Transmission lines layer: In layer /;, two counties (u;,, vy, ) are connected if they share a
common transmission line. The weight of the edge reflects the number of transmission
lines shared between these counties.

. Power outage layer: In layer I,, two counties (u,, v}, ) are connected if they both expe-

rience a power outage on the same date. The edge weight indicates the number of power
outages shared between these counties.

. Weather layer: In certain instances, power outages are strongly influenced by weather

conditions. Thus, in layer I3, we connect nodes representing two counties (uy,, vy, )

if they exhibit similar weather characteristics. To determine this, we calculate the
Euclidean distance between each pair of vertices to capture the similarity in the feature
space. Euclidean distance, as a geometric measure of closeness in high-dimensional fea-
ture space, provides an interpretable means of quantifying environmental resemblance
in weather which can correspond to comparable stress patterns on power systems.

. Lightning layer: In layer l4, two counties (u,, v}, ) are connected if they both report a

lightning strike on the same day. The weight of the edge reflects the number of lightning
strikes shared between these counties.

. Land cover layer: In layer s, two counties (1, v;,) are connected if they share simi-

lar land cover characteristics. To determine this, we compute the Euclidean distance
between the vertices. Euclidean distance offers an interpretable way to measure envi-
ronmental similarity in land-cover features which may reflect similar impacts on power
systems.

. Forecast layer: In layer I, vertices (1, v),) are connected if their weather properties

are similar. This is because weather conditions play a significant role in power outages.
The similarity between the weather attributes of the two vertices is measured using the
Euclidean distance.

. Social sensor layers (Twitter and Reddit): In layers [; and I5, two counties are con-

nected if they both report social media activities during a power outage. The edge
weight indicates the number of shared social media posts, such as Tweets or Reddit
posts, between the counties.

This graph is used as input for the HMN-RTS model. At the end of each day, a new snap-
shot of the multiplex graph, timestamped with that day’s data, is added to capture the inter-
dependencies between counties. The model is trained using this snapshot, generating embed-
dings for the county nodes through the proposed method described in detail in the following
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subsection. The goal is to predict whether a county will experience a power outage. If an out-
age occurs, the model forecasts its severity by predicting the duration. This duration predic-
tion is based on county node embeddings and social media data (from Twitter and Reddit)
related to weather conditions and power outages.

3.3 Proposed model: Hierarchical Spatiotemporal Multiplex Network
(HMN-RTS)

This study explores the potential of a hierarchical multiplex network combined with multi-
modal data to improve the prediction of disruption severity up to three hours in advance. The
approach begins by analyzing an annotated dataset to detect weather-related power outages,
acknowledging the variation in outage frequency across states and counties. Each data entry
is labeled as one if a power outage occurs within a county during a specified time and as zero
otherwise. Subsequently, to estimate outage duration, the outages are classified into five dis-
tinct classes, as detailed in Table 1. The proposed model operates in two stages: (1) predicting
the occurrence of power outages, followed by (2) predicting outage severity by classifying the
duration of the disruptions.

3.3.1 Power outage risk prediction. The first stage of the HMN-RTS architecture focuses
on predicting the occurrence of power outages. The model leverages the multiplex snapshot
to create county-level node embeddings using a modified version of node2vec [51] that inte-
grates multiple graph layers. To construct embeddings, the model performs biased random
walks over the multiplex graph, allowing inter-layer jumps based on transition probabilities:

a-w (viyvi)  if v, € NUW (1)

' 1
B W) (viyvir) if1 #; W

7T(Vi+1 [ vi, li) X {

a (alpha) and f8 (beta) are hyperparameters that control the behavior of the random walk
across the multiplex graph. These sampled walks are then used to optimize the skip-gram
objective for node embeddings:

max > logPr(v|f(u)) ()

f ueVveNs (u)

exp(f(v)"f(u))
Diwey P(flw)Tf(u))
Here, f(u) € R? is the learned embedding of node u, and Ng(u) denotes the sampled con-

text nodes from walks starting at u. The model maximizes the likelihood of observing context
nodes given the embedding of a source node.

Pr(v|f(u)) = 3)

Table 1. The distribution of power forced outage durations in the BPA service territory during 2021-2022 is
divided into five distinct duration classes.

Class Duration Percentage
Class 1 Less than 30 min 63%

Class 2 30 min to 1 hour 1%

Class 3 1 to 3 hours 8%

Class 4 3 to 6 hours 6%

Class 5 Greater than 6 hours 22%

https://doi.org/10.1371/journal.pone.0326752.t001
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These embeddings are combined with weather data from ASOS and forecast data from
OpenMeto for the current day and fed into a neural network model comprising three fully
connected layers, with dropout layers applied between them to reduce the risk of overfitting.
Due to the dataset’s significant imbalance, fewer than two percent of instances are classified
as outages. To address this issue during training, we employ the Synthetic Minority Oversam-
pling Technique (SMOTE) [52]. Binary cross-entropy serves as the loss function for train-
ing this component of the HMN-RTS architecture, focusing on isolating instances where the
model accurately predicts outages:

N
Loss(7ny) =~ 25 Dilog(7s) + (1 - ) log(1 - )] @

i=1

Where ; is the predicted probability of an outage, y; € {0, 1} is the true label for the i-th
sample, and N represents the total number of samples in the dataset.

3.3.2 Power outage duration prediction. Given the high-frequency nature of ASOS
weather data, missing values are inevitable. These can be addressed through various tech-
niques such as removal, imputation, or mean assignment. However, removing missing values
may significantly reduce the dataset and risk losing valuable information, while imputation
at the county level may introduce bias. To mitigate these issues, we compute the daily average
and standard deviation for each weather feature per county. This aggregation strategy reduces
the impact of missing data while preserving meaningful patterns.

After predicting a power outage for a county, the next step focuses on forecasting the out-
age duration three hours in advance using multi-class classification. To achieve this, we collect
weather and forecast data at 30-minute intervals within each county. Since counties may have
multiple stations and numerous readings per station, we aggregate the data by calculating the
mean and standard deviation of each feature, resulting in a normalized and comprehensive
representation of local weather conditions.

Next, we collect all Reddit posts from the U.S. Pacific Northwest region and utilize BERT
[53] to extract 768-dimensional embeddings for each post. To handle intervals with multiple
posts, we apply max pooling, resulting in a single representative vector for each interval. Sim-
ilarly, for Twitter data, we collect all tweets posted within 30-minute intervals across the U.S.
Pacific Northwest and generate 768-dimensional embeddings for each tweet using BERTweet
[54]. Max pooling is again used to aggregate these embeddings into a single vector per inter-
val. This method captures the most prominent patterns from social media, offering the model
a compact yet informative representation for each 30-minute period. Finally, we concate-
nate the weather data, forecast data, aggregated Reddit embeddings, Twitter embeddings, and
multiplex model embeddings to create a unified input dataset.

The distribution of power outage durations is divided into five distinct duration classes, as
outlined in Table 1. We utilize a Bidirectional Long Short-Term Memory (Bi-LSTM). To con-
struct the input for the Bi-LSTM model, we concatenate features from multiple modalities at
each time step ¢, forming a unified vector:

Xe=u" o™ | w0t
| MaxPool(BERTgeqdit,) | MaxPool(BERTweet,) || Node2vec ounty

In this representation, ,ut(w) and O',(W) correspond to the mean and standard deviation

) )

of the weather features during interval ¢, while ;" and o,” denote the mean and standard
deviation of forecast features for the same interval. The terms MaxPool(BERTgedqir) and
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MaxPool (BERTweet;) refer to the max-pooled BERT and BERTweet embeddings, respec-
tively, derived from all Reddit posts and tweets observed within the 30-minute window ¢.
Lastly, Node2vec,ounty represents the county-level structural embedding generated from the
multiplex graph using a modified node2vec approach. This concatenated vector captures

a comprehensive snapshot of environmental, social, and structural factors, serving as the
input to the Bi-LSTM for outage severity classification. The model consists of nine layers with
dropout layers applied between them to prevent overfitting. The model is compiled using
the Adam optimizer [55] with a learning rate of 0.0001. It is trained for 100 epochs with a
batch size of 16. The model is trained using a multiclass categorical cross-entropy loss func-
tion, which optimizes its ability to predict outage durations across the predefined classes.
The categorical cross-entropy loss evaluates the disparity between the predicted probability
distribution y and the true labels y, ensuring effective model performance.

B N C
Loss(3,7) ZZ)/ log(93j) (5)

1=1 j=1

Here, J;; represents the predicted probability that the ith sample belongs to the jth class. Sim-
ilarly, y; represents the actual label for the ith sample in the jth class, which takes a value of

1 if the ith sample belongs to the jth class, and 0 otherwise. N denotes the total number of
samples in the dataset, while C represents the total number of classes.

4 Experimental setup

This study evaluates whether a multiplex network consisting of eight layers, combined with
a multi-modal data approach, can enhance the early classification of disruption severity into
one of five categories (ranging from short to very long duration). The training period is from
January 1, 2022, to June 30, 2022; the validation period is from July 1, 2022, to July 31, 2022;
and the testing period is from August 1, 2022, to December 31, 2022. We perform machine-
learning experiments to predict the duration of power outages using a supervised machine-
learning approach.

We compare the HMN-RTS model with the Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRUs) models. In these approaches, text embeddings are generated using
LSTM and GRU, and they do not incorporate the network structure. We further compare the
HMN-RTS model with the Reddit and Twitter Multiplex Network (RTMNO) model [23],
which is a non-hierarchical approach that does not utilize the capabilities of BERT and is
based on a neural network architecture. Additionally, we experiment with a one-layer version,
the Hierarchical One-Layer Network Model (HON-RTS). To evaluate the model’s perfor-
mance, we choose metrics suitable for a power system. Since our classification task consists of
five classes, we apply macro-averaging, where each class is given equal importance regardless
of its frequency. We calculate macro precision and recall to evaluate the rates of false positives
and false negatives. Additionally, we assess the model’s performance on the test set using the
macro F1 scores for each class. If C denotes the number of classes, the macro F1 score can be
defined as:

1 &
MacroFl1=— ) 2
o2

i=1

precision, - recall;

(6)

precision, + recall;
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5 Hierarchical spatiotemporal multiplex network analysis

This section provides the findings from analyzing the topological structure of the weighted
multiplex networks we constructed. To gain an in-depth understanding of these networks, we
analyze several centrality measures, including Degree Centrality (DC), Closeness Centrality
(CC), Eigenvector Centrality (EC), Clustering Coefficient (CF), and Square Clustering (SCF),
in order to investigate the network’s structural characteristics. We report the average values
for each of these measures.

Degree Centrality (DC) assesses a node’s connectivity by counting the number of edges it
is linked to. It offers an understanding of the node’s importance and potential to function as
a central hub within the network. Nodes with higher degree centrality are regarded as more
central due to their greater number of connections compared to other nodes. It is calculated
using the following formula:

M [Co(v+) - Co(w)]

Cp(G) = == , 7
o(G) [VI?-3|V]+2 @)

where, v denotes a vertex in the graph G. In contrast, Closeness Centrality (CC) indicates a
node’s proximity to all other nodes in the network. A node with the shortest total distance to
all other nodes possesses high Closeness Centrality, making it a crucial node for efficiently
disseminating information. The Closeness Centrality can be computed using the following
formula:

N-1

W= Gy

(8)

where N represents the total number of nodes in the graph, and d(u,v) denotes the distance
between nodes u and v. Eigenvector Centrality (EC) considers the importance of a node’s
neighbors, evaluating its centrality based not only on its connections but also on the central-
ities of the nodes it is connected to. The following equation gives the formula for calculating
EC:

Xy = % Z Xy = % Z Ay u Xy, (9)

ueM(v) ueG

where, A = (a,,,) represents the adjacency matrix of the graph G, M(v) denotes the set of
neighbors of node v, and A is a constant. We also compute the average Clustering Coeflicient
(CF), which reflects the average number of edges between the neighbors of all nodes. The
average clustering coefficients for all vertices v are calculated as follows:

B
c=->c, 10
n; (10)

Lastly, Square Clustering (SCF) builds on the traditional Clustering Coefficient by con-
sidering the probability that two adjacent nodes have a mutual neighbor that is not directly
connected to the original node, thus creating a square-like connection [56]. The SCF can be
calculated using the following formula:

ky ky
Zku=1 Zw=u+1 qv(u’ W) , (11)

CYR TR aww) + g w)]

C(v)
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where, g, (4, w) represents the number of shared neighbors between u and w, excluding

v. Table 2 presents the detailed network analysis. The graph consists of 1864 nodes and
10,058,477 edges. An important feature of a multiplex network is the presence of coupled
edges (coupling E), which signify the movement of nodes between adjacent layers [57]. Net-
works with more coupled edges typically have more dense and robust connectivity than those
with few or no coupled edges. In this network, there are 13,048 coupling edges. The graph
contains 233 unique nodes, with an average Degree Centrality (DC) of 5.79, indicating a mod-
erate level of connectivity among the nodes. The average Closeness Centrality (CC) is 0.40,
suggesting that, on average, the nodes are reasonably close to each other within the network.
The Eigenvector Centrality (EC) has a low average of 0.01, indicating that the network cen-
trality is not heavily influenced by a few key nodes. The average Clustering Coefficient (CF)
of 0.80 indicates that, on average, nodes have a high tendency to form triangles. Lastly, the
average Square Clustering Factor (SCF) is 0.29, reflecting the moderate likelihood of nodes
forming square-shaped connections with their neighbors.

6 Results and discussion

The results of different evaluation metrics for LSTM, GRUs, RTMNO, HON-RTS, and the
proposed Hierarchical Multiplex Network model (HMN-RTS) are shown in Table 3. We
observe that both LSTM and GRU models achieve similar macro F1 scores of 0.16 and 0.17,
respectively. The limited performance can be attributed to the lack of network structure and
advanced pre-trained language models. Although the HON-RTS model shows improvements
over the non-hierarchical Reddit and Twitter Multiplex Network (RTMNO), it still falls short
of the HMN-RTS model. Specifically, the HON-RTS achieves a macro F1 score of 0.73, while
the HMN-RTS model outperforms it with a macro F1 score of 0.79. These results indicate
that the hierarchical one-layer structure does not fully capitalize on the advantages provided
by the multiplex network architecture. In contrast, the improved performance of HMN-RTS
highlights the critical importance of leveraging multiplex network capabilities and the multi-
modal approach. By integrating multiple layers and their interactions, HMN-RTS eftectively

Table 2. Multiplex network topological structure. L= number of layer, V= number of nodes, E= number of total
edges, coupling E= number of coupling edges, avg(DC)=average Degree Centrality, avg(CC)=average Closeness
Centrality, avg(EC)=average Eigenvector Centrality, avg(CF) Clustering Coefficient, avg(SCF)=average Square

Clustering.
L % E couplingE |avg(DC)  |avg(CC) |avg(EC) avg(CF) avg(SCF)
8 1864 10M 13048 5.79 0.40 0.01 0.80 0.29

https://doi.org/10.1371/journal.pone.0326752.1002

Table 3. A comparison of macro precision, macro recall, and macro F1 score is conducted across various models,
including Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), the Reddit and Twitter Multiplex
Network (RTMNO), the Hierarchical One-Layer Network Model (HON-RTS), and the Hierarchical Multiplex
Network Model (HMN-RTS). The outage duration is categorized into five classes, as outlined in Table 1.

Model Macro precision Macro recall Macro F1 Score
LSTM 0.15 0.20 0.16
GRUs 0.15 0.20 0.17
RTMNO [23] 0.51 0.56 0.53
HON-RTS 0.64 0.84 0.73
HMN-RTS 0.74 0.84 0.79

https://doi.org/10.1371/journal.pone.0326752.t003
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captures complex correlations that single-layer approaches fail to represent. This compre-
hensive representation leads to a notable improvement in predictive performance, partic-
ularly in modeling outage duration across five distinct classes. The results underscore how
multiplex network integration is beneficial for accurately predicting the severity of power
outages.

Furthermore, we assess the performance of the LSTM, GRUs, RTMNO, HON-RTS, and
HMN-RTS models using a confusion matrix, which displays the number of correct and incor-
rect predictions for each class, as shown in Figs 2, 3, 4, 5, and 6. Class 1 represents dura-
tions under 30 minutes, Class 2 corresponds to durations between 30 minutes and 1 hour,
Class 3 represents durations from 1 to 3 hours, Class 4 represents durations from 3 to 6
hours, and Class 5 is for durations exceeding 6 hours. Notably, the HMN-RTS model shows
the best performance in correctly predicting the outage duration classes, achieving higher
classification accuracy across most categories. This is reflected in its significantly improved
accuracy compared to the other models, especially in terms of reducing false negatives and
correctly identifying the most severe outages. In addition, the confusion matrix for the HMN-
RTS model reveals that the model performs particularly well in distinguishing short-duration
outages (Class 1) from long-duration events (Class 5), which is crucial for prioritizing emer-
gency response. Misclassifications tend to occur between adjacent classes, which is expected
in a real-world scenario. Class 2 accounts for only 1% of the data, which likely contributes
to the model’s tendency to misclassify it as Class 1. However, due to the short duration asso-
ciated with Class 2 events, this misclassification is unlikely to have a significant impact on
emergency response efforts.

In the second set of experiments, an ablation study is conducted. For this, we develop
five distinct versions of HMN-RTS. The first version, HMN-R, is the model that employs

LSTM
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§ 0.00 0.03 0.00 0.00
o
~N 0.8
§ 0.00 0.00 0.00 0.00
w O
g o 0.6
3 § 0.00 0.04 0.00 0.00
E E - 0.4
§ 0.00 0.02 0.00 0.00
(]
s - 0.2
§ 0.00 0.00 0.00 0.00
v - 0.0

Class 1 Class 2 Class 3 Class 4 Class 5
Predicted Class

Fig 2. The normalized confusion matrix for the LSTM model illustrates its performance in predicting outage
durations.

https://doi.org/10.1371/journal.pone.0326752.g002
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GRUs
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Fig 3. The normalized confusion matrix for the GRUs model illustrates its performance in predicting outage
durations.

https://doi.org/10.1371/journal.pone.0326752.g003
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Fig 4. The normalized confusion matrix for the RTMNO model illustrates its performance in predicting outage
durations.

https://doi.org/10.1371/journal.pone.0326752.g004
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HON-RTS
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Fig 5. The normalized confusion matrix for the HON-RTS model illustrates its performance in predicting outage
durations.

https://doi.org/10.1371/journal.pone.0326752.g005
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Fig 6. The normalized confusion matrix for the HMN-RTS model illustrates its performance in predicting outage
durations.

https://doi.org/10.1371/journal.pone.0326752.g006
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only Reddit information, processing only Reddit data. The second version, HMN-T, is the
model that utilizes only Twitter data. The third version, HMN-S, is the model that employs
only the multiplex network structure. The model processes only multiplex network data. The
fourth version, HMN-RT, is the model that combines both Reddit and Twitter data, process-
ing information from both platforms. Lastly, HMN-RTS is the model that integrates Reddit,
Twitter, and the multiplex network structure. The performance of these models is summa-
rized in Table 4. The results show a clear trend: the addition of each component incremen-
tally improves the model performance. In particular, the HMN-S model outperforms HMN-R
and HMN-T, highlighting the strength of the multiplex network structure itself in capturing
relational dependencies. However, the HMN-RTS, which leverages multi-modal data along
with the network structure, achieves the best macro F1 score of 0.79, demonstrating the inte-
grated value of combining social context with network structure. These findings emphasize
that no single modality is sufficient on its own; instead, the multi-modality of heterogeneous
sources through a multiplex network is key to accurately capturing the complex relationships
embedded in multi-modal data that influence outage durations.

To evaluate the robustness of the HMN-RTS model across different time horizons, we con-
duct a third experiment focused on early-stage predictions. This is particularly valuable in
power systems, where earlier forecasts can enable proactive planning and mitigation. Fig 7
illustrates the macro F1 score of the HMN-RTS model for early predictions, with the X-axis
representing the number of hours before the outage event. The results show a consistent trend:
the macro F1 score improves as the prediction time gets closer to the outage, aligning with
expectations that the outcomes become more predictable over shorter horizons. Notably, the
HMN-RTS model achieves a high macro F1 score for predictions made up to 6 hours before
the outage. Even 12 hours in advance, the model demonstrates solid performance, indicating
that patterns start to emerge well ahead of the actual disruption. This early warning capabil-
ity makes HMN-RTS highly valuable for utilities and emergency response teams that require
sufficient lead time to coordinate effective responses.

To assess the robustness of HMN-RTS across different seasonal data distributions, the
fourth experiment retrains and tests the HMN-RTS model using data from each season. Fig 8
shows the percentage of power outages by season, highlighting that outages are most frequent
in winter and summer. The data reveals that summer and winter experience the highest per-
centage of outages. This trend suggests that weather-related conditions in winter and sum-
mer, such as snowstorms, freezing temperatures in winter, heatwaves, and increased energy
demand in summer, contribute to higher outage rates. Given this distribution, this experi-
ment assesses the ability of the HMN-RTS model to predict power outages, with a focus on
winter and summer, as these seasons pose the most significant challenges to power grid sta-
bility and provide the most valuable insights into outage patterns. Given the limitation of

Table 4. The ablation study of the HMN-RTS model investigates the contributions of its individual components.
The Multiplex Network Structure includes the layers outlined in Sect 3.2, while Reddit and Twitter represent the
activities captured from social sensors.

Settings Reddit Twitter Multiplex Macro Macro recall  |Macro F1 Score
Network Pprecision
Structure

HMN-R v 0.59 0.81 0.69

HMN-T v 0.63 0.81 0.71

HMN-S 4 0.68 0.79 0.73

HMN-RT v v 0.66 0.88 0.76

HMN-RTS v 4 4 0.74 0.84 0.79

https://doi.org/10.1371/journal.pone.0326752.t004
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Percentage of Outages by Season

Winter Spring Summer Fall
Season

Fig 7. The performance of the HMN-RTS model in the early detection of outages is evaluated using the macro F1
score for a five-class problem, as detailed in Table 1. The X-axis in the corresponding figure shows the number of
hours before the power outage at which predictions are made.

https://doi.org/10.1371/journal.pone.0326752.g007
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Fig 8. Percentage of power outages by season during 2021-2022.
https://doi.org/10.1371/journal.pone.0326752.g008

having only two years of data, we split the dataset into training, validation, and test sets, with
a 80%-10%-10% ratio. Additionally, to ensure robust model evaluation, we apply 10-fold
cross-validation to further assess the Hierarchical Multiplex Network Model (HMN-RTYS)
performance. Table 5 represents the results of the seasonal experiments. While the HMN-
RTS model performs consistently well across all seasons, its performance is further improved
with a more homogeneous season-specific dataset, highlighting how seasonal consistency
can enhance prediction accuracy. This suggests that while the HMB-RTS model is robust
year-round, it particularly excels when the data is seasonally filtered.

Table 5. A comparison of the average macro F1 scores for two seasonal models (Winter and Summer) using the
Hierarchical Multiplex Network Model (HMN-RTS). Note that the standard deviations in all models are between
[0.08,0.1].

Season Average macro precision | Average macro recall Average macro F1 Score
Summer 0.89 0.86 0.87
Winter 0.90 0.87 0.88

https://doi.org/10.1371/journal.pone.0326752.t005
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7 Conclusion

Power outages can disrupt daily routines, affecting areas like transportation and commu-
nication. Therefore, predicting their severity is essential for efficient planning. This study
presents a Hierarchical Multiplex Network (HMN-RTS) approach at the county level, specif-
ically for the U.S. Pacific Northwest. The method aims to predict the occurrence and duration
of weather-related power outages. The HMN-RTS model forecasts outages and their sever-
ity over multiple time horizons and across multiple seasons. We leverage the multi-modal
approach by collecting data from multiple sources, including weather data, weather forecast
data, lightning data, land cover information, transmission lines, and social sensor data from
two leading platforms. We evaluate the effectiveness of the proposed hierarchical multiplex
network approach in enhancing prediction performance compared to other models. Our hier-
archical spatiotemporal multiplex network improves the accuracy of predictions for three-
hour-ahead outage durations. Achieving a macro F1 score of 0.79, this method enables grid
operators to promptly implement strategies for mitigating outages.

The limitation of this study is that it relies completely on ASOS weather data, and future
work could explore additional sources, such as ERA5, to enhance the environmental context.
Studies could consider integrating datasets such as OpenMeteo and ERAS to strengthen the
environmental context. In the case of social media data, user engagement can be influenced
by demographic factors such as age, and different subsets of the population may be active on
different platforms. As this study focused on two social media sources, it may not fully cap-
ture the diversity of public response within the target geographic area. Future research could
explore a hierarchical modeling approach that separately predicts outage occurrence and
duration, especially within distribution grids, which exhibit distinct patterns and challenges
compared to transmission systems.
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