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Abstract. Weather-related power disruptions present significant chal-
lenges to public infrastructure, societal well-being, and the distribution 
grid. Predicting outage durations in distribution grids is another challenge 
compared to transmission line outage durations due to distribution net-
works’ complexity and finer granularity. While forecasting forced power 
outages is crucial, accurately estimating their duration is essential for 
timely response and mitigation measures. This study introduces the Spa-
tiotemporal Multiplex Network (SMN-WVF), a methodology designed to 
predict power outage durations across varying lead times, tackling the dif-
ficulties posed by small, high-complexity spaces within distribution grids. 
SMN-WVF employs multiplex networks that incorporate multi-modal 
data across both time and space, including layers such as power outages, 
weather conditions, weather forecasts, vegetation, and distances between 
substations. We demonstrate the importance of incorporating additional 
layers of data sources as they are shown to help the model’s predictions 
through gradual improvement in the macro F1 score performance. 

Keywords: Forced power outage · multiplex network · spatiotemporal 
prediction 

1 Introduction 

Forced power outages (further referred to as “outages”) have a considerable 
impact on both the economy and the lives of residents in affected areas. The 
causes of such power outages can be broadly divided into four primary categories: 
emerging threats, accidental incidents, malicious activities, and natural events 
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[ 10]. Severe outages, particularly those in rural regions, can last for extended 
periods and require significant restoration time [ 30]. Furthermore, power system 
operations are typically classified into four distinct states: normal operation, 
alert, emergency, and extreme [ 13]. Previous research studied the power outage 
problem statistically, employing techniques such as quantile regression forests 
and Bayesian additive regression tree models [ 31]. In contrast, recent advance-
ments in machine learning have shifted towards predictive models that utilize 
machine learning techniques to enhance the accuracy of power outage predic-
tions and identify their causes [ 19]. Previous research also employed graph-based 
models to predict power outages [ 11, 25]. However, these studies did not leverage 
multiplex networks to improve predictions; instead, they were limited to using 
single-layer input. 

Predicting power outages is essential, but predicting their duration is cru-
cial to efficient response and mitigation actions. Statistical methods [ 21] and  
machine learning models [ 12] have been applied to predict the duration of power 
outages. However, researchers have yet to fully explore the potential of multiplex 
networks that integrate data from multiple sources. In our previous study [ 1], 
multiplex graphs demonstrated their effectiveness in predicting the occurrence 
of power outages. Based on this, our follow-up study [ 2] successfully used multi-
plex graphs to predict the duration of power outages, outperforming alternative 
approaches. However, neither analysis addressed the prediction of the duration 
of outages for the distribution grid. To address this limitation, our current study 
introduces SMN-WVF, a Spatiotemporal Multiplex Network model designed to 
predict the duration of power outages while extending prediction time intervals 
demonstrating a use case of a utility in Texas, U.S.A. SMN-WVF integrates 
data from multiple sources, including weather, forecasts, and vegetation, col-
lected across space and time. By providing earlier warnings of outage risks, this 
model aims at enhancing the efficiency of outage management and improving 
response efforts. The key contributions of this paper are: 

1. Establishing a foundational framework for improving spatiotemporal classifi-
cation by incorporating multi-modal data to tackle the challenges of missing 
weather recordings effectively. 

2. Introducing Spatiotemporal Multiplex Network methodology to predict power 
outage durations by employing the multi-modal approach. 

3. Applying the new approach to estimate outage severity (duration) in the 
distribution grid by providing insights distinct from those focused on trans-
mission line outages. 

2 Related Work 

Extreme weather events like severe storms (rain, snow, wind) and other catas-
trophic natural disasters (earthquakes, wildfires, hurricanes) can cause power 
outages. To improve the planning of power restoration efforts, accurately pre-
dicting the duration of power outages early is crucial for utility companies.
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Various statistical approaches have been employed to estimate outage dura-
tion, including accelerated failure time regression, Cox proportional hazards 
regression, Bayesian additive regression trees, regression trees, and multivari-
ate adaptive regression splines [ 21]. Some studies integrate statistical methods 
with geographic information systems (GIS) to analyze urban distribution sys-
tems affected by winter storms. For example, GIS tools were used to map repair 
crew data and examine the duration of outages during such events [ 26]. Similarly, 
researchers have applied Accelerated Failure Time (AFT) and Cox Proportional 
Hazard (CPH) models to estimate storm-induced power outage durations [ 18]. In 
another example, daily Night Time Lights (NTL) imagery data has been utilized 
to assess the duration of outages in Puerto Rico [ 7]. In addition, studies indicate 
that socioeconomic factors play a significant role in determining the outage dura-
tion [ 20]. Recently, the focus has shifted toward leveraging machine learning mod-
els to predict the duration of power outages more accurately. For instance, Ran-
dom Forest-based models have been used to forecast the duration of hurricane-
related outages, incorporating variables such as wind speed and duration [ 22]. 
Furthermore, machine learning techniques such as Extra Trees (ET), Extreme 
Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), 
Random Forest (RF), Gradient Boosting Regression (GBR), and Decision Tree 
(DT) have been applied to predict outages durations during typhoon disasters 
[ 15]. 

Weather data plays a crucial role in predicting power outages [ 9]. However, 
severe weather conditions often result in many missing values in weather record-
ings, which present challenges for predictive modeling. Our research integrates 
weather data with multi-modal learning techniques to address this challenge. 
Given the challenges of missing data, multi-modal learning techniques offer a 
promising solution by improving predictive accuracy [ 1, 5, 8, 24]. In particular, 
we explore multiplex networks’ impact in predicting the power outage duration 
at the distribution grid level. The network structure is crucial for capturing 
complex interdependencies between different data sources, thus improving the 
accuracy and robustness of the predictions [ 3, 4]. This study introduces a novel 
approach that leverages multiplex network representations to predict the power 
outage duration for severe weather cases. Specifically, we evaluate the benefits 
of using a Spatiotemporal Multiplex Network that integrates data from multiple 
key sources: power outages, weather observations, weather forecasts, vegetation, 
and distance between the substations. 

3 Methodology 

This study investigates the effectiveness of the proposed Spatiotemporal Mul-
tiplex Network (SMN-WVF) model, which combines multiplex networks and 
multi-modal data, in improving the prediction of power outage duration. The 
SMN-WVF model estimates the duration of the predicted outages by predict-
ing their duration. Figure 1 illustrates the pipeline of the proposed approach to 
building the Spatiotemporal Multiplex Network model that includes informa-
tion captured at five layers from different sources. The research is divided into
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three phases: (1) data collection, (2) construction of a spatiotemporal graph, and 
(3) development of the model that predicts the duration of expected outages. 
Detailed descriptions of each component of this framework are provided in the 
following subsections. 

Fig. 1. The architecture of the Spatiotemporal Multiplex Network (SMN-WVF) for 
multi-modal prediction of power outage duration. 

3.1 Data Collection 

In our previous research [ 1], we demonstrated the advantages of integrating data 
from diverse sources to improve the prediction of the duration of power outages. 
To achieve this, we identify and gather key factors that influence the power out-
age duration. These factors include power outage records, weather conditions, 
forecasts, and vegetation data. This subsection outlines the data collection pro-
cess. 

1. Power outages data: We utilize a historical outage dataset obtained from a 
Texas utility company, which details when and where outages occurred from 
January 2018 to December 2023. To effectively use this dataset, it is crucial 
to correlate each outage occurrence with the corresponding substation. The 
dataset contains outage start and end times, outage cause codes, the near-
est substation, failed equipment IDs, and repair crew comments. We employ 
the equipment ID and nearest substation fields to map each outage to its 
respective substation. Historical outage data are recorded in the local time 
zone. However, since most public datasets use UTC for timestamps, we con-
verted the outage timestamps from the local time zone to UTC and linked 
the events with the appropriate substation ID. Our study utilizes six years of 
historical outage data during which the reported power outages reveal a total 
of 109, 366, with an average duration of 101.08 min.



SMN Model for Predicting Forced Outage Severity in Distribution Grids 169

2. Weather data: Between January 2018 and December 2023, we collected 
weather data from Automated Surface Observing Systems (ASOS) [ 6] The  
ASOS database includes hourly information retrieved from the ground 
weather station sensors, as well as data about the station’s location, sky 
conditions, obstructions to vision, pressure, ambient temperature, wind, and 
precipitation accumulation for point locations. We collected 8, 425, 383 obser-
vations from ASOS weather stations. However, the substations are not con-
nected to an ASOS weather station; therefore, we map each substation to the 
closed ASOS station using latitude and longitude. We use the Haversine for-
mula to calculate the distance between the substation and the ASOS stations 
[ 27]. 

3. Weather forecast data: The ASOS database does not include weather fore-
cast data. To obtain this information, we use the OpenMeteo API, provid-
ing open-source weather forecasts from national weather services [ 23]. Open-
Meteo offers weather models with a resolution of 11 km and regional models 
with up to 1.5 km resolution. The database provides hourly data on vari-
ous weather parameters, including temperature, relative humidity, dew point, 
precipitation, wind speed, and wind direction. By providing the latitudes and 
longitudes of the substations, we collect forecast data for each substation 
based on its proximity to the nearest weather model. Our focus has been on 
analyzing forecast information during the mentioned power outages resulting 
in the collection of 3, 575, 712 observations. 

4. Vegetation: The landscape of a geographic location is a critical factor in 
predicting power outages. To account for this, we collected vegetation data 
from the Ecological Mapping Systems (EMS), which offers a comprehensive 
land cover summary for Texas. The EMS data has a spatial resolution of 10 
meters per map [ 29]. 

3.2 Data Preprocessing 

To assess the impact of the spatial-temporal multiplex network on predicting the 
duration of power outages, we use individual and a combination of modalities. 
These features are gathered from various sources, including weather, forecasts, 
vegetation, and distance between the substations. Due to the wide range of fea-
tures, our feature selection eliminates irrelevant information and identifies the 
most relevant features that enhance the model’s performance. In this process, 
the weather dataset includes the following features: weather station location, sky 
conditions, visual obstructions, pressure, ambient temperature, wind, and precip-
itation. We calculate the maximum, minimum, mean, and standard deviation for 
each selected weather feature per day and time window for each substation. The 
forecast dataset includes the following features: temperature, relative humidity, 
dew point, precipitation, wind speed, and wind direction. We also calculate the
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maximum, minimum, mean, and standard deviation for each selected weather 
feature per day and time window for each substation. 

3.3 Spatiotemporal Multiplex Network Creation 

Consider G as a Spatiotemporal Multiplex Network represented by G = 
(V, E, L, T ), where  V = {v1, v2, ., vn} denotes the set of vertices corresponding to 
substations, E = {e1, e2, ., em} represents the set of edges, L = {l1, l2, l3, l4, l5} 
is the set of layers, and T = {t1, t2, ., tk} is the set of time steps. The network 
comprises five distinct layers: l1 corresponds to the power outage layer, l2 is the 
weather layer, l3 represents the forecast layer, l4 is the vegetation layer, and l5 
refers to the distance layer. In the multiplex network, all vertices across different 
layers represent the same entities but reflect various types of interactions among 
the vertices. Specifically, the vertices V represent substations. The connections 
between the vertices illustrate different types of interactions, with each edge e 
assigned a weight that is a real number greater than or equal to 1. This weight 
indicates the strength of the connection between vertices (v, u) in the ith layer. 
The set of edges E in each layer li signifies a different type of relationship among 
the vertices V , as explained below: 

1. Power outage layer (El1): If a power outage is reported in both substations 
on the same date and time window, the vertices (ul1 , vl1) are connected. The 
edge weight ω represents the shared power outages between these substations. 

2. Weather layer (El2): We assume that power outages are closely linked to 
weather conditions. As a result, vertices (ul2 , vl2) are connected if they reveal 
similar weather properties. To quantify this similarity, we use Euclidean dis-
tance. By measuring the Euclidean distance between the weather features, 
we can determine the closeness of the weather conditions between the sub-
stations. 

3. Forecast layer (El3): Vertices (ul3 , vl3) are connected if they share similar 
weather properties, since weather conditions have a significant impact on 
power outages. In this context, we use Euclidean distance to measure the 
similarity between the weather attributes of the two vertices. 

4. Vegetation layer (El4): We connect two vertices (ul4 , vl4) (substations) if 
they exhibit similar vegetation properties. To assess this similarity, we com-
pute the Euclidean distance between their corresponding vegetation features. 
This method helps illustrate the potential influence of vegetation on power 
outages, as comparable vegetation patterns may lead to similar outage behav-
iors. 

5. Distance layer (El5): Two vertices (ul5 , vl5) (substations) are connected 
based on their spatial distance. To quantify this distance, we use the Euclidean 
distance. This measure helps capture the physical proximity between substa-
tions, which is essential as the spatial closeness of substations may influence 
the likelihood of shared power outage events or other related factors. 

This graph serves as input for the Spatiotemporal Multiplex Network (SMN-
WVF) model. At the end of each day, a new snapshot of the multiplex graph is
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generated for each time window, timestamped with that day’s data, to capture 
the interdependencies among substations. We train the model using these daily 
snapshots as input, generating embeddings for the substation nodes through the 
proposed method, which is detailed in the following subsection. The aim is to 
predict the duration of a power outage at a substation and connected feeders. 

3.4 Proposed Model: Spatiotemporal Multiplex Network 
(SMN-WVF) 

This study investigates the potential of the Spatiotemporal Multiplex Network 
(SMN-WVF) combined with multi-modal data to improve the prediction of dis-
ruption severity expressed as the outage duration. Initially, a historical outage 
dataset from a Texas utility company is utilized, where outage frequency varies 
across different substations. Each data point is marked as 1 if a power outage 
occurs in a specific substation during a specific time. Next, the outages are cate-
gorized into three groups to predict outage duration, as detailed in Table 1. The  
model aims to predict the duration of a power outage once it has been identified. 
It classifies outages into predefined duration categories, as shown in Table 1. This  
classification aids in estimating the duration of each outage, thereby helping to 
understand disruption severity and improve planning and response. To enhance 
predictions, the model employs a modified version of Node2Vec [ 14] to generate 
substation node embeddings that incorporate multiple graph layers. We combine 
the structured data with unstructured data (multiplex model embeddings), cre-
ating a unified input dataset for predicting outage duration. This combined input 
is then processed through a Bidirectional Long Short-Term Memory (BiLSTM) 
network with eight layers. 

Table 1. Distribution of power outage durations across three classes of duration from 
January 2018 to December 2023. 

Class Duration Percentage 
Class 1 Less than 1 hour 35.1% 
Class 2 1 to 3 h 34.9% 
Class 3 Greater than 3 h 29.9% 

4 Experimental Setup 

This study examines whether the multiplex network combined with a multi-
modal data approach can enhance the early classification of disruption severity 
(duration) into one of three categories, ranging from short to very long durations. 
The study covers six years of historical outage data from January 1, 2018, to 
December 31, 2023. The training data spans from January 1, 2018, to December
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31, 2021, while the testing data covers January 1, 2022, to December 31, 2023. 
We compare the performance of the Spatiotemporal Multiplex Network model 
using weather, vegetation, and forecast features. The model is optimized using 
the Adam optimizer [ 16], employing a batch size 32 and a learning rate 0.0005. 
The model is trained with sparse categorical cross-entropy loss, which is used for 
multiclass classification to improve its ability to predict outage durations across 
the specified classes. 

The study uses a supervised machine-learning approach to predict the dura-
tion of disruptions caused by power outages. Since our classification task involves 
three distinct classes, we employ macro-averaging, which gives equal importance 
to all classes, regardless of their frequency in the dataset. Specifically, we cal-
culate macro precision and macro recall to measure the model’s false positives 
and false negatives rates. We evaluate the model’s overall performance using the 
macro F1 scores for each class. Here, C denotes the total number of classes, and 
the macro F1 score is defined as: 

Macro F1 = 
1 
C 

C∑

i=1 

2 · precisioni · recalli 
precisioni + recalli 

(1) 

5 Spatiotemporal Multiplex Network Analysis 

This section presents the results of the topological structure analysis conducted 
on the constructed weighted multiplex networks. To gain a comprehensive under-
standing of these networks, we examine various centrality measures, includ-
ing Degree Centrality (DC), Closeness Centrality (CC), Eigenvector Centrality 
(EC), Square Clustering (SCF ), and the Clustering Coefficient (CF ), to further 
explore the network’s structural properties. Here, we report the average values 
of all these measures. 

Table 2. Multiplex network topological structure. Here L = number of layer, V = 
number of nodes, E = number of total edges, coupling E = number of coupling edges, 
avg(DC) = average degree centrality, avg(CC) = average closeness centrality, avg(EC) 
= average eigenvector centrality, avg(SCF ) = average square clustering, avg(CF ) = 
average clustering coefficient. 

L V E coupling E avg(DC) avg(CC) avg(EC) avg(SCF ) avg(CF ) 

5 430 14.9M 1, 720 161.57 0.484 0.0169 0.482 0.898 

Degree Centrality (DC) measures the connectivity of a node based on the 
number of edges connected to it, which provides insight into the node’s signifi-
cance and potential role as a hub in the network. Nodes with a higher degree of 
centrality are considered more central, as they are more connected than others. 
It is calculated as follows:
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CD(G) =
∑|V | 

i=1[CD(v∗) − CD(vi)] 
|V |2 − 3 V | + 2  

, (2) 

where v represents a vertex in the graph G. On the other hand, Closeness 
Centrality (CC) reflects how close a node is to all other nodes within the network. 
A node with the shortest overall distance to other nodes has a high Closeness 
Centrality, making it a key candidate for spreading information. We calculate 
CC as: 

C(v) =  
N − 1∑
u d(u, v) 

, (3) 

where N refers to the total number of nodes in the graph, and d(u, v) rep-
resents the distance between the vertices u and v. Eigenvector Centrality (EC) 
considers the significance of a node’s neighbors. In addition, it determines a 
node’s centrality based on the centralities of its neighboring nodes. EC is shown 
in the following equation as follows: 

xv = 
1 
λ

∑

u∈M (v) 

xu = 
1 
λ

∑

u∈G 

av,uxu, (4) 

where A = (av,u) is the adjacency matrix of the graph G, M(v) denotes 
the set of neighbors of node v, and  λ is a constant. The Clustering Coefficient 
(CF ) reflects the average number of edges between nodes within each node’s 
neighborhood. Following is the calculation of the Clustering Coefficient: 

C̄ = 
1 
n 

n∑

i=1 

Ci, (5) 

Finally, Square Clustering (SCF ) extends the traditional Clustering Coeffi-
cient by focusing on the likelihood that two neighboring nodes share a common 
neighbor that is not part of the original node’s neighbors, thus forming a square-
shaped connection [ 17]. It can be calculated as: 

C(v) =

∑kv 

u=1

∑kv 

w=u+1 qv(u, w)
∑kv 

u=1

∑kv 

w=u+1[av(u, w) +  qv(u, w)] 
, (6) 

where qv(u, w) denotes the number of common neighbors shared by u and 
w, excluding v. Table  2 presents a detailed network analysis. The graph consists 
of 430 nodes and 14, 902, 735 edges. A key characteristic of a multiplex network 
is the presence of coupled edges (coupling E), which represent the transitions 
of nodes between neighboring layers [ 28]. Networks with more coupled edges 
are generally denser and exhibit richer connectivity than those with few or no 
coupled edges. In this network, there are 1, 720 coupling edges. The graph con-
tains 86 unique nodes, with an average degree centrality of 161.57, indicating a 
well-connected network. The average closeness centrality is 0.484, reflecting the
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average proximity between nodes in the graph. Additionally, the average eigen-
vector centrality is 0.0169, which suggests that nodes with higher centrality are 
spread out in the network. The average square clustering is 0.482, indicating 
moderate clustering. The clustering coefficient is 0.898, signifying a highly inter-
connected overall structure. 

6 Results and Discussion 

The results for different evaluation metrics of the proposed Spatiotemporal Mul-
tiplex Network (SMN-WVF) model using weather, vegetation, and forecast fea-
tures are shown in Table 3. We emphasize the effectiveness of incorporating 
multi-modal learning to improve predictive performance. Each variant of the 
SMN model explores the contribution of specific feature combinations to the 
overall results. SMN-WV is the proposed model that incorporates both weather 
and vegetation data. In addition, SMN-WF employs both weather and forecast 
data. Lastly, the SMN-WVF model combines weather, vegetation, and forecast 
data for its predictions. 

Table 3. Comparison of macro precision, macro recall, and macro F1 score of the 
proposed Spatiotemporal Multiplex Network (SMN-WVF) model using weather (W), 
vegetation (V), forecast (F) features, and the Spatiotemporal Multiplex Network. The 
outage duration is classified into three classes, as detailed in Table 1. 

Modality Macro precision Macro recall Macro F1 Score 
SMN-WF 0.42 0.40 0.41 
SMN-WV 0.43 0.42 0.42 
SMN-WVF 0.45 0.41 0.43 

We can observe that incorporating weather and vegetation (SMN-WV) yields 
slightly better results, with a macro F1 score of 0.42 compared to weather and 
forecast (SMN-WF). This suggests that vegetation can play a critical role in 
power outages, particularly due to incidents such as trees falling onto or touch-
ing overhead lines due to wind impacts, which are significant causes of power 
faults. Furthermore, the SMN-WVF model improves prediction performance 
by up to 2% compared to alternative models. The SMN-WVF model demon-
strates strong predictive capability, consistently outperforming alternative mod-
els despite the inherent challenges of outage prediction in a small distribution 
grid area. Notably, it achieves a macro F1 score of 0.43. Unlike transmission net-
works, where outages often follow large-scale, high-impact events, distribution 
grids present a significantly harder prediction task due to their localized nature, 
smaller coverage area, and complex outage drivers. Outage durations in distri-
bution grids are influenced by a mix of highly complex localized factors, and 
relying significantly on regional weather data makes accurate outage prediction
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Fig. 2. The normalized confusion matrix of the SMN-WVF model, which utilizes 
weather, vegetation, and forecast features along with the Spatiotemporal Multiplex 
Network, demonstrates its predictions for outage durations. The classification is defined 
as follows: Class 1 represents duration from 30 min to 3 h, Class 2 represents duration 
from 3 and 6 h, and Class 3 represents duration greater than 6 h. 

even more difficult. The multi-modal approach, integrating weather, vegetation, 
and forecast features, helps mitigate these challenges by capturing additional 
contextual information beyond weather and forecast features alone. Given the 
small-scale nature of the study area, even achieving a moderate macro F1 score 
indicates that the model is successfully generalizing across different outage con-
ditions rather than overfitting to frequent outage patterns. 

Table 4. Comparison of precision, recall, and F1 score of every class using SMN-WVF 
model. 

Class Precision Recall F1 Score 
Class 1 0.44 0.56 0.49 
Class 2 0.37 0.40 0.38 
Class 3 0.52 0.28 0.37 

We evaluate the performance of the SMN-WVF model using a confusion 
matrix. Figure 2 provides a breakdown of the correct and incorrect predictions. 
The classification categories are defined as follows: Class 1 represents the dura-
tion from 30 min to 3 h, Class 2 represents the duration from 3 and 6 h, and Class 
3 represents the duration greater than 6 h. We further analyze the predictions 
for each class. Table 4 details the results of the SMN-WVF model per class. The 
results show that Class 1 achieves the highest recall (0.56) and a moderate F1 
score (0.49), indicating relatively better identification of these instances. Class 2 
has the lowest precision (0.37) and recall (0.40), resulting in an F1 score of 0.38.
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Class 3 exhibits the highest precision (0.52) but suffers from low recall (0.28), 
leading to a reduced F1 score of 0.37. These results highlight the model’s ten-
dency to favor precision over recall, particularly in Class 3, potentially leading 
to underestimation of certain outage durations. 

The second experiment assesses the effectiveness of the SMN model using dif-
ferent SMN-WVF models in making predictions at earlier stages. In the context 
of power systems, earlier predictions yield greater benefits. Table 5 illustrates the 
macro F1 score achieved for the early prediction scenarios. This score reflects 
the ability of the SMN model to detect outages in advance. We can observe that 
the macro F1 score remains stable and yields similar results as the prediction 
time approaches the outage event. 

Table 5. Performance of the proposed Spatiotemporal Multiplex Network (SMN-
WVF) model using macro precision, macro recall, and macro F1 score for early outage 
detection, evaluated across a three-class problem formulation, as detailed in Table 1. 

Lead time of power outage Macro precision Macro recall Macro F1 Score  
0 h 0.45 0.41 0.43 
6 h 0.43 0.41 0.42 

7 Conclusion 

Power outages pose serious threats to residential, commercial, and industrial cus-
tomers, as well as transportation, healthcare, communication, and other essen-
tial services. Making effective predictions of their occurrences and duration is 
paramount for strategic outage mitigation planning. This study introduces the 
Spatiotemporal Multiplex Network with Weather-Vegetation-Forecast (SMN-
WVF) method, a novel approach designed to improve power outage duration 
predictions. By integrating multi-modal data and network structures, our model 
evaluates outage durations across different time horizons, offering insights with 
various lead times. Even with the challenges of geographically confined space 
and the difficulties of predicting the outage duration, particularly in distribu-
tion grids–which are more intricate and finer-grained than transmission line 
outages- our SMN-WVF method demonstrates practical results. Our multiplex 
network comprises multiple layers, including power outages, weather conditions, 
weather forecasts, vegetation properties, and substation connectivity, allowing 
us to capture both temporal and spatial dependencies in the outage process. We 
rigorously assess whether our innovative network approach enhances predictive 
accuracy compared to simple weather data inputs. Our method achieves a macro 
F1 score of 0.42, underscoring both the difficulty of the task and the need for 
further advancements in outage duration predictions. We observe that integrat-
ing vegetation and forecast enhances performance by providing additional con-
text beyond weather conditions alone. These findings highlight the importance



SMN Model for Predicting Forced Outage Severity in Distribution Grids 177

of incorporating diverse data sources to improve outage duration predictions. 
Future work will focus on refining spatial feature representation and expanding 
alternative data sources. Also, it is worth exploring model performance while 
looking into node representations as a substation grouping. Looking ahead, we 
will evaluate our model’s performance across diverse geographic regions and 
explore its efficacy with extended prediction intervals. 
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