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Abstract. Long power outages caused by weather can have a big impact 
on the economy, infrastructure, and quality of life in affected areas. It’s 
hard to provide early and accurate warnings for these disruptions because 
severe weather often leads to missing weather recordings, making it dif-
ficult to make learning-based predictions. To address this challenge, we 
have developed HMN-RTS, a hierarchical multiplex network that clas-
sifies disruption severity by temporal learning from integrated weather 
recordings and social media posts. This new framework’s multiplex net-
work layers gather information about power outages, weather, lighting, 
land cover, transmission lines, and social media comments. Our study 
shows that this method effectively improves the accuracy of predicting 
the duration of weather-related outages. The HMN-RTS model improves 
3 h ahead outage severity prediction, resulting in a 0.76 macro F1-score 
vs 0.51 for the best alternative for a five-class problem formulation. 
The HMN-RTS model provides useful predictions of outage duration 6 h 
ahead, enabling grid operators to implement outage mitigation strategies 
promptly. The results highlight the HMN-RTS’s ability to offer early, 
reliable, and efficient risk assessment. 

Keywords: power outage · multiplex networks · social media · 
spatiotemporal learning 

1 Introduction 

Weather conditions like freezing rain are often critical in predicting power outage 
risk and estimating the durations of power service disruptions, causing substan-
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tial economic losses and affecting the quality of human life [ 13]. Previous research 
studied and analyzed the power outage problem from a statistical point of view, 
such as using quantile regression forests and Bayesian additive regression tree 
models [ 36]. In the new era of machine learning, research has moved toward 
predictive models, which use machine learning models to improve predictions 
of power outages and their causes [ 7,22,35]. For instance, a Random Forest is 
recently used to predict the risk of outage disruption [ 17]. Meanwhile, another 
disruption risk predictor is developed based on Bayesian deep learning in the 
KSTAR disruption database [ 16]. An adaptive ensemble learning approach is 
also applied for power outage prediction, while a hybrid mechanistic-machine 
learning outage risk prediction model is proposed to assess the effectiveness of 
various grid hardening actions [ 11]. Another study was focused on improving 
outage prediction risk models caused by a specific weather event such as rainfall 
[ 19]. Big data recorded by multiple phasor measurement units (PMUs) is used 
to improve the detection accuracy of outages in power systems [ 20]. Previous 
studies also utilized graph-based models to predict power outages [ 5,28]. How-
ever, none of these studies utilized multiplex networks to enhance predictions; 
instead, they were restricted to using single-modality input. 

Power outage predictions depend crucially on weather data, which often lacks 
many value during severe weather conditions. Previous studies explored methods 
to address this challenge, but the potential benefits of combining noisy weather 
data with information extracted from social media posts should be more ade-
quately studied. In recent years, social media networks have become an integral 
part of society, allowing critical information to be communicated rapidly during 
severe weather events [ 27]. It has been found that weather conditions signifi-
cantly affect tweeting behavior [ 15]. Social media data can provide information 
on weather-related impacts on infrastructure and human behavior and can also 
provide information back to observers [ 34]. In addition, a correlation was found 
between the number of weather-related tweets and the existing weather condi-
tions [ 33]. Therefore, combining social media data with weather sensor data can 
provide valuable insights in predicting power outages caused by severe weather 
events. 

While predicting power outages is crucial, it is essential to predict the dura-
tion of these outages to implement effective response and mitigation strategies. 
Several statistical methods were used to predict power outage duration [ 24]. 
Others applied machine learning models [ 6]. However, researchers have yet to 
fully explore the benefits of multiplex networks that utilize data from multiple 
modalities to predict power outage duration. In our previous study [ 1], multi-
plex graphs successfully predicted the occurrence of power outages three hours 
in advance at the county level. Still, our previous analysis did not include the 
duration of the outages. This limitation is addressed in our current study by 
developing HMN-RTS, an approach that forecasts the likelihood of power out-
ages and their durations while expanding the prediction time intervals at the 
county level within the entire U.S. Pacific Northwest region. The HMN-RTS is a 
hierarchical spatiotemporal multiplex network model that leverages structured
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data, such as weather and transmission line information, and unstructured data 
from social sensors collected across time and space. The HMN-RTS takes real-
time input to update power outage duration prediction three hours in advance 
based on weather conditions and social media activity changes. This model pro-
vides earlier warnings of outage risks, potentially enhancing outage management 
efficiency and response efforts. The main contributions of this paper are as fol-
lows: 

1. This study develops a principal framework for improving spatiotemporal clas-
sification by integrating multimodal data. It incorporates social media infor-
mation to address the gaps in weather recording data. 

2. A hierarchical county-level, spatiotemporal multiplex network multi-modal 
HMN-RTS approach is proposed to predict the duration of a power outage 
three hours ahead. 

3. The HMN-RTS model updates the power outage duration prediction in real-
time based on changes in weather and social media activity. 

4. The HMN-RTS’s predictive capabilities for estimating the duration of prob-
able outages are evaluated across multiple time horizons, ranging from 3 to 
24 h in advance. 

2 Related Work 

Three significant components summarize the related work for the proposed app-
roach: 1) power outage duration prediction, 2) handling missing and incomplete 
weather data, and 3) hierarchical spatiotemporal multiplex network and multi-
modal data development for power outage duration prediction. 

2.1 Weather Data 

The Automated Surface Observing Systems (ASOS) ceilometer measures clouds 
at or below 12, 000 ft (3.6 km), compromising ASOS data accuracy. Thus, miss-
ing data would result from incomplete atmospheric coverage [ 37]. Additionally, 
missing data is a common issue when dealing with sensor malfunctions and cloud 
contamination [ 10]. Numerous studies have examined various strategies for man-
aging missing data. Mean imputation is the most commonly used method [ 32]. 
Common alternatives are disregarding records with missing values and replacing 
missing data with multiple imputations [ 30] or regression-based estimation [ 31]. 
However, missing data should be handled carefully for accurate analysis since 
ignoring missing instances can pose significant risks in the context of analysis. 

2.2 Power Outage Duration Prediction 

For utility companies to plan power restoration more effectively, predicting the 
duration of power outages early and accurately is essential. Statistical methods 
to predict power outage durations include accelerated failure time regression,
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Cox proportional hazards regression, Bayesian additive regression trees, regres-
sion trees, and multivariate adaptive regression splines [ 24]. The researchers also 
combined statistical and geographic information systems to analyze the perfor-
mance of a winter storm-affected urban distribution system by using a GIS to 
plot the data of the repair crews to study the duration of each outage [ 29]. In 
another study [ 18], Accelerated Failure Time (AFT) and Cox Proportional Haz-
ard (CPH) were applied to estimate the duration of storm-caused power outages. 
The daily Night Time Lights (NTL) imagery data is also used to assess Puerto 
Rico’s outage duration [ 2]. Previous studies show that socioeconomic factors 
influence outage duration [ 12,23]. In recent years, researchers have moved toward 
machine learning models hoping to predict the duration of power outages. For 
instance, the duration of hurricane-related power outages is predicted by apply-
ing a Random Forests-based forecast mode using input variables such as wind 
duration and wind speed [ 25]. The duration during typhoon disasters is predicted 
by integrating Extra Tree (ET) [ 9], Extreme Gradient Boosting (XGBoost), 
Light Gradient Boosting Machine (LightGBM), Random Forest (RF), Gradient 
Boosting Regression (GBR), and Decision Tree (DT). 

2.3 Multi-modal Learning in Ahierarchical Spatiotemporal 
Multiplex Network for Predicting Power Outage Duration 

Weather data is often crucial for predicting power outages [ 14]. However, a high 
incidence of missing values in weather recordings during severe weather compli-
cates learning. Our research combines weather data with social sensor data to 
address this challenge. We investigate the influence of social networks (multiplex 
networks) and social sensor data on predicting the duration of power outages. 
This study is one of the first to address power outage duration prediction three 
hours in advance by incorporating social sensors within a multiplex network rep-
resentation. Precisely, we assess the advantages of learning from a spatiotempo-
ral multiplex network that encompasses data from six sources: Bonneville Power 
Administration power outages, weather, lightning, Bonneville Power Adminis-
tration transmission lines, land cover, and social sensor data from two prominent 
platforms: Reddit and Twitter. 

3 Methodology 

This study aims to assess whether the proposed HMN-RTS hierarchical model, 
which integrates multiplex networks and multi-modal data, enhances the predic-
tion of power outage duration three hours ahead. The HMN-RTS model operates 
in two phases: first, predicting the risk for the occurrence of power outages, and 
second, estimating the severity of the predicted outage by predicting the duration 
of the expected outage, as shown in Fig. 1. The research is structured in three 
phases (1) data collection and spatiotemporal graph construction, (2) the devel-
opment of the spatiotemporal multiplex network that estimates outage risk, and 
(3) the development of the model that predicts duration for expected outages.
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Each component of this hierarchical framework is detailed in the subsequent 
subsections. 

Fig. 1. The architecture of the HMN-RTS hierarchical spatiotemporal multiplex net-
work for multi-modal prediction of power outage duration. 

3.1 Data Collection 

Previous research has highlighted the benefits of using data from multiple sources 
to enhance the prediction of power outage severity [ 1]. As the first step, we iden-
tify and collect critical factors to predict outage duration. These factors include 
power outage data, weather conditions, lightning, land cover, transmission lines, 
and social sensor data from two prominent platforms: Twitter (now referred to 
as X) and Reddit. This subsection provides an overview of the data collection 
process. 

1. Power outages: We focus on the geographical area of the U.S. Pacific North-
west. We collected transmission services power outage events data covering 
a territory of more than 15, 000 circuit miles over two years, from January 
1, 2021, to December 31, 2022. This data is provided by Bonneville Power 
Administration (BPA), an American federal agency that operates in the U.S. 
Pacific Northwest. The BPA publicly reports all power outage events, regard-
less of cause. However, not every outage is relevant to this study; therefore, 
we only collect weather-related power outages, such as ice and lightning. We 
identify all weather-related power outages and map them to county and state 
using our dictionary that links every county to its Federal Information Pro-
cessing Standards (FIPS) code. This results in 2, 411 weather-related outages 
with a mean duration of 310 minutes 1. 

2. Weather: We collect historical weather data from Automated Surface 
Observing Systems (ASOS) stations. These stations are located at airports 
and include sensors to measure wind, ambient temperature, pressure, obstruc-
tions to vision, and sky conditions. We map each station to its county and 
state using latitude and longitude. As a result, we gather around 39 million 
weather observations in the five states 2.

1 https://www.bpa.gov/. 
2 https://www.weather.gov/asos/. 

https://www.bpa.gov/
https://www.bpa.gov/
https://www.bpa.gov/
https://www.bpa.gov/
https://www.weather.gov/asos/
https://www.weather.gov/asos/
https://www.weather.gov/asos/
https://www.weather.gov/asos/
https://www.weather.gov/asos/
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3. Land cover: Rapid tree growth or falling trees can damage power lines. 
To address this issue, we utilize land cover data obtained from the National 
Historical Geographic Information System (NHGIS). This dataset provides 
land cover features such as mixed, deciduous, and evergreen forests from the 
National Land Cover Database (NLCD). We leverage the GISJOIN identifier, 
which uses the FIPS code to designate counties and states [ 21]. 

4. Lightning: We obtain lightning information from the National Oceanic and 
Atmospheric Administration (NOAA) database 3. As a result, we observe 
7, 015 lightning strikes from counties in the five states. 

5. Transmission lines: This study focuses on transmission line outages rather 
than distribution line outages. We collect transmission line information in the 
BPA service region of the Northwest U.S. using the BPA map covering over 
15, 000 miles of transmission lines. 

6. Social sensor: We gather social media activities using weather-related and 
power-outage-related keywords. Twitter “currently known as X”: first,  
we collect tweets using snscrape. Snscrape is a Python package designed to 
scrap historical tweets. We scrap tweets within a 10-mile radius of specified 
geographic coordinates (latitude and longitude) to capture a broad range of 
posts from the neighborhood. As a result, we collect 8.5 million relevant tweets 
about weather and power outage events. Reddit: we collect Reddit posts from 
counties’ subreddits using Reddit API. We collect all posts and comments 
from counties’ subreddits, followed by filtering the posts and comments using 
weather and power outage keywords. As a result, we obtained 353,421 posts, 
of which 95, 144K were used after filtering and selection based on the keyword 
selection. 

3.2 Modeling of the Spatiotemporal Multiplex Network 

We then construct a Hierarchical Spatiotemporal Multiplex Network. Let G 
denote a spatiotemporal multiplex network defined as G(V, E,  L,  T ), where: 
V = {v1, v2, ..., vn} represents the set of vertices (counties), E = {e1, e2, ..., em} 
represents the set of edges, L = {l1, l2, l3, l4, l5, l6} represents the set of lay-
ers, and T = {t1, t2, ..., tk} represents a set of time steps. The edges E within 
each layer L signify a unique type of relationship among the vertices V . These 
relationships are described as follows: 

1. Transmission lines layer: In layer l1, two counties (ul1 , vl1) are linked if 
they share the same transmission line. The edge weight represents the number 
of transmission lines shared between the counties. 

2. Power outage layer: In layer l2, two counties (ul2 , vl2) are linked if both 
report a power outage on the same date. The edge weight represents the 
number of shared power outages between the counties.

3 https://www.ncei.noaa.gov/. 

https://www.ncei.noaa.gov/
https://www.ncei.noaa.gov/
https://www.ncei.noaa.gov/
https://www.ncei.noaa.gov/
https://www.ncei.noaa.gov/
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3. Weather layer: In some cases, power outages are closely related to weather 
conditions; therefore, in layer l3, we connect nodes representing two counties 
(ul3 , vl3) that share similar weather properties. In this context, we compute 
the Euclidean distance between each pair of vertices. 

4. Lightning layer: In layer l4, two counties (ul4 , vl4) are linked if both report 
a lightning strike on the same day. The edge weight represents the number of 
shared lightning strikes between the counties. 

5. Land cover layer: In layer l5, two counties (ul5 , vl5) are linked if they 
share similar land cover properties. Here, we calculate the Euclidean distance 
between vertices. 

6. Social sensor layers: In layer l6, two counties (ul6 , vl6) are linked if both 
report social media activities during the power outage. The edge weight rep-
resents the number of shared social media activities, such as Tweets or Reddit 
posts, between the counties. 

This graph serves as input for the HMN-RTS model. At the end of each day, 
a new multiplex graph snapshot, timestamped with that day’s data is added 
to capture the interdependencies between counties. We train the model using 
the snapshot as input, generating embeddings for the county nodes through the 
proposed method, which is explained in detail in the following subsection. We 
aim to predict whether a county will experience a power outage. If an outage is 
anticipated, we estimate the severity by forecasting its duration. The duration 
prediction is based on county node embeddings and real-time social media data 
(from Twitter and Reddit) related to weather conditions and power outages. 

3.3 Proposed Model: Hierarchical Spatiotemporal Multiplex 
Network (HMN-RTS) 

This study evaluates whether a hierarchical multiplex network and multi-modal 
data approach can enhance the prediction of disruption severity three hours in 
advance. First, we use an annotated dataset to identify weather-related power 
outages, noting that the frequency of these outages varies across different states 
and counties. Each data point is labeled as one if a power outage occurs in a 
county during a specific time frame and 0 otherwise. Second, to forecast outage 
duration, we classify the outages into five categories, as outlined in Table 1. The  
model architecture consists of two phases: (1) prediction of the power outage 
occurrence followed by (2) prediction of the severity of the power outage by 
estimating the duration of power outages. 

Power Outage Risk Prediction. The model uses the multiplex snapshot to 
generate county node embeddings via a modified version of Node2Vec [ 8] that 
incorporates multiple graph layers. These embeddings are then combined with 
weather data from ASOS and fed into a neural network model consisting of three 
fully connected layers, with dropout layers in between to mitigate overfitting.
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Our dataset is inherently imbalanced, with fewer than two percent of instances 
classified as outages. We find that the Synthetic Minority Oversampling Tech-
nique (SMOTE) [ 3] is the best technique to address the imbalance issue in the 
training data. Binary cross entropy is used to train this part of the HMN-RTS 
architecture. This effectively isolates instances where the model correctly iden-
tified outages. 

Power Outage Duration Prediction. Once a power outage is predicted for 
a county, the second part of the model aims to predict the duration of the out-
age three hours ahead through multiclass classification. First, we gather ASOS 
weather station recordings within each county at 30-minute intervals. Since there 
may be multiple stations and recordings per station within a county, we aggre-
gate the data by calculating the mean and standard deviation for each feature, 
which normalizes the weather data and provides a comprehensive view of local 
conditions. 

Next, we collect all Reddit posts from the U.S. Pacific Northwest region and 
use BERT [ 4] to generate 768-dimensional embeddings for each post. We apply 
max pooling for intervals with multiple posts to create a single representative 
vector. Similarly, for Twitter data, we gather all tweets posted within each 30-
minute interval across the U.S. Pacific Northwest and use BERTweet [ 26] to  
generate 768-dimensional vectors for each tweet. Again, we use max pooling to 
aggregate these vectors into a single representative vector for each interval. This 
approach effectively captures the most significant patterns from social media, 
providing the model with a concise yet robust input for each 30-minute segment. 
Finally, we concatenate the weather data, Reddit vectors, Twitter vectors, and 
multiplex model embeddings, using this combined dataset as input for the model 
to predict outage duration. The combined input is fed into a multiclass neural 
network consisting of three fully connected layers with ReLU activations and 
interspersed dropout layers to reduce overfitting. The model is trained using 
multiclass cross-entropy loss to optimize its performance in predicting outage 
durations across the defined classes. The multiclass cross-entropy loss measures 
the difference between the predicted probabilities ŷ and the actual labels y. 

Loss(ŷ, y) =  − 1 
N 

N∑

i=1 

C∑

j=1 

yij log(ŷij) (1) 

Here ŷij is the predicted probability that the ith sample belongs to the jth class. 
yij is the actual label for the ith sample in the jth class, which is one if the ith 
sample belongs to the jth class and 0 otherwise. N is the total number of samples 
in the dataset. C is the total number of classes. 

4 Experimental Setup 

This study aims to determine if hierarchical multiplex network and multi-modal 
data method can improve early classification of disruption severity to one of five
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categories (short to very long time). We use two years of data for training and 
testing. We use data from 2021-01-01 to 2022-06-30 for training and evaluate the 
model on disjoint data from 2022-07-01 to 2022-12-31. The model is optimized 
using the Adam optimizer and trained for 100 epochs with a batch size 32 and 
a learning rate of 0.0001. We conduct machine learning experiments to predict 
the duration of disruptions caused by the occurrence of power outages. Our 
learning approach is supervised machine learning based. We compare the HMN-
RTS model vs Neural Network (NN), Recurrent Neural Network (RNN), Long 
Short-Term Memory (LSTM), Reddit and Twitter Multiplex Network (RTMNO) 
[ 1]. We choose metrics suitable for a power system setting to evaluate the model’s 
performance. We select metrics appropriate for a power system context to assess 
model performance. 

Given that our classification involves five classes, we use macro-averaging, 
which assigns equal weight to each class irrespective of the class frequency. We 
use macro precision and recall assessing the rates of false positives and false 
negatives. Moreover, we evaluate the model’s performance on the test set using 
the macro F1 scores for each class. Given that C represents the number of classes, 
macro F1 can be defined as 

Macro F1 = 1 
C 

C∑

i=1 

2 · precisioni · recalli 
precisioni + recalli 

(2) 

Table 1. Distribution of power outage durations in BPA service territory across five 
classes of duration in the years 2021-2022. 

Class Duration Percentage 
Class 1 Less than 30 min 63% 
Class 2 30 min to 1 h 1% 
Class 3 1 to 3 h 8% 
Class 4 3 to 6 h 6% 
Class 5 Greater than 6 h 22% 

5 Results and Discussion 

The results for different evaluation metrics of NN, RNN, LSTM, RTMNO, and 
the proposed Hierarchical Multiplex Network model (HMN-RTS) are shown in 
Table 2. The performance of the HMN-RTS model outperformed the perfor-
mance of the traditional models. In addition, the HMN-RTS model obtains a 
higher macro F1 score in all models considered. As a result, the Hierarchical 
Multiplex Network model achieves a macro F1 score of 0.76. Further, we can
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observe that the RTMO model enhances the prediction performance with per-
formance improvement up to 30% versus alternative models. In contrast, despite 
optimizing the baseline models (NN, RNN, and LSTM), they resulted in macro 
F1 scores of only 0.16, 0.19, and 0.21, respectively. This can be explained by 
the limited capabilities of baseline models to capture context compared to our 
HMN-RTS model. 

Table 2. Comparison of macro precision, macro recall, and macro F1 score of Neural 
Network (NN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), 
Reddit and Twitter Multiplex Network (RTMNO), and the Hierarchical Multiplex 
Network model (HMN-RTS). Outage duration is classified into five classes defined in 
Table 1, and the models are evaluated on BPA outage data from 2022-07-01 to 2022-
12-31. 

Model Macro precision Macro recall Macro F1 Score 
NN 0.15 0.21 0.16 
RNN 0.17 0.22 0.19 
LSTM 0.18 0.24 0.21 
RTMNO[ 1] 0.55 0.50 0.51 
HMN-RTS 0.83 0.86 0.76 

Further, we evaluate the HMN-RTS model performance using a confusion 
matrix, which illustrates the number of correct and incorrect predictions for each 
class, as shown in Fig. 2. Note that Class 1 means duration less than 30 min, 
Class 2 is for duration between 30 mins to 1 h, Class 3 is for duration between 1 
to 3 h, Class 4 is for duration between 3 to 6 h, and Class 5 is for duration greater 
than 6 h. Due to the ordinal nature of our classes, the model can distinguish 
between classes with small intervals, while the model struggles to distinguish 
between classes with high intervals. In the HMN-RTS model, the macro F1 
score is lower than macro precision and macro recall because it considers both 
precision and recall in all classes and is sensitive to lower values in either metric. 
To investigate this phenomenon, we examine the prediction of each class. Table 3 
shows the results of the HMN-RTS model per class. While precision and recall 
are relatively high for most classes, the lower precision 0.14 and recall 0.45 values 
cause the macro F1 score to drop significantly, reflecting the harmonic mean’s 
sensitivity to lower values. 

The second set of experiments performs an ablation study. We create five 
different versions of HMN-RTS for this experiment. HMN-R is the model that 
only utilizes Reddit information. It is modified to process Reddit data only. 
HMN-T is the model that only uses Twitter information. It is adjusted to han-
dle only Twitter data. HMN-S is the model that only employs multiplex network 
structure. The model is adjusted to handle multiplex network data. HMN-RT is 
the model that uses both Reddit and Twitter information, modified to process 
Reddit and Twitter data. Finally, HMN-RTS is the model that employs Reddit,
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Fig. 2. Normalized confusion matrix of the HMN-RTS model predicting duration of 
outages for 2022-07-01 to 2022-12-31. Class 1 means duration less than 30 min, Class 
2 is for  duration between  30  minutes to 1 h, Class  3 is for  duration between  1 to 3 h,  
Class 4 is for duration between 3 to 6 h, and Class 5 is for duration greater than 6 h. 

Table 3. Comparison of precision, recall, and F1 score for every class using the HMN-
RTS model trained on data from 2021-01-01 to 2022-06-30 and evaluated on 2022-07-01 
to 2022-12-31. 

Class Precision Recall F1 Score 
Class 1 0.99 1 0.99 
Class 2 1 1 1 
Class 3 1 0.85 0.92 
Class 4 0.145 1 0.25 
Class 5 1 0.45 0.62 

Twitter, and the multiplex network structure. Table 4 outlines the model’s per-
formance. It outperforms all other configurations when the HMN-RTS leverages 
multi-modal data and the network structure. 

The third experiment evaluates the HMN-RTS model’s ability to predict out-
comes at earlier stages. In power systems, predictions made earlier provide more 
significant benefits. Figure 3 shows the macro F1 score for early prediction. The 
macro F1 score indicates the HMN-RTS model’s performance in early detection. 
The X-axis shows the number of hours before the power outage when the predic-
tion is made. We can see that the macro F1 score increases as the prediction time 
approaches the power outage event. This is expected, as impacts are generally 
more predictable over shorter periods. We can also observe that the proposed 
HMN-RTS model can predict power outages with a high macro F1 score up to 
6 hours before the event. Furthermore, it can make predictions up to 12 hours 
in advance with slightly reduced performance, which is still adequate for taking 
appropriate measures to mitigate the side effects of the outage.
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Table 4. Ablation study of the HMN-RTS model. Multiplex Network Structure 
includes layers 1–5 defined in Sect. 3.2 while Reddit and Twitter activities are cap-
tured by separate layers. 

Settings Reddit Twitter Multiplex Network Structure Macro precision Macro recall Macro F1 Score  
HMN-R � 0.66 0.73 0.66 
HMN-T � 0.63 0.79 0.68 
HMN-S � 0.67 0.80 0.71 
HMN-RT � � 0.83 0.82 0.74 
HMN-RTS � � � 0.83 0.86 0.76 

Fig. 3. The HMN-RTS model performance in early detection of outages at the BPA 
service territory for 2022-07-01 to 2022-12-31 is indicated by the macro F1 score for 
a five-class problem formulation defined at Table 1. The X-axis shows the number of 
hours before the power outage when the prediction is made. 

6 Conclusion 

Power outages can affect daily life, such as transportation and communication. 
Therefore, predicting the severity of power outages is critical for effective plan-
ning. This study proposes a county-level hierarchical multiplex network-based 
methodology in the U.S. Pacific Northwest. The proposed approach predicts 
the occurrence of weather-related power outages along with the power outage 
duration. The HMN-RTS model predicts power outage occurrences and sever-
ity across multiple time horizons, including 3, 6, 12, and 24-hour intervals. We 
use multi-modal data collected over time and space to provide earlier predic-
tions of outage duration. We quantify the benefit of integrating weather-related 
disruption information with people’s behavior. 

Consequently, we consider information derived from social sensors. We assess 
whether the proposed hierarchical multiplex network method can learn better 
and enhance the prediction performance compared to other machine learning 
models. Our hierarchical spatiotemporal multiplex network provides a novel way 
of encoding online social sensor data into a network-based approach that can 
improve three hours ahead duration prediction accuracy for power outages with 
a macro F1 score of 0.76, enabling grid operators to implement outage mitiga-
tion strategies promptly. The limitation of this work is that the distribution of 
user ages impacts how they engage on social media platforms, which should be
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examined in a follow-up study. Future research can explore social sensor data 
from a broader range of age demographics. In addition, a follow-up study is 
needed to evaluate our model across different geographic locations and extended 
prediction horizons (e.g., 36 hours). 
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12. Jasiūnas, J., Lund, P.D., Mikkola, J., Koskela, L.: Linking socio-economic aspects 
to power system disruption models. Energy 222, 119928 (2021) 

13. Jones, K.F.: Freezing fraction in freezing rain. Weather Forecast. 37(1), 163–178 
(2022)

http://arxiv.org/abs/1810.04805


Early Prediction of Power Outage Duration Through Multiplex Networks 333

14. Kezunovic, M., Pinson, P., Obradovic, Z., Grijalva, S., Hong, T., Bessa, R.: Big 
data analytics for future electricity grids. Electr. Power Syst. Res. 189, 106788 
(2020) 

15. Kıcıman, E.: OMG, I have to tweet that! a study of factors that influence tweet 
rates. In: Proceedings Of The International AAAI Conference On Web And Social 
Media, vol. 6, pp. 170–177 (2012) 

16. Kim, J., Lee, J., Seo, J., Ghim, Y.C., Lee, Y., Na, Y.S.: Enhancing disruption 
prediction through Bayesian neural network in KSTAR. Plasma Phys. Control. 
Fusion 66(7), 075001 (2024) 

17. Lee, J., et al.: Data-driven disruption prediction using random forest in KSTAR. 
Fusion Eng. Des. 199, 114128 (2024) 

18. Liu, H., Davidson, R.A., Apanasovich, T.V.: Statistical forecasting of electric power 
restoration times in hurricanes and ice storms. IEEE Trans. Power Syst. 22(4), 
2270–2279 (2007) 

19. Liu, W., Yang, Y., Xu, Q., Xia, Y.: Multi-target prediction model of urban distri-
bution system rainfall-caused outage based on spatiotemporal fusion. Int. J. Electr. 
Power Energy Syst. 146, 108640 (2023) 

20. Ma, H., Lei, X., Li, Z., Yu, S., Liu, B., Dong, X.: Deep-learning based power sys-
tem events detection technology using spatio-temporal and frequency information. 
IEEE J. Emerg. Sel. Topics Circ. Syst. 13(2), 545–556 (2023) 

21. Manson, S.M.: IPUMS national historical geographic information system: version 
15.0 (2020) 
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