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Abstract
The recent emergence of information physics as a theoretical foundation for complex networks has inspired the utilization 
of measures, initially developed for use with quantum mechanical systems, for the solution of graph theory research prob-
lems. Network comparison is one such research problem that arises often in all domains, when entities that interact with 
each other possibly with more than one discrete interaction types are studied. A network similarity measure is required for 
any data mining application on graphs, such as graph clustering, classification, or outlier detection. A natural starting point 
for the identification of such a network similarity measure is information physics, offering a series of measures typically 
used to quantify the distance of quantum states. These quantum-inspired methods satisfy the mathematical requirements for 
graph similarity while offering high interpretability. In this work, we characterize these measures for use with monoplex and 
multiplex networks on experiments with synthetic data, and we report results on real-world applications to compare with a 
series of state-of-the-art and well-established methods of graph distinguishability.

Keywords Graph classification · Graph similarity · Information physics · Multiplex comparison

1 Introduction

Complex networks have become a natural representation 
of entities and their interactions in systems of all domains. 
They can be used to describe social networks, genetic and 
protein interaction networks, airline and road traffic net-
works, brain connectivity networks, web graphs as well 
as any other system composed of entities, represented as 
graph nodes, interacting with each other thereby forming 
the edges of the graph. In many applications, the same set 
of nodes may participate in multiple different types of inter-
actions each forming a different and independent layer of 

the network. Then, the system is represented as a multiplex 
graph, and the term monoplex can be used for single layer 
networks. Alternative terminology has been used over the 
years for such complex networks, with examples including 
multidimensional networks, multinetworks, multirelational 
networks, or multislice networks. More general representa-
tions are used in cases where layers are ordered or other-
wise correlated, or in cases where the nodes across layers 
are not aligned, or even represent entities of different types 
with inter-layer connections. The resulting networks are fre-
quently called multilayer networks, but other terms such as 
multilevel, multitype, or networks of networks are used, as 
discussed in detail in Kivelä et al. (2014).

A variety of network theoretic tools are used for the anal-
ysis of these complex systems (Bunke et al. 2007), and the 
question of graph distinguishability or graph similarity is 
often a central aspect of study. Examples include analysis 
of networks for classification purposes, such as comparison 
of networks created by brain fMRI images of patients, but 
also analysis of networks for clustering or outlier detection 
purposes, such as comparisons of daily traffic networks to 
facilitate the detection of abnormal change in traffic pat-
terns. In all these settings, the similarity between two graphs 
with overlapping sets of nodes is assessed and the detec-
tion of changes in the connectivity patterns is essential. 
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This problem is different from the problem of inexact graph 
matching, the graph isomorphism or the maximum com-
mon subgraph problem, where the node correspondence is 
unknown (Bunke 2000).

Several approaches have been proposed to solve different 
variations of the problem of calculating graph similarity. The 
most straightforward approach would be the calculation of a 
variety of the graphs’ structural properties (diameter, edges 
distribution, degree and eigenvalues) and their subsequent 
comparison, but this approach is not able to capture every 
aspect of the graphs. More commonly, methods that estimate 
the graph edit distance (GED) are used. GED measures the 
dissimilarity between two graphs as the minimal cost of a 
sequence of elementary operations transforming one graph 
into another. The exact computation of GED is NP-hard, and 
typically, approximate or tangent solutions are implemented. 
Other solutions have been proposed, such as the usage of the 
graph spectra (Bunke et al. 2007; Wilson and Zhu 2008), or 
measures inspired by document similarity (Papadimitriou 
et al. 2010), and other intuitive approaches (Koutra et al. 
2013; Monnig and Meyer 2018). More recently, spectral 
distances, as well as distances based on node affinities, have 
been studied in more depth (Wills et al. 2020); the usage 
of Quantum Jensen Divergence (QJSDiv) as a measure of 
graph distinguishability has been proposed (Domenico and 
Biamonte 2016); and recently a series of measures that have 
been effectively used in quantum mechanics and quantum 
information theory were proposed (Polychronopoulou et al. 
2021).

Quantum mechanics has proven to be a valuable resource 
for the investigation of the behavior of complex networks 
(Biamonte et  al. 2019). A variety of quantum systems 
have been seen as metaphors for natural systems described 
by complex networks. Quantum gases have been used to 
describe network evolution, and the emergence of differ-
ent structures in complex networks has been represented in 
terms of a quantum-classical transition for quantum gases 
(Javarone et al. 2013). Quantum transport probability and 
state fidelity have been implemented as a closeness function 
and used for community detection (Mauro et al. 2014), while 
quantum random walks have been shown to offer signifi-
cant performance improvements on traditional computer sci-
ence algorithms with respect to the classical random walks 
(Kempe 2003), and have been implemented for a quantum-
inspired ranking algorithm (Sánchez-Burillo et al. 2018). 
Quantum distances are used to reduce the complexity of 
calculating Euclidean distances between multidimensional 
points and improve the performance of algorithms such as 
k-means (Trávníşek et al. 2019). Given this interconnection 
between quantum mechanics and complex networks, quan-
tum network theory is a natural place to look for similarity 
measures.

In the work of Polychronopoulou et al. (2021), four meas-
ures that have been broadly used in quantum information 
theory for the comparison of quantum states (Michael and 
Chuang 2002), systems, and processes (Jerzy et al. 2011; 
Gilchrist et al. 2005) were proposed for use with monoplex 
networks. These quantum-inspired methods offer a math-
ematical method of graph comparison, they satisfy the math-
ematical properties of a metric, offer intelligible results with 
high interpretability, and were shown in Polychronopoulou 
et al. (2021) to satisfy intuitive graph similarity properties 
for monoplex networks. In this work, the techniques are fur-
ther extended for use with multiplex networks. An analysis 
of the intuitive requirements of multiplex graph comparison 
is presented, and we elucidate the properties of the four dis-
tance measures on both monoplex and multiplex networks. 
A series of artificial data is utilized to characterize their 
effectiveness, and showcase their behaviour. We then report 
results on real-world applications, answering different data 
mining problems from a variety of domains. The quantum-
inspired measures are compared to a series of state-of-the-
art and well established methods, adding in this work new 
baseline techniques based on the most recent publications in 
the domain. The code is available on GitHub (https:// github. 
com/ Nancy Pol/ Quant um_ Graph_ Dista nces).

2  Methods

Mathematically, the structure of an undirected single layer 
network, or monoplex, G = {V ,E} , on a set of N vertices 
V = {1, 2,… , n} and a set of edges E ⊆ V × V  , is repre-
sented by a binary matrix A, known as adjacency matrix, 
whose element Au,v = 1 if u, v ∈ V and Au,v = 0 otherwise. In 
order to extend distance measures that were initially devel-
oped for quantum states, to be used with graphs, we utilise 
the definition of a density matrix.

In quantum mechanics, a density matrix is a matrix that 
describes the statistical state of a quantum mechanical sys-
tem. Mathematically, it is a hermitian matrix that is positive 
semidefinite with trace equal to 1. In graph theory, the den-
sity matrix � of a graph can be defined through the combi-
natorial Laplacian of the graph (Braunstein et al. 2006), as 
�G =

Δ−A

Tr(Δ)
 . In this equation A is the adjacency matrix, Δ is 

the degree matrix, which is a diagonal matrix with elements 
equal to the degree d(u) of each node u. The normalization 
using the trace of Δ guarantees that the density matrix will 
have a trace of 1. For a weighted graph G = (V ,E,W) each 
edge is associated with an edge weight and in this case the 
density matrix becomes �G =

Δ−W

Tr(Δ)
 , where W is the weights 

matrix with Wu,v = wuv and Wu,v = 0 if the nodes u and v are 
not connected. The degree matrix Δ is again a diagonal 
matrix holding for each node u the value du =

∑n

v=1
wuv.

https://github.com/NancyPol/Quantum_Graph_Distances
https://github.com/NancyPol/Quantum_Graph_Distances
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Using this formulation we can then compare networks the 
same way we would compare states in quantum mechanical 
systems. In the following sections we present and evaluate 
measures of quantum states comparison that are particularly 
important in Quantum Information Science (Michael and 
Chuang 2002; Jerzy et al. 2011; Gilchrist et al. 2005). They 
have been shown to be metrics, are mathematically well 
established and have high interpretability; thereby satisfy-
ing the mathematical requirements of distance measures for 
graphs. The metric character of a distance for the compari-
son of two complex networks G� and G� , guarantees three 
fundamental properties: D(G� , G�) ≥ 0 , with the equality to 
zero occurring if and only if G� = G� , D(G� , G�) = D(G� , 
G�) i.e. the distance measure is symmetric and finally the 
triangle inequality is satisfied and D(G� , G�) ≤ D(G� , 
G�) + D(G� , G�).

2.1  Trace distance

The trace distance between two quantum states, or two net-
works, with density matrices � and � is given by:

It is a metric and is bounded to be 0 ≤ Dtrace ≤ 1 with the 
equality to 0 holding if and only if � = � and the equality 
to 1 holding if and only if � and � have orthogonal sup-
ports. The trace distance is the quantum generalization of the 
Kolmogorov distance for classical probability distributions 
and, as it’s classical counterpart, the trace distance can be 
interpreted to represent the maximum probability of distin-
guishing between two quantum systems, or in our case two 
networks.

2.2  Hilbert–Schmidt distance

The Hilbert-Schmidt distance

is a Riemannian metric that is bounded to be 
0 ≤ DHS ≤ 2Dtrace . As it is defined on the space of operators 
it is unclear how to impose an operational interpretation, 
however, in Jinhyoung and Brukner (2003) the authors sug-
gest that it can be seen as an information distance between 
two quantum states. It has been recently used in Trávníşek 
et al. (2019) to reduce the complexity of calculating Euclid-
ean distances between multidimensional points and thereby 
reduce the complexity of classification algorithms such as 
k-means but it has not been studied so far as a measure for 
the distinguishability of graphs.

(1)dtrace(G� ,G�) =
1

2
[trace (

√
(� − �)2)]

(2)dHS(G� ,G�) =
√
trace(� − �)2

2.3  Hellinger distance

The Hellinger distance is given by:

with

representing the quantum affinity, a measure that character-
izes the closeness of two quantum states and whose classical 
analog is the Bhattacharya coefficient between two classical 
probability distribution. The Hellinger distance is a metric, 
bounded to be 0 ≤ DH ≤

√
2 (Muthuganesan et al. 2020).

2.4  Bures distance

The Bures distance is expressed through quantum Fidelity 
(Jozsa 1994), which is a measures of overlap between two 
quantum states:

It can be shown that the fidelity is symmetric and is bounded 
to be 0 ≤ F(�, �) ≤ 1 , with F(�, �) = 1 if and only if � = � . 
Although not a metric, the fidelity can easily be turned into 
a metric and the most common approach is the Bures metric:

2.5  Quantum JSDiv

The Von Neumann entropy of a network, similarly to the Von 
Neumann entropy of a quantum system, can be interpreted 
as a measure of regularity and is given by the expression:

Then, the distinguishability of two quantum states or two 
networks with density matrices � and � can be measured 
using the von Neumann relative entropy (or quantum relative 
entropy) defined as:

where ln� is the matrix base 2 logarithm of � . Notice that 
the quantum relative entropy is the quantum mechanical 
analog of relative entropy, otherwise called Kullback–Lei-
bler divergence, commonly used in statistics as a measure 
of comparison for probability distributions. Relative entropy 
is not symmetric, does not satisfy the triangle equality and 
it is well defined only if the support of � is a subset of the 
support of � (the support being the subspace spanned by the 

(3)dH(G� ,G�) =
√
2[1 − A(�, �)]

(4)A(�, �) = trace(
√
�
√
�)

(5)F(�, �) = [trace(

�√
��

√
�)]2

(6)dB(G� ,G�) =

�
2[1 −

√
F(�, �)]

(7)S(�) = −Tr(� log2 �)

(8)SN(�, �) = Tr�(ln� − ln�)



 Social Network Analysis and Mining           (2023) 13:69 

1 3

   69  Page 4 of 14

eigenvectors of the density matrix with non-zero eigenval-
ues). However, it can be extended to provide the Quantum 
Jensen-Shannon divergence (QJSDiv) (Majtey et al. 2005), 
given by:

where SN is the quantum relative entropy of equation 8. 
Quantum Jensen–Shannon divergence was introduced as a 
measure of distinguishability between mixed quantum states 
(Majtey et al. 2005; Lamberti 2008). It is bounded to be 
0 ≤ QJSDiv ≤ 1 , with the equality to 0 holding if and only 
if � = � , and it is always well-defined, with the restriction 
previously imposed on the supports of � and � now lifted. 
The authors of Domenico and Biamonte (2016) have shown 
that Quantum Jensen-Shannon divergence can be used to 
quantify the distance between pairs of networks, and they 
have applied it to successfully cluster the layers of a multi-
layer system. In this work, we use Quantum Jensen-Shannon 
as a quantum-inspired baseline and aim to compare it’s per-
formance with the rest of the measures presented here.

2.6  Comparison of multiplex networks

Mathematically, a Multiplex Network G with L layers 
can be seen as a collection of L single-layer networks: 
G = {Gl ∣ l ∈ {1,… , L}} . Each of these networks has a set 
of edges, that can either be weighted or not, and they all 
share the same set of N nodes V, while some nodes may 
not have connections in all layers. Each of the layers is rep-
resented by a weighted or non-weighted adjacency matrix 
Al . A natural representation of the entire multiplex uses the 
supra-adjacency matrix A of the network (Kivelä et al. 2014; 
Stefano et al. 2014; Domenico et al. 2013). A is obtained 
from the intra-layer adjacency matrices Al and a coupling 
matrix K, whose elements Klm represent the inter-layer con-
nections between layers l and m. Then the supra-adjacency 
matrix becomes A =

⨁
l Al + K ⊗ IN , with a term represent-

ing the direct sum of Al and IN the N × N identity matrix. 
Notice that, in multiplex networks, the only possible type 
of inter-layer connection is the one in which a given node is 
connected to its counterpart node in the remaining layers, 
resulting in a coupling matrix K whose non-diagonal ele-
ments are typically equal to 1.

This formulation allows multiplex networks to be com-
pared using the distance measures introduced for single layer 
graphs, with the supra-adjacency matrix substituting the 
monoplex adjacency. However, as the size of the networks 
under study grow, either in terms of nodes or in terms of 
layers, so does the size of the supra-adjacency, rendering the 
use of complex algorithms computationally expensive and 
infeasible. In addition, the complexity of the representation 

(9)QJSDiv (G� ,G�) =
1

2
[SN(�,

� + �

2
) + SN(�,

� + �

2
)]

is not necessarily increasing the informative power. As the 
addition of layers increases the effective dimension of the 
model, the intrinsic information becomes more sparse, and 
may remain hidden within the noise of the representation 
(Tiago 2015).

Therefore, alternative representations have been pro-
posed for multiplex networks, typically constructing a 
monoplex network by aggregating the various layers. An 
example of such an aggregation is the average network 
(Albert et al. 2013), where the aggregated monoplex is a 
simple average of the layers. Similarly, weighted or non-
weighted overlapping networks (Battiston et  al. 2014) 
have been constructed by summarising the various lay-
ers. The authors of Domenico et al. (2013) have used the 
projected monoplex, and the overlay monoplex networks. 
Both are obtained from a multiplex network by summing 
the edges over all layers, but the overlay network ignores 
the interlayer connections of nodes. Finally, the authors 
of Sánchez-García et al. (2014) introduced the notion of 
graph quotients and an aggregate network that summarizes 
the connections of nodes among the different layers, nor-
malised by the multiplexity degrees of the nodes.

In this work we introduce an alternative representation, 
that can be seen as a very intuitive approach to layer aggre-
gation, the noisy-OR function. In this case, the weight of 
the edge between nodes u and v of the aggregate mono-
plex is calculated as: 1 −

∏L

l=1
(1 − wl

u,v
) . This function has 

been used in many domains and real-world applications 
for approximating relationships in which there is a set of 
two or more sources of information that can potentially 
explain a single variable (Sampath 1993). If the monoplex 
aggregate is seen as the network describing the absolute 
connection between nodes, and the layers are seen as evi-
dence of this connection, then the extension for use with 
multiplex networks is natural. Alternatively, the aggregate 
monoplex describes the reliability of connections between 
nodes, as affected by multiple sources of information, 
the layers of the multiplex network. In the case of non-
weighted networks, this function acts as a projection to a 
flattened network, but in the case of weighted networks, 
the final weight of an edge between two nodes is affected 
by the weights of the various layers.

The monoplex aggregations presented above can be 
used as adjacency matrices for the representation of the 
multiplex, and networks can be compared using the cor-
responding density matrices. In the case of Projected and 
Quotient monoplex, that take into account interlayer con-
nections of nodes, the degree matrix should also include 
those, so that the trace of the density matrix will remain 
equal to 1. In the following sections, we utilize a series 
of experiments on artificial multiplex data to quantify the 
ability of these multiplex representations and similar-
ity measures to distinguish between graphs, and capture 
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intuitive similarity aspects. Then we use real-world com-
plex applications to evaluate the performance of alterna-
tive methods of graph comparison.

3  Evaluation on artificial data

3.1  Monoplex networks

A similarity measure needs to satisfy several require-
ments in order to be considered as a means of single layer 
network comparison. First, the measure should satisfy 
mathematical requirements (be a metric), and have high 
interpretability. But some more important challenges are 
graph-specific and are associated with the ability of the 
measure to capture changes in important structural char-
acteristics such different kinds of centrality measures. 
Examples include the fact that a modification of a graph 
is more important in smaller graphs than larger ones, also 
that targeted modifications should be given higher impor-
tance, and that edge weights should be considered.

The performance of the proposed measures is evaluated 
on artificial data, created as Erdős-Rényi random graphs 
with given number of nodes (100) and edges (1000). These 
artificial networks are then continuously modified using a 
discrete-time process in which one elementary graph edit 
operation is applied at every step. The distance between 
the modified and original network is calculated for every 
step and the results are summarised in Fig.  1. More 
detailed results, accommodating all possible elementary 
graph edit operations, and different graphical structures 
are included in Polychronopoulou et al. (2021).

In the simple case of repeated node removals, the mono-
tonically increasing behavior of the distance measures is 
evident and confirms that they all act as measures of graph 
distinguishability. Several other intuitive aspects are evi-
dent on this figure. First, with the exception of Bures dis-
tance, the measures have identified that the removal of one 
node is more crucial for smaller networks, as is evident by 
the slope of the curves. Interestingly, Hellinger distance 
is equally sensitive to modifications of large and small 
networks. Furthermore, all distances are sensitive to dis-
tinguishing targeted from random operations, both for the 
case of continuous edge removals targeting popular nodes, 
and continuous edge removals targeting edges of higher 
weights. The sensitivity of the methods differs, although 
they all exhibit distance values that are lower for random 
modification, compared to targeted ones. The behavior of 
trace distance is notable, with a lower sensitivity when the 
compared graphs are either very similar or very dissimilar.

3.2  Multiplex networks

A similar analysis is applied to the case of multiplex net-
works. Different network generation techniques are used to 
create multiplex networks with two or three layers following 
Poisson multidegree distribution and scale-free multidegree 
distribution (Bianconi 2013), as well as duplex networks 
with linear (Vincenzo et al. 2013) and nonlinear kernels 
(Vincenzo et al. 2014). Each network is then continuously 
modified, applying at each step one elementary graph edit 
operation, and the distance between the modified and origi-
nal network is calculated. The process is repeated for all 
multiplex representations.
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Fig. 1  The progression of each of the distance measures between the 
original graph and the graph after applying a series of elementary 
graph edit operations. For edge removals, two operations are com-

pared: random vs targeted edge removals, targeting the popular nodes 
(middle) or edges of higher weight (right)
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The first results are created by applying continuous ran-
dom node removals and are presented in Fig. 2. In each part 
of the plot, two of the three variables of study (distance, 
multiplex representation, multiplex generation technique) 
remain constant, while the third one varies. Similarly to 
the case of monoplex networks, quantum distances satisfy 
intuitive similarity aspects: they continuously increase as 
the networks are further modified and this applies to most 
multiplex representations and all types of data. As observed 
in the middle plot of Fig. 2, in the case of Quotient and Pro-
jected monoplex networks that incorporate inter layer con-
nections of nodes, this is not always the case. The inter layer 
connections become prevalent at very small size networks 

affecting the expected continuous increase of distance in the 
plots of Fig. 2.

In the case of multiplex networks the measures used for 
their comparison should be able to capture some additional 
intuitive aspects. For example, removal of nodes with higher 
centrality should create graphs more distinguishable from 
the original one. Even more so, when the nodes that are 
removed act as a bridge between layers (Albert et al. 2014), 
such as node n3 in Fig. 3. Similarly, the effect of an edge 
removal should depend on whether the adjacent nodes have 
a connection in other layers or not, such as the case with 
edge e2 in Fig. 3.

In this small scale example, we can calculate the distances 
of some possible modifications using the supra-adjacency 
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Fig. 2  The progression of the distance measures between the original 
graph and the graph after applying a series of elementary graph edit 
operations for: Left: supra-adjacency representation, 3-layer poisson 
multidegree distribution network, and various distance measures. 

Middle: hellinger distance, 3-layer poisson multidegree distribution 
network, and various multiplex representations. Right: hellinger dis-
tance, supra-adjacency representation, and various multiplex artificial 
networks of L number of layers and different generation techniques

Fig. 3  Examples of multiplex 
networks, where each layer is 
represented by a different color 
of edges. The removal of each 
of the nodes n1, n2 or n3 should 
create graphs with different 
distances from the original one. 
The same applies to the removal 
of each of single layer edges e1 
and e2
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representation of the multiplex, and directly compare the 
results of Table 1. In the cases of node removals from graph 
GA , when node n1 is removed all distance measures calcu-
late a distance that is smaller than when nodes n2 and n3 are 
removed. Then, comparing the effect of removing nodes n2 
and n3 , we can see that GED is the same in both cases, as 
expected since it only incorporates structural changes, while 
Hellinger, Trace and QJSDiv, report that the removal of the 
bridge node is more substantial. In the cases of edge remov-
als, all quantum measures, except Hilbert-Schmidt, agree 
that the removal of edge e1 increases the distinguishability 
of the graph more than the removal of edge e2 , since in that 
second case the two adjacent nodes maintain their connec-
tion over the other layer.

Similar conclusions can be reached using alternative rep-
resentations for the multiplex. Table 2 shows the values of 
Hellinger Distance for the same modifications and different 
aggregated monoplex representations. All representation 
identify the removal of node n1 as less substantial. However, 
with the exception of the projected and quotient monoplex, 
they are not able to differentiate between the removals of 
nodes n2 and n3 . In the case of edge removals most aggre-
gate representations agree that the distance of graphs G and 
G′ is larger when edge e1 is removed, while since this is a 
non-weighted network, the noisy-OR function does not dis-
tinguish between G and G′ when e2 is removed.

We can generalise these findings, using larger scale 
artificial networks, generated as two and three layer arti-
ficial multiplex networks, with the multiplex generation 
techniques reported above. Then, at every node removal 
step, the distance of the new graph with the previous, and 

the MultiRank centrality of the removed node are calcu-
lated. For this centrality, an algorithm by Christoph et al. 
(2018) is used, as it considers the multiplex structure and 
assigns higher centrality values to nodes that are linked 
to central nodes in highly influential layers. There is a 
clear correlation between these values, as evident by the 
Pearson correlation of the distances and node centralities, 
reported for the supra-adjacency representation and each 
of the distance measures, in Table 3. Other multiplex rep-
resentations produce similar results, and an example for 
the correlations of Hellinger distance is presented in the 
same table for all other multiplex representations.

We can generalise the findings of the edge removal 
examples, using again larger scale artificial networks, 
while for every removal of an edge el

u,v
 from a layer l, we 

monitor the number of layers in which an edge between the 
adjacent nodes u and v exists. The resulting distributions 
of distance values, across all types of networks and for 
the case of the supra-adjacency representation and Hell-
inger distance is reported in Fig. 4. The three plots, when 
normalised to the same integral, present distributions of 
distances that can be fitted with functions holding different 
exponential parameters, shown on the plots. These values 
have 95% Confidence Intervals given in this example by: 
CI1L

b
= (−0.1573,−0.1303) ,  CI2L

b
= (−0.3306,−0.2752) , 

CI3L
b

= (−0.6758,−0.4288) , indicating that the removal 
of an edge is creating less distinguishable graphs, when 
the adjacent nodes are also connected in different layers. 
It is also evident that the larger the number of layers in 
which the adjacent nodes u and v were originally con-
nected, the more narrow the distribution is, or the smaller 

Table 1  Distances between 
different sample multiplex 
networks G and G′

GED Hellinger Bures Hilbert-Schmidt Trace QJSDiv

G = GA

G� = G - {n1}: 0.1232 0.3247 0.4430 0.1535 0.2123 0.1100
G� = G - {n2}: 0.1884 0.4004 0.5402 0.1999 0.2992 0.1680
G� = G - {n3}: 0.1884 0.4006 0.5401 0.1912 0.3004 0.1683
G = GB

G� = G - {e1}: 0.0140 0.0653 0.0880 0.0485 0.046189 0.0063
G� = G - {e2}: 0.0140 0.0620 0.0849 0.0485 0.046187 0.0056

Table 2  Hellinger distance 
between sample multiplex 
networks G and G′ , for 
different aggregate monoplex 
representations

Supra Average Overlap Projected Overlay Quotient Noisy-OR

G = GA

G� = G - {n1}: 0.3247 0.3295 0.3356 0.3210 0.3295 0.3169 0.3295
G� = G - {n2}: 0.4004 0.4017 0.4134 0.3905 0.4017 0.3868 0.4017
G� = G - {n3}: 0.4006 0.4017 0.4134 0.3975 0.4017 0.4223 0.4017
G = GB

G� = G - {e1}: 0.0653 0.0839 0.0509 0.0762 0.0839 0.0635 0.0994
G� = G - {e2}: 0.0620 0.0593 0.0258 0.0539 0.0593 0.0387 0
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the expected distance value will be. Similar trends are 
observed on the plots of all other quantum distances, as 
well as the majority of multiplex representations, with the 
exception of overlap and Noisy-OR representations similar 
to the results of the small scale example.

4  Applications on real data

In this section, we evaluate the effectiveness of the proposed 
distance measures on real world applications. For each appli-
cation we utilise data from different domains and we compare 
our results with several well-established and state of the art 
baseline methods.

4.1  Baselines

The first of our baselines is based on the Normalized Lapla-
cian spectral distance of two graphs G� = (V� ,E�) and 
G� = (V�,E�) , as calculated by:

with ��
i
 and ��

i
 the ith eigevalue of the Normalised Laplacian 

of graphs G� and G� correspondingly. The spectral distances 
of graphs have been studied (Wilson and Zhu 2008; Wills 
et al. 2020) and proven to be effective means of graph com-
parison, although they are not true metrics, since two graphs 
may exist that are co-spectral but not isomorphic.

We also compare our results with the resistance-perturba-
tion distance, introduced in Monnig and Meyer (2018). In this 
work the authors represent each graph G by it’s effective graph 
resistance R, with elements: Rij = L

†

ii
+ L

†

jj
− 2 L

†

ij
 , where L† 

denotes the Moore-Penrose pseudoinverse of the combinato-
rial Laplacian matrix L. Then the resistance-perturbation dis-
tance between two graphs G� = (V� ,E�) and G� = (V�,E�) is 
defined as the element-wise p-norm of the difference between 
their effective resistance matrices:

(10)dL (G� ,G�) =

√√√√
N∑

i=1

(��
i
− �

�

i
)2

(11)dPR (G� ,G�) = ‖R� − R�‖p
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Fig. 4  Distribution of the values of Hellinger distance between G and 
G

′ when an edge el
u,v

 from layer l is removed, while the adjacent nodes 
u and v are connected in 1, 2 or 3 layers

Table 3  Pearson Correlation of node centrality and Distance between G and G′

Supra adjacency representation

Hellinger Bures H-S Trace QJSDiv

0.974 0.969 0.967 0.983 0.967

Hellinger Distance

Supra. Avg Overlap Proj. Ovy Quot. OR

0.974 0.973 0.974 0.973 0.973 0.966 0.974
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The last of our state-of-the-art baselines is DELTACON, an 
intuitive algorithm proposed by Koutra et al. (2013), that 
uses fast belief propagation to model the diffusion of infor-
mation throughout the graph and represent each graph by an 
affinity matrix S , defined as: S = [I + �2D + A]−1 . Then the 
two graphs G� = (V� ,E�) and G� = (V�,E�) are compared 
via the Matusita difference of their reprsentations:

We also compare with two well-established measures of 
graphs similarity, the graph edit distance (GED) and the 
edge-weight distance (DEW), studied in detail in Bunke 
et al. (2007). Mathematically, the graph edit distance (GED) 
between two graphs G� = (V� ,E�) and G� = (V�,E�) is given 
by:

while the edge-weight distance for the two graphs, on the 
simplified case of V� = V� = V  is defined in Bunke et al. 
(2007) as:

with wi
uv

 the weight of the edge between nodes u and v of 
graph Gi.

4.2  Single layer graph classification

As a first application, we evaluate the effectiveness of the 
distance measures on classification problems with real world 
single layer networks. The data sets used, are available 

(12)dDELT (G� ,G�) =

√∑

i,j

(
√

S�
ij
−
√

S
�

ij
)2

(13)

dGED(G� ,G�)

=
∣ V� ∣ + ∣ V� ∣ −2 ∣ V� ∩ V� ∣ + ∣ E� ∣ + ∣ E� ∣ −2 ∣ E� ∩ E� ∣

∣ V� ∣ + ∣ V� ∣ + ∣ E� ∣ + ∣ E� ∣

(14)dDEW (G� ,G�) =
∑

u,v∈V

∣ w�
uv
− w�

uv
∣

max (w�
uv
,w

�
uv)

online, under (SNAP datasets), or (Austin datasets) and the 
results are reported in terms of the F1 score in Table 4.

For each data set, we construct labeled graphs using the 
ego-networks of each node. For the classification task, the 
dissimilarities between all possible combinations of graphs 
are calculated, a leave-one-out approach is implemented and 
each ego-network is assigned to the label that is on aver-
age most similar. The classification is based on the assump-
tions that researcher who belong in the same department 
will have similar email ego-networks (Leskovec et al. 2007), 
butterflies who belong in the same class will have similar 
visual similarities ego-networks (Bo et al. 2018), individuals 
from the same class have similar interaction ego-networks 
(Mastrandrea et al. 2015; Juliette et al. 2011; Philip et al. 
2021), US Counties with a majority vote of the same party 
in the U.S. presidential elections will have similar Facebook 
social connectedness ego-networks, or physical proximity 
ego-networks (Jia and Benson 2022), and that Congressper-
sons with the same political party affiliation have similar bill 
co-sponsoring egonetworks (James 2006; Philip et al. 2021).

The results indicate that the quantum-inspired distance 
measures in most cases outperform the more traditionally 
used baselines, with Hellinger achieving the highest clas-
sification accuracy most often.

4.3  Multiplex layer clustering

As described earlier, in multiplex networks entities are 
connected to each other via multiple types of connections. 
The increased complexity of such systems has motivated 
the study of layer aggregation (Manlio et al. 2015) or layer 
clustering. Through this process it is possible to minimize 
the total number of layers in a system, resulting in a network 
that can be analysed more efficiently, but not without some 
loss of information content. Although the benefit of aggre-
gating layers with structural similarities is not always clear, 

Table 4  F1 scores for each 
of the classification tasks and 
distinguishability methods

Dataset

Email-EU Butterfly High-School Primary USC-FB USC Senate

dtrace 0.5560 0.7566 0.9786 0.9051 0.8016 0.8218 0.5691
dHS 0.4056 0.6950 0.9900 0.9173 0.8212 0.8007 0.5691
dH 0.6123 0.7806 0.9869 0.9173 0.8065 0.8168 0.5691
dB 0.5610 0.7678 0.9898 0.9025 0.4615 0.4615 0.5051
dqjs 0.5946 0.7742 0.9869 0.9173 0.8062 0.7658 0.5481
dGED 0.5726 0.7554 0.9931 0.9024 0.8062 0.8268 0.5582
dDEW 0.5728 0.7595 0.9931 0.8986 0.8062 0.8168 0.5617
dDELT 0.4179 0.7433 0.9287 0.9168 0.6621 0.7924 0.5720
dL 0.0471 0.2119 0.2097 0.1667 0.6135 0.4328 0.5444
dPR 0.0463 0.7265 0.9297 0.7117 0.8034 0.7658 0.5704
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it typically depends on the system under study (Tiago 2015), 
and remains an open research problem.

Following this motivation, we evaluate the effectiveness 
of the quantum-inspired graph distance measures in the 
problem of computing pairwise similarities between layers, 
and then performing hierarchical clustering of structurally 
similar layers in multiplex networks. We utilise real-world 
data from various domains (Manlio Datasets), and the result 
are presented in Table 5. The same table includes the num-
ber of nodes N for each data set, the original number of 
layers L, and the number of layers after their hierarchical 
grouping LG.

For the evaluation of the clusters created based on 
each of the dissimilarities of layers, the silhouette is uti-
lized, which calculates how similar the data are within the 
cluster, as compared to other clusters. More specifically, 
for each layer, we calculate a silhouette score given by: 
Sl = (Distout − Distin)∕(max(Distout,Distin)) , where Distout 
is the distance of layer l with layers that are clustered in the 
closest cluster of layer l but not the same, and Ain is the intra 
cluster distance defined as the average distance to all other 
layers in the same cluster as l. For this distance we used 
GED, accounting for the structural changes. The results of 
Table 5 indicate that in most cases the quantum-inspired 
distance methods are forming clusters of higher silhouette 
values, thereby clustering the layers in more concise clusters.

4.4  Multiplex graph classification

In this section we utilize data collected by the Food and 
Agriculture Organization of the United Nations (FAO), that 

describe trade relationships among countries for 2010, avail-
able under (Manlio Datasets). This is a multiplex network 
consisting of 214 nodes, each representing a country, and 
364 layers, each holding import/export relationships of a 
specific food product. For each node, the trade ego-network 
is extracted, and the classification problem is the predic-
tion of the country’s development status, according to the 
composition of economies available from United Nations 
Conference on Trade and Development (UNCTADStat (as of 
June 2021)), using only the information of the ego-networks. 
The classification task is completed using all possible mul-
tiplex representations and distance measures listed above, 
while the F1 score is used as a measure of the performance 
of each classifier. In order to evaluate the ability of each rep-
resentation to incorporate information from multiple layers, 
we repeat the classifications each time including a different 
number of layers, in decreasing size order. The results are 
reported in Figs. 5 and 6.

The results of Fig. 5 focus on presenting how the F1 score 
changes as more layers are used for the classification, for 
different multiplex representations and distance measures. 
The plot indicates that most of the distances are able to 
achieve an accurate classification when two or more layers 
are used, with an F1 score that is increasing with the addi-
tion of more layers. The results are similar for all possible 
multiplex representations.

As the number of the layers increases even more, the use 
of the supra-adjacency becomes impractical, however the 
monoplex aggregation techniques, with a smaller computa-
tional complexity, are able to achieve comparable accuracy 
scores, that continuously increases with the addition of more 

Table 5  Evaluation of layer 
hierarchical clustering in terms 
silhouette scores

Data N L LG dH dB dtrace dHS dqjs dGED dDEW dL dDELT dPR

FAO 214 364 250 0.575 0.575 0.589 0.582 0.580 0.569 0.570 0.381 0.527 0.514
EUAir 450 37 25 0.456 0.456 0.453 0.479 0.472 0.470 0.364 0.415 0.616 0.472
Auger 514 16 10 0.435 0.435 0.412 0.492 0.435 0.437 0.437 0.256 0.482 0.469
candida 367 7 4 0.555 0.414 0.555 0.492 0.555 0.555 0.555 0.461 0.489 0.437
London 369 6 4 1 1 1 1 1 1 1 1 1 1
Rattus 2640 6 4 0.543 0.376 0.376 0.543 0.376 0.543 0.377 0.494 0.465 0.494
Gallus 313 6 4 0.435 0.435 0.469 0.525 0.469 0.469 0.469 0.257 0.538 0.534
XG 461 5 4 0.596 0.596 0.631 0.631 0.631 0.631 0.631 0.592 0.592 0.592
HIV1 1005 5 4 0.656 0.656 0.656 0.534 0.656 0.657 0.656 0.657 0.657 0.558
D.Rerio 155 5 3 0.281 0.281 0.281 0.448 0.281 0.281 0.281 0.419 0.417 0.345
Arhus 61 5 3 0.561  0.561 0.561 0.391 0.561 0.561 0.561 0.270 0.292 0.266
KT 39 4 3 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.546 0.547
herpes 216 4 3 0.619 0.619 0.619 0.394 0.619 0.619 0.619 0.619 0.619 0.619
Bos 325 4 3 0.478 0.545 0.478 0.545 0.478 0.545 0.545 0.478 0.478 0.478
Hepc 105 3 2 0.511 0.511 0.511 0.511 0.511 0.511 0.511 0.511 0.268 0.268
KHigh 21 3 2 0.583 0.583 0.583 0.583 0.583 0.583 0.583 0.583 0.261 0.583
LLaw 71 3 2 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608
VC7th 29 3 2 0.562 0.562 0.562 0.562 0.562 0.562 0.562 0.562 0.562 0.562
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layers. Figure 6 illustrates the change of F1 score as even 
more layers are used for the classification. What is evident is 
that traditional methods, and the baselines, such as DELTA-
CON, as well as quantum distances are increasing their accu-
racy with the addition of more layers. Out of the traditional 
methods, for this weighted dataset the edge-weight distance 
outperforms GED, while DELTACON outperforms the 
normalized Laplacian spectral distance and the resistance-
perturbation distance. For the quantum measures, trace and 
Bures distances present the highest F1-scores, with Quantum 
JSDiv and Hellinger distances following closely. For many 
of the multiplex representations the accuracy is starting to 
drop after the addition of a given number of layers, defining 
a point at which the complexity of the problem increases, 

more evidently for the edge-weight and trace distances. The 
same behavior is observed for the Hellinger distance, while 
the Hilbert-Schmidt distance presents the lowest F1-score 
overall and the added complexity affects it the most.

The previously reported findings are specific to the FAO 
dataset and cannot be generalised for all possible applica-
tions. In general, the increased complexity of multiplex sys-
tems does not always guarantee an increase in the informa-
tive power of these structures. Layers are informative only 
if their incorporation into the network yields a more detailed 
description of the data and if they unveil structural patterns 
not otherwise present (Tiago 2015). If this is not the case, 
additional layers increase the complexity of the system, and 
as dictated by Occam’s razor, eventually obscure useful 
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Fig. 5  Bar plots, for different multiplex representations, of the change 
in F1 scores as more layers are included in the classification, and for 
different graph distance methods. The plots for the natural representa-

tion of Supra-adjacency, the most common representation of Average 
and the newly-introduced Noisy-OR are included, while for all other 
representations the plots are very similar
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structural information. Such examples are seen in the clas-
sification results of Table 6, for two datasets available under 
(Manlio Datasets), the Krackhardt High-Tech company and 
the Lazega law firm.

In the Lazega law firm data set the three layers represent 
“advice”, “friendship”, and “co-work”. For the prediction of 
Practice, all 3 layers independently perform well, with “co-
work” outperforming the other two, while use of combina-
tions of these layers reduces the resulting accuracy. In the 
same data set, the prediction of node status behaves differ-
ently. In this case, as is intuitively expected, layers “advice”, 
and “friendship” appear to perform better than “co-work”, 
while their combination outperforms all other options. 
Notice that the monoplex aggregate representations provide 
similar results with F1 scores for the prediction of Practice 
(when using the Hellinger distance) ranging between 0.902, 
and 0.928.

It becomes evident that the benefit of utilization of addi-
tional layers depends on the system under study, and is 
beneficial only when the layers are informative, meaning 
that for classification purposes the layers need to be well 
correlated with the label and contain structural information 
not otherwise present. In most cases the quantum-inspired 
methods perform better than the baselines, and all multiplex 
representations are able to capture the underlying structure.

5  Discussion

In this work, measures for graph similarity inspired by 
information physics were introduced. These measures are 
well-established mathematical methods that incorporate 
the intrinsic structure of the entire network and have high 
interpretability. They can be used with both weighted and 
unweighted networks, are shown to effectively distinguish 

monoplex and multiplex networks, and capture graph intu-
itive aspects of structural changes, such as node centrality. 
In the case of multiplex networks, the noisy-OR aggregate 
monoplex is introduced and contrasted with aggregates 
previously proposed in the bibliography. We utilized arti-
ficial data to characterise the methods and real-world data 
sets to showcase that they can be effectively used on a 
variety of applications outperforming previously well-
established and state-of-the-art methods.

Quantum and information physics undoubtedly com-
pose a rich resource of mathematically established and 
interpretable measures, used for the evaluation or com-
parison of natural systems. Many of these measures have 
been translated into meaningful complex network tools, in 
this work and previous ones (Biamonte et al. 2019). For 
many other measures their graph-interpretation remains to 
be seen. For example, quantum error correction methods, 
typically used to remove environmental interactions and 
other forms of noise from quantum states, could inspire 
methods eliminating different forms of noise from com-
plex systems and highlighting the information they carry. 
Another possible example would be measures of quantum 
entanglement such as the entropy of entanglement, quan-
tum concurrency, or quantum negativity, which are typi-
cally used to measure how entangled two quantum states 
are, or how far these states are from achieving separability. 
For complex networks the quantum separability can be 
translated into network distinguishability. In addition, in 
the case of multiplex networks, quantum states separability 
can be seen as layer separability, a possible measure of the 
layers’ informative power.
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