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Abstract: The electric grid forced outages (further referred to as “outages”) are increasingly common due 
to the growing complexity of the electric grid, wear and tear of the components, and the impact of inclement 
weather. The recent development of Machine Learning (ML) approaches for predicting the outage State of 
Risk (SoR) allows the time needed to implement mitigation measures that can reduce the risk and, 
consequently, impacts associated with the outages. This paper establishes a baseline for the outage SoR 
prediction using data from historical outage logs and relevant weather parameters associated with an actual 
power system in Texas, USA. The baseline is used to demonstrate how various design requirements for the 
outage SoR prediction models can impact the interpretability of the results. The paper’s findings emphasize 
the implications of different interpretability outcomes that affect the effectiveness of the mitigation options.   
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1. INTRODUCTION 

Since most of the outages are caused by inclement weather or 
equipment wear and tear, it was recognized a decade ago that 
using ML approaches on big data associated with the causes of 
outages may enable the prediction of outage State of Risk 
(SoR) (Kezunovic et al., 2013). Subsequently, many studies 
have explored different data and algorithms used to develop 
the outage SoR prediction. Our contribution reveals how the 
interpretability of the results may affect the mitigation 
decision-making of different end-users within the utilities and 
their customer base.   

1.1 State of art in outage SoR prediction  

Many machine learning algorithms such as logistic regression 
(LR), random forest (RF), gradient and adaptive boosting (GB, 
AB), and multi-layer feed-forward networks (MFN) were 
utilized for outage prediction using the historical weather and 
outage data, leading to the conclusion that the model's 
performance depended upon the area size (Garland et al., 
2023). A five-step framework was developed encompassing 
failure probability prediction using LR to enhance system 
resilience for overhead lines due to lightning events (Mujjuni 
et al., 2023). However, the study only considered a single 
400kV transmission line rather than a system network. Deep 
learning techniques were used to predict the outage probability 
in a census tract based on weather, infrastructure, and socio-
economic details (Wang et al., 2024). A comparison of 
autoregressive statistical approaches was performed against 
time series-based deep learning models like Long Short Term 
Memory (LSTM) and 1D – Convolutional Neural Network 
(CNN) for predicting customer outages over varying lead 
times (Udeh et al., 2022). Different machine learning 
algorithms like RF, neural network (NN), support vector 
machine (SVM), k-nearest neighbors, and decision tree (DT) 
were used to predict and classify outage causes (Kor et al., 

2020). These references consider very large-scale networks 
over census tracts or counties in contrast to our entire 
distribution scale network, over which the outage is much 
more difficult to predict accurately. 

Graph Neural Network (GNN) has been utilized to predict 
outage occurrence based on the data obtained from weather 
stations and their relative location in the area of interest 
(Owerko et al., 2018). Survival model-based outage risk 
prediction has also been proposed by combining various 
resilience-based metrics with operation attributes and 
vegetation indicators (Jain et al., 2021). Fragility curves for 
weather-related outages were obtained through catastrophic 
risk modeling based on the wind speed values and outage data 
at varying spatial resolutions (Dunn et al., 2018).  

1.2 Our prior work  

Early on we explored Big Data applications in outage 
management (Kezunovic et al., 2013), and then applicability 
of ML algorithms for predicting outage SoR by incorporating 
graph embeddings (Baembitov et al., 2021). We then studied 
the influence of wind modeling (Baembitov et al., 2023) and 
lightning (Baembitov et al., 2025) on outage SoR predictions, 
and a sensitivity analysis of various ML algorithms 
(Baembitov et al., 2024). We also explored other aspects of 
outage SoR prediction: a). mitigation strategy for consumers 
once notifies of the imminent outages (Baembitov and 
Kezunovic, 2023), b) prosumer strategy optimization utilizing 
SoR levels (Khoshjahan et al., 2023), and c) tree-trimming 
plan to reduce the overall risk in the system (Dokic and 
Kezunovic, 2019).  

In this paper, we are focusing on design parameters and results 
interpretability and emphasizing the importance of the 
interpretability of the model outputs for decision-making.es).  
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1.3 Paper contribution 

We could not identify references that demonstrate the 
variability in the ML result interpretability by the end-user. 
While some references offer a sensitivity study of the resulting 
ML model metrics, the uses of the results for decision-making 
regarding risk mitigation are not sufficiently explored. In this 
context, our contributions are:  

• An analysis of the SoR prediction implementation options 
that may affect the results performance metrics. 

• Development of the baseline for algorithm comparison 
along the spatiotemporal variability. 

• Classification of the user decision-making needs and 
requirements as they interpret the outage SoR results. 

2. DESIGN REQUIREMENTS AND IMPLEMENTATION 
OPTIONS FOR THE OUTAGE SoR PREDICTION 

2.1 Typical data requirements and options 

Since the causes of outages vary by various areas in the service 
territory, an optimal selection of data should represent outage 
causes for given circumstances of the grid disposition and 
environmental/weather exposures.  

Several outage causes reported in the literature (Fig. 1) 
correlate to different data sources (Table 1). The key to 
merging such data for ML model development is correlating 
the data in time and space while accounting for data 
uncertainty, errors, and refresh rate.  

 
Fig 1. Outage causes in the U.S. (DOE, 2002-2021). 

Table 1. Data types 

Data Type Description 
Utility sources 

Feeder locations Location of overhead lines in 
the network 

Historical outage logs A list of outages that occurred 
in the network in the past 

Substation locations Coordinates of the network 
substations 

Historical tree trimming 
logs 

Where, when, and how much 
trimming is performed 

Historical maintenance 
logs 

Where, when, and which 
equipment was 
repaired/replaced/maintained 

Costs of outages Outage monetary impact  

Customer types and 
locations 

Aggregated and/or 
anonymized customer groups  

Public sources 

Historic weather 
condition logs 

Meteorological parameters 
with timestamps and locations 

Weather forecasts Data reflecting future weather 
conditions 

Vegetation types Vegetation properties (foliage, 
canopy, height, crown)  

Leaf Area Index (LAI) Amount of leaf material in a 
plant canopy 

Paid sources 

Light Detection and 
Ranging (LiDAR) scans 

3D images of the terrain of 
interest 

Historic lightning logs Location, time, and type of 
lightning strikes in the area 

2.2 Data/model requirements and typical algorithm choices  

To illustrate how the data may be utilized, it appears 
convenient to represent data in one of the visualization 
software tools, such as ArcGIS, allowing a layered view of 
data superimposed on the grid topology (Fig. 2). The map was 
acquired using a Random Forest classifier; more information 
about models and their relative performance can be found in 
(Baembitov et al., 2024). The area with outage prediction is 
marked in red, the area where the outage is unlikely is marked 
in blue, and just for comparison purposes, the location where 
the outage occurred is marked in green (ground truth).  

 
Figure 2. Risk map. 

The most used algorithm choices come from extensive Python 
libraries of ML algorithms (Ramasubramanian and Singh, 
2019, Kramer, 2016). The outage SoR prediction 
implementation indicates that off-the-shelf solutions must be 
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The most used algorithm choices come from extensive Python 
libraries of ML algorithms (Ramasubramanian and Singh, 
2019, Kramer, 2016). The outage SoR prediction 
implementation indicates that off-the-shelf solutions must be 

customized to meet the requirements of utility applications. 
Our experience from outage SoR prediction research supports 
this hypothesis, as such customized approaches result in 
improved prediction performance (Baembitov et al., 2024).  

2.3 Variability of design options  

The variability in the implementation option relates to the 
several design/implementation choices.  

Outage causes, reflected through the related data, determine 
what types of outages the model predicts. For example, if only 
weather-related outages are included, the model will focus 
solely on weather-induced outages.  

Spatial and temporal settings define the geographic area and 
time window for predictions (e.g., citywide vs. districtwide, 1-
hour vs. 24-hour predictions).  

The prediction window size refers to the period when the 
predictions are made. In the Figure 3 example, the prediction 
window is set to five hours, and if an outage occurs in any of 
those five hours, the prediction window is labeled as ‘outage-
positive,’ or a positive sample. Otherwise, the prediction 
window is marked as a negative sample. The ML models aim 
to determine if the window  should be classified as positive or 
negative.  

The lead time defines how far the moment of executing the 
model is from the beginning of the prediction window. This 
time corresponds to preparing for mitigation actions before an 
outage. An example of a model run at a two-hour lead time 
versus zero-hour lead time is illustrated in Figure 3.  

 
Fig. 3. 0h and 2h lead time for 5h prediction window size. 

Prediction frequency is defined as the period between model 
executions, which may be set at every hour or a longer period. 

The input data window refers to the timesteps and all the data 
connected to those timesteps provided to the model at the 
execution time. It should not be confused with the prediction 
window size described above. For example, we can select 6 
hours of past weather, 3 hours of forecast data, and 3 weeks of 
vegetation management records for a single model execution, 
signifying that the time range for data coming from different 
sources does not need to be the same.  

Dataset selection for training and testing. The examples are 
High-Resolution Rapid Refresh for weather (HRRR) (NOAA, 
2024), Light Detection and Ranging (LiDAR) for vegetation 
and infrastructure mapping (Wanik et al., 2017), and 
Automated Surface Observing System (ASOS) for 
meteorological data (NOAA, 2021).  

2.4 Interpretability of the results 

Developer-focused evaluation metrics. Typically, the metrics 
used by predictive analytics developers (ex. Accuracy, 
Precision, Recall, F1 score, Specificity, ROC-AUC, 
Confusion Matrix) capture different meanings of the results 
(Powers, 2011). The interpretation is reduced to the choice of 
metrics used to evaluate the results. 

The evaluation metrics results are meaningful to the data 
analytics experts in assessing the prediction algorithm 
performance. They are also indispensable for estimating the 
expected overall efficacy of the model(s), which can be 
measured by different business metrics (total reduction in 
equipment downtime, change in customer satisfaction levels, 
monetary loss reduction, etc.). The business metrics for a given 
application are derived from performance metrics by 
considering the cost/reward for each possible outcome: true 
positive, true negative, false positive, and false negative.  

The end-user-focused evaluation. This interpretability goes 
beyond the data analytics experts as it also concerns the end 
users (different utility staff and/or electricity consumers). 
Their interest is in understanding how a prediction for a given 
outage event should be interpreted to define mitigation 
measures aimed at reducing the impact of outages. As an 
example, a possible display for the end user in the utility 
environment (Fig. 2) illustrates an unfolding set of displays 
that dynamically shows how the prediction fairs against actual 
events over time.  

The utility personnel have various mitigation options for 
dealing with outages depending on their responsibility, that is 
typically constrained by the time interval that they need to 
react. The control center personnel are issuing network 
reconfiguration orders to allow alternative power routing to the 
consumers (if feasible), which happens in the operations time 
frame of minutes and hours. A set of repair and restoration 
actions are performed by the outage management crews that 
can only act in hours, perhaps even days, depending on the 
environmental conditions. The asset management personnel 
may use the outage prediction to determine where the outages 
are more frequent to assess whether some type of equipment 
needs preventive repair or replacement and if relevant 
equipment types of replacements are in stock. This last 
decision-making mitigation measure may take months to 
implement. 

The consumer is in a different position since they can decide 
the mitigation measures immediately as they receive the 
outage warning messages, such as rationalizing refrigeration 
and heating or seeking help in the cooling/warming centers.  

This illustrates that the various options in the prediction 
algorithm design need to be translated to an actionable 
measure/action that end-users may use to mitigate impacts.  

3. INTERPRETABILITY OF THE BASELINE CASE  

3.1 The baseline design results 

It becomes computationally expensive and, in many cases, 
infeasible to conduct a sensitivity study of the model 
performance to all of the design parameters. The need to use 
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many years of data to arrive at reliable estimates exacerbates 
the problem. Hence, we performed a sensitivity analysis only 
for the two most important dimensions, spatial resolution, and 
prediction window size, that correspond to temporal prediction 
specificity while fixing the rest of the parameters. The 
selection of the two dimensions was guided by end-user needs 
to assess the accuracy of the solution at different 
spatiotemporal resolutions corresponding to a selection of 
appropriate mitigation measures. We evaluated performance 
metrics across both dimensions, making it easier to understand 
how accuracy metrics may change for each baseline case. The 
baseline results can be viewed using several evaluation 
metrics, such as F1 score and Average Precision (Table 2), 
which allows data analytics experts to understand the different 
performance aspects of the algorithm in question. These results 
were obtained by the Random Forest algorithm.  

Table 2. F1 score || Average Precision results for various 
number of clusters (1,3,7,86) and different prediction time 

windows (1,3,5,11) 

 
3.2 Impact of different design implementation approaches 

One can strive to improve the baseline at certain intersections 
of clusters and window sizes by: model choice, data choice, or 
the choice of hyperparameters directing the model’s training. 
The goal is then to determine how much the baseline case can 
be improved. This should align with end-user needs, as they 
would understand specific performance thresholds and their 
implications for design implementation.  

Usually, for ML techniques, extensive models with many 
parameters are better for modeling a phenomenon (Rizvi, 
2023). Improving the outage prediction model to represent the 
physical nature of how the outage takes place may help the 
prediction task. Such form of regularization is usually used in 
Physics Informed Neural Networks (PINN) (Hu et al., 2020). 

The values of the baseline case (Table 2) represent the 
variation over the target cluster's prediction window size and 
spatial resolution. Increasing the number of clusters and 
decreasing the window size decreases the prediction accuracy 
since the number of data cases representing outages is much 
less for this condition. For larger areas and more considerable 
window lengths, there are a lot of data points representing 
outages, which helps train the model better. Frequent 
prediction, too, can help increase the number of training data 
points that can be used for training. Larger data can help the 
models to generalize more effectively for accurate prediction. 
Variations in prediction lead times can affect accuracy. 
Predicting outages based on conditions before the event is 
more accurate when considering the circumstances 
immediately prior to the event rather than those of the previous 

day. This approach allows the model to capture better the 
causality of the external conditions leading to these events, 
demonstrating that these variables can influence the accuracy 
of the outage prediction model in different ways.  

Various data-based and algorithmic approaches can be 
explored to improve the prediction models. Recently, 
prediction of weather parameters has improved, allowing 
acquiring weather information many days into the future with 
acceptable accuracy. Moreover, extensive past weather 
records are available, which can be easily obtained in bulk. 
Since weather forecasts are easily available and weather 
explains a lot of occurrences, incorporating the forecast 
throughout appropriate lead time may result in better outage 
predictions.  

Another way to harness the information provided by weather 
forecasts is to ingest the forecast parameters (temperature, 
wind, etc.) in the form of images over the service territory. The 
multi-input neural network can accommodate several different 
forecasts at different timestamps inside the prediction window 
(Chen et al., 2025). This approach allows us to account for 
several dimensions of the weather forecasts: longitude, 
latitude, forecast time, and weather parameters.  

It is also possible to exclusively focus on the end ranges of 
spatial and temporal specificity from Table 3, differentiating 
the predictions across many more clusters and being more 
specific in the temporal domain. Consequently, more involved 
and deeper ML models are generally more suitable to tackle 
such a task w.r.t. model learning capacity. For example, 
specific model selection can be made by utilizing models 
resilient to a low number of positive samples in the dataset 
during training since there are generally significantly more 
normal operation events than outage events (Rendle, 2010). 
Aside from using a model robust to the ratio of positive 
samples, another approach can include adjusting the loss 
function to accommodate better learning under such a dataset, 
usually given as the weight of positive or negative samples 
(Lin et al., 2017).  

3.3 The design option impacts on end-use applications 

The choice of outage causes driving the input data, and the 
input window is more apparent to the model developer rather 
than the consumer. The end-user may be more focused on the 
spatiotemporal aspects, the prediction window size, along with 
prediction frequency since such choices help determine when 
outage risk in a region increases, triggering preventive 
mitigation actions. Higher predictions frequency keeps 
utilities informed about sudden changes in SoR, while longer 
prediction windows improve accuracy, though the exact 
timing may remain uncertain. A combination of different 
prediction frequencies and window sizes may allow utilities to 
better plan mitigation measures. Longer lead times allow more 
time to prepare, though at the cost of accuracy, whereas shorter 
windows push utilities to rely on predefined emergency 
responses.   

To understand the impact of the spatial resolution options on 
customers, one can think of the granularity of the predictions. 
With a smaller number of clusters formed within the study 

Window size, h

1 0.83||0.78 0.52||0.48 0.16||0.22 0.003||0.02
3 0.95||0.91 0.83||0.78 0.46||0.46 0.018||0.06
5 0.98||0.97 0.90||0.85 0.63||0.60 0.040||0.10

11 1.00||1.00 0.99||0.97 0.83||0.79 0.115||0.19
1 3 7 86

N clusters
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many years of data to arrive at reliable estimates exacerbates 
the problem. Hence, we performed a sensitivity analysis only 
for the two most important dimensions, spatial resolution, and 
prediction window size, that correspond to temporal prediction 
specificity while fixing the rest of the parameters. The 
selection of the two dimensions was guided by end-user needs 
to assess the accuracy of the solution at different 
spatiotemporal resolutions corresponding to a selection of 
appropriate mitigation measures. We evaluated performance 
metrics across both dimensions, making it easier to understand 
how accuracy metrics may change for each baseline case. The 
baseline results can be viewed using several evaluation 
metrics, such as F1 score and Average Precision (Table 2), 
which allows data analytics experts to understand the different 
performance aspects of the algorithm in question. These results 
were obtained by the Random Forest algorithm.  

Table 2. F1 score || Average Precision results for various 
number of clusters (1,3,7,86) and different prediction time 

windows (1,3,5,11) 

 
3.2 Impact of different design implementation approaches 

One can strive to improve the baseline at certain intersections 
of clusters and window sizes by: model choice, data choice, or 
the choice of hyperparameters directing the model’s training. 
The goal is then to determine how much the baseline case can 
be improved. This should align with end-user needs, as they 
would understand specific performance thresholds and their 
implications for design implementation.  

Usually, for ML techniques, extensive models with many 
parameters are better for modeling a phenomenon (Rizvi, 
2023). Improving the outage prediction model to represent the 
physical nature of how the outage takes place may help the 
prediction task. Such form of regularization is usually used in 
Physics Informed Neural Networks (PINN) (Hu et al., 2020). 

The values of the baseline case (Table 2) represent the 
variation over the target cluster's prediction window size and 
spatial resolution. Increasing the number of clusters and 
decreasing the window size decreases the prediction accuracy 
since the number of data cases representing outages is much 
less for this condition. For larger areas and more considerable 
window lengths, there are a lot of data points representing 
outages, which helps train the model better. Frequent 
prediction, too, can help increase the number of training data 
points that can be used for training. Larger data can help the 
models to generalize more effectively for accurate prediction. 
Variations in prediction lead times can affect accuracy. 
Predicting outages based on conditions before the event is 
more accurate when considering the circumstances 
immediately prior to the event rather than those of the previous 

day. This approach allows the model to capture better the 
causality of the external conditions leading to these events, 
demonstrating that these variables can influence the accuracy 
of the outage prediction model in different ways.  

Various data-based and algorithmic approaches can be 
explored to improve the prediction models. Recently, 
prediction of weather parameters has improved, allowing 
acquiring weather information many days into the future with 
acceptable accuracy. Moreover, extensive past weather 
records are available, which can be easily obtained in bulk. 
Since weather forecasts are easily available and weather 
explains a lot of occurrences, incorporating the forecast 
throughout appropriate lead time may result in better outage 
predictions.  

Another way to harness the information provided by weather 
forecasts is to ingest the forecast parameters (temperature, 
wind, etc.) in the form of images over the service territory. The 
multi-input neural network can accommodate several different 
forecasts at different timestamps inside the prediction window 
(Chen et al., 2025). This approach allows us to account for 
several dimensions of the weather forecasts: longitude, 
latitude, forecast time, and weather parameters.  

It is also possible to exclusively focus on the end ranges of 
spatial and temporal specificity from Table 3, differentiating 
the predictions across many more clusters and being more 
specific in the temporal domain. Consequently, more involved 
and deeper ML models are generally more suitable to tackle 
such a task w.r.t. model learning capacity. For example, 
specific model selection can be made by utilizing models 
resilient to a low number of positive samples in the dataset 
during training since there are generally significantly more 
normal operation events than outage events (Rendle, 2010). 
Aside from using a model robust to the ratio of positive 
samples, another approach can include adjusting the loss 
function to accommodate better learning under such a dataset, 
usually given as the weight of positive or negative samples 
(Lin et al., 2017).  

3.3 The design option impacts on end-use applications 

The choice of outage causes driving the input data, and the 
input window is more apparent to the model developer rather 
than the consumer. The end-user may be more focused on the 
spatiotemporal aspects, the prediction window size, along with 
prediction frequency since such choices help determine when 
outage risk in a region increases, triggering preventive 
mitigation actions. Higher predictions frequency keeps 
utilities informed about sudden changes in SoR, while longer 
prediction windows improve accuracy, though the exact 
timing may remain uncertain. A combination of different 
prediction frequencies and window sizes may allow utilities to 
better plan mitigation measures. Longer lead times allow more 
time to prepare, though at the cost of accuracy, whereas shorter 
windows push utilities to rely on predefined emergency 
responses.   

To understand the impact of the spatial resolution options on 
customers, one can think of the granularity of the predictions. 
With a smaller number of clusters formed within the study 

Window size, h

1 0.83||0.78 0.52||0.48 0.16||0.22 0.003||0.02
3 0.95||0.91 0.83||0.78 0.46||0.46 0.018||0.06
5 0.98||0.97 0.90||0.85 0.63||0.60 0.040||0.10

11 1.00||1.00 0.99||0.97 0.83||0.79 0.115||0.19
1 3 7 86

N clusters

region, the numerical accuracy of the prediction would be 
higher. However, it would be difficult for the utility to decide 
where to implement the countermeasures, harden the 
infrastructure, or send maintenance crews since the prediction 
granularity may encompass multiple feeders/substations. It 
would also require a larger number of consumers to prepare 
for possible outages. In this regard, the SoR prediction 
application decision-making end uses might vary depending 
upon the type of applied mitigation measures and their relative 
financial costs and benefits.  

4. INTERPRETABILITY IMPACT ON DECISION 
MAKING 

4.1 Importance of metrics interpretability 

Performance metrics can be misleading when analyzed 
separately from their intended uses. Each metric aims to 
condense various factors of outage SoR prediction model 
performance into a single figure, which inevitably results in 
some performance information being lost. For this reason, data 
analytics professionals should use a combination of 
performance metrics to fully understand the model’s 
predictive capabilities.  

Both types of metrics, such as Precision versus Recall and 
Accuracy and the aggregation of metrics across various 
temporal and spatial resolutions, should be considered. For 
example, one utility may be particularly interested in model 
performance during summer and winter peaks, as disruptions 
in electricity supplies during these seasons can have significant 
impacts. A school might concentrate solely on model 
performance during weekdays and business hours since 
outages would have a limited effect at other times. An 
industrial facility within a city limit would be more focused on 
how the model performs for its specific feeder while being less 
concerned about city-wide model performance.  

Another important consideration is how SoR predictions can 
improve optimization strategies for outage mitigation. The 
selection of mitigation measures can pursue different 
priorities, such as restoring service to the most critical 
customers (hospitals, emergency facilities) or minimizing 
overall power quality indices such as SAIFI (System Average 
Interruption Frequency Index) and SAIDI (System Average 
Interruption Duration Index) (IEEE, 2012). A utility may 
prioritize rapid restoration in areas with high economic or 
societal impact, while another may focus on minimizing the 
total number of customers affected. Utilities may strike a 
balance between several objectives by utilizing outage SoRs.  

The trustworthiness of the outage prediction task can affect the 
actions taken by the users to mitigate the effects of outages. 
Repeated failures to detect outages will discredit the entity 
generating predictions. Also, several false alarms might 
impact the level of end-user preparedness. Still, the confidence 
with which investments are eliminating or mitigating possible 
outages might be affected by the rate of false alarms, miss rate, 
and, ultimately, the model's performance. Therefore, it is 
necessary to enhance model performance with existing and 
newly available data or enhanced algorithms.  

4.2 Importance of end-user decision-making interpretability  

After fully understanding the implementation options, the end 
user of the prediction model must participate in the selection 
of the design parameters together with the algorithm 
developers. That way, their needs will be best aligned with 
resources at their disposal to mitigate the impact.  

For instance, power system operators and other facility 
operators (such as water supply) may prefer outage prediction 
information with a lead time between a few hours (operations) 
to a day in advance (operations planning). Upon receiving a 
real-time SoR feed, an operator may plan and execute grid 
mitigation and restoration schemes for the affected locations. 

If the outage management team has information about the 
outage 24 hours prior, they might focus on implementing 
mitigation tasks such as issuing outage alerts, planning a 
number of repair crews, notifying critical customers, rerouting 
the supply path, etc. If the prediction is available only a few 
hours before, the focus will be on preparing the customer 
response units and restoration steps, such as optimizing the 
routes for restoration crews to potential outage locations. If the 
prediction is available several days before, they can make sure 
that they are well-equipped in terms of manpower as well as 
spare parts inventory to serve the size of the area to be affected. 

In asset management teams' case, if the outage prediction is 
available months before, they can take proactive steps to 
harden the infrastructure against the faults and ensure they are 
prepared once the outage occurs. However, for shorter lead 
times, they would usually have to wait for the outage to occur 
and take mitigation steps to remedy the effects of the outage 
for stakeholders, such as equipment upgrades. 

Residential users could benefit from a display that also 
highlights other essential facilities relevant to their needs in 
current situations: warming centers during cold weather, water 
pumping stations supplying their homes, and hospital locations 
for individuals with chronic health issues.  

The selection of design parameters for the algorithm affects 
the results presentation and ultimately drives the decisions 
about the mitigation actions available to a given stakeholder. 
Once these parameters are set and implemented by the 
algorithm developer, users can expect a certain level of model 
performance derived from the baseline cases to make informed 
decisions about deploying mitigation measures in each 
scenario. Every mitigation action carries a financial cost of 
implementation but also has potential financial benefits, such 
as avoided outages, fewer affected customers, and/or reduced 
restoration time. The final decision on applying mitigation 
measures depends on balancing these costs and benefits, the 
level of trust in the model’s accuracy (based on historical 
performance), and the potential consequences of poor outage 
management (a lawsuit from a major customer, fines, for 
failing to meet reliability metrics, customer dissatisfaction, 
and reputational damage). Considering these interpretability 
factors, a business case can be developed for the 
implementation of the SoR prediction solution for each 
individual application use case.  
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