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Abstract: The electric grid forced outages (further referred to as “outages™) are increasingly common due
to the growing complexity of the electric grid, wear and tear of the components, and the impact of inclement
weather. The recent development of Machine Learning (ML) approaches for predicting the outage State of
Risk (SoR) allows the time needed to implement mitigation measures that can reduce the risk and,
consequently, impacts associated with the outages. This paper establishes a baseline for the outage SoR
prediction using data from historical outage logs and relevant weather parameters associated with an actual
power system in Texas, USA. The baseline is used to demonstrate how various design requirements for the
outage SoR prediction models can impact the interpretability of the results. The paper’s findings emphasize
the implications of different interpretability outcomes that affect the effectiveness of the mitigation options.
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1. INTRODUCTION

Since most of the outages are caused by inclement weather or
equipment wear and tear, it was recognized a decade ago that
using ML approaches on big data associated with the causes of
outages may enable the prediction of outage State of Risk
(SoR) (Kezunovic et al., 2013). Subsequently, many studies
have explored different data and algorithms used to develop
the outage SoR prediction. Our contribution reveals how the
interpretability of the results may affect the mitigation
decision-making of different end-users within the utilities and
their customer base.

1.1 State of art in outage SoR prediction

Many machine learning algorithms such as logistic regression
(LR), random forest (RF), gradient and adaptive boosting (GB,
AB), and multi-layer feed-forward networks (MFN) were
utilized for outage prediction using the historical weather and
outage data, leading to the conclusion that the model's
performance depended upon the area size (Garland et al.,
2023). A five-step framework was developed encompassing
failure probability prediction using LR to enhance system
resilience for overhead lines due to lightning events (Mujjuni
et al., 2023). However, the study only considered a single
400kV transmission line rather than a system network. Deep
learning techniques were used to predict the outage probability
in a census tract based on weather, infrastructure, and socio-
economic details (Wang et al., 2024). A comparison of
autoregressive statistical approaches was performed against
time series-based deep learning models like Long Short Term
Memory (LSTM) and 1D — Convolutional Neural Network
(CNN) for predicting customer outages over varying lead
times (Udeh et al, 2022). Different machine learning
algorithms like RF, neural network (NN), support vector
machine (SVM), k-nearest neighbors, and decision tree (DT)
were used to predict and classify outage causes (Kor et al.,

2020). These references consider very large-scale networks
over census tracts or counties in contrast to our entire
distribution scale network, over which the outage is much
more difficult to predict accurately.

Graph Neural Network (GNN) has been utilized to predict
outage occurrence based on the data obtained from weather
stations and their relative location in the area of interest
(Owerko et al., 2018). Survival model-based outage risk
prediction has also been proposed by combining various
resilience-based metrics with operation attributes and
vegetation indicators (Jain et al., 2021). Fragility curves for
weather-related outages were obtained through catastrophic
risk modeling based on the wind speed values and outage data
at varying spatial resolutions (Dunn et al., 2018).

1.2 Our prior work

Early on we explored Big Data applications in outage
management (Kezunovic et al., 2013), and then applicability
of ML algorithms for predicting outage SoR by incorporating
graph embeddings (Baembitov et al., 2021). We then studied
the influence of wind modeling (Baembitov et al., 2023) and
lightning (Baembitov et al., 2025) on outage SoR predictions,
and a sensitivity analysis of various ML algorithms
(Baembitov et al., 2024). We also explored other aspects of
outage SoR prediction: a). mitigation strategy for consumers
once notifies of the imminent outages (Baembitov and
Kezunovic, 2023), b) prosumer strategy optimization utilizing
SoR levels (Khoshjahan et al., 2023), and c) tree-trimming
plan to reduce the overall risk in the system (Dokic and
Kezunovic, 2019).

In this paper, we are focusing on design parameters and results
interpretability and emphasizing the importance of the
interpretability of the model outputs for decision-making.es).
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1.3 Paper contribution

We could not identify references that demonstrate the
variability in the ML result interpretability by the end-user.
While some references offer a sensitivity study of the resulting
ML model metrics, the uses of the results for decision-making
regarding risk mitigation are not sufficiently explored. In this
context, our contributions are:

e  Ananalysis of the SoR prediction implementation options
that may affect the results performance metrics.

e Development of the baseline for algorithm comparison
along the spatiotemporal variability.

e C(lassification of the user decision-making needs and
requirements as they interpret the outage SoR results.

2. DESIGN REQUIREMENTS AND IMPLEMENTATION
OPTIONS FOR THE OUTAGE SoR PREDICTION

2.1 Typical data requirements and options

Since the causes of outages vary by various areas in the service
territory, an optimal selection of data should represent outage
causes for given circumstances of the grid disposition and
environmental/weather exposures.

Several outage causes reported in the literature (Fig. 1)
correlate to different data sources (Table 1). The key to
merging such data for ML model development is correlating
the data in time and space while accounting for data
uncertainty, errors, and refresh rate.

load shedding
fuel supply

other

system operations

equipment

weather and environment

Fig 1. Outage causes in the U.S. (DOE, 2002-2021).

Table 1. Data types

Data Type Description

Utility sources

Location of overhead lines in
the network

A list of outages that occurred
in the network in the past
Coordinates of the network
substations

Feeder locations

Historical outage logs

Substation locations

Where, when, and how much
trimming is performed

Historical tree trimming
logs

Where, when, and which
equipment was
repaired/replaced/maintained

Historical maintenance
logs

Costs of outages Outage monetary impact

Customer types and
locations

Aggregated and/or
anonymized customer groups

Public sources

Historic weather
condition logs

Meteorological parameters
with timestamps and locations

Data reflecting future weather

Weather forecasts .
conditions

Vegetation properties (foliage,

Vegetation types canopy, height, crown)
Leaf Area Index (LAI) Amount of leaf material in a
plant canopy
Paid sources
Light Detection and 3D images of the terrain of

Ranging (LiDAR) scans | interest

Location, time, and type of

Historic lightning logs lightning strikes in the area

2.2 Data/model requirements and typical algorithm choices

To illustrate how the data may be utilized, it appears
convenient to represent data in one of the visualization
software tools, such as ArcGIS, allowing a layered view of
data superimposed on the grid topology (Fig. 2). The map was
acquired using a Random Forest classifier; more information
about models and their relative performance can be found in
(Baembitov et al., 2024). The area with outage prediction is
marked in red, the area where the outage is unlikely is marked
in blue, and just for comparison purposes, the location where
the outage occurred is marked in green (ground truth).

11:00 AM

Risk
— Low (<0.5)
— High (20.5)

Qutage

Figure 2. Risk map.

The most used algorithm choices come from extensive Python
libraries of ML algorithms (Ramasubramanian and Singh,
2019, Kramer, 2016). The outage SoR prediction
implementation indicates that off-the-shelf solutions must be
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customized to meet the requirements of utility applications.
Our experience from outage SoR prediction research supports
this hypothesis, as such customized approaches result in
improved prediction performance (Baembitov et al., 2024).

2.3 Variability of design options

The variability in the implementation option relates to the
several design/implementation choices.

Outage causes, reflected through the related data, determine
what types of outages the model predicts. For example, if only
weather-related outages are included, the model will focus
solely on weather-induced outages.

Spatial and temporal settings define the geographic area and
time window for predictions (e.g., citywide vs. districtwide, 1-
hour vs. 24-hour predictions).

The prediction window size refers to the period when the
predictions are made. In the Figure 3 example, the prediction
window is set to five hours, and if an outage occurs in any of
those five hours, the prediction window is labeled as ‘outage-
positive,” or a positive sample. Otherwise, the prediction
window is marked as a negative sample. The ML models aim
to determine if the window should be classified as positive or
negative.

The lead time defines how far the moment of executing the
model is from the beginning of the prediction window. This
time corresponds to preparing for mitigation actions before an
outage. An example of a model run at a two-hour lead time
versus zero-hour lead time is illustrated in Figure 3.

Window size: 5h

time
Now
Lead time: 2h ‘ \Nini:low sizT: Sh |
‘ time
Now

Fig. 3. Oh and 2h lead time for 5h prediction window size.

Prediction frequency is defined as the period between model
executions, which may be set at every hour or a longer period.

The input data window refers to the timesteps and all the data
connected to those timesteps provided to the model at the
execution time. It should not be confused with the prediction
window size described above. For example, we can select 6
hours of past weather, 3 hours of forecast data, and 3 weeks of
vegetation management records for a single model execution,
signifying that the time range for data coming from different
sources does not need to be the same.

Dataset selection for training and testing. The examples are
High-Resolution Rapid Refresh for weather (HRRR) (NOAA,
2024), Light Detection and Ranging (LiDAR) for vegetation
and infrastructure mapping (Wanik et al, 2017), and
Automated Surface Observing System (ASOS) for
meteorological data (NOAA, 2021).

2.4 Interpretability of the results

Developer-focused evaluation metrics. Typically, the metrics
used by predictive analytics developers (ex. Accuracy,
Precision, Recall, F1 score, Specificity, ROC-AUC,
Confusion Matrix) capture different meanings of the results
(Powers, 2011). The interpretation is reduced to the choice of
metrics used to evaluate the results.

The evaluation metrics results are meaningful to the data
analytics experts in assessing the prediction algorithm
performance. They are also indispensable for estimating the
expected overall efficacy of the model(s), which can be
measured by different business metrics (total reduction in
equipment downtime, change in customer satisfaction levels,
monetary loss reduction, etc.). The business metrics for a given
application are derived from performance metrics by
considering the cost/reward for each possible outcome: true
positive, true negative, false positive, and false negative.

The end-user-focused evaluation. This interpretability goes
beyond the data analytics experts as it also concerns the end
users (different utility staff and/or electricity consumers).
Their interest is in understanding how a prediction for a given
outage event should be interpreted to define mitigation
measures aimed at reducing the impact of outages. As an
example, a possible display for the end user in the utility
environment (Fig. 2) illustrates an unfolding set of displays
that dynamically shows how the prediction fairs against actual
events over time.

The utility personnel have various mitigation options for
dealing with outages depending on their responsibility, that is
typically constrained by the time interval that they need to
react. The control center personnel are issuing network
reconfiguration orders to allow alternative power routing to the
consumers (if feasible), which happens in the operations time
frame of minutes and hours. A set of repair and restoration
actions are performed by the outage management crews that
can only act in hours, perhaps even days, depending on the
environmental conditions. The asset management personnel
may use the outage prediction to determine where the outages
are more frequent to assess whether some type of equipment
needs preventive repair or replacement and if relevant
equipment types of replacements are in stock. This last
decision-making mitigation measure may take months to
implement.

The consumer is in a different position since they can decide
the mitigation measures immediately as they receive the
outage warning messages, such as rationalizing refrigeration
and heating or seeking help in the cooling/warming centers.

This illustrates that the various options in the prediction
algorithm design need to be translated to an actionable
measure/action that end-users may use to mitigate impacts.

3. INTERPRETABILITY OF THE BASELINE CASE

3.1 The baseline design results

It becomes computationally expensive and, in many cases,
infeasible to conduct a sensitivity study of the model
performance to all of the design parameters. The need to use
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many years of data to arrive at reliable estimates exacerbates
the problem. Hence, we performed a sensitivity analysis only
for the two most important dimensions, spatial resolution, and
prediction window size, that correspond to temporal prediction
specificity while fixing the rest of the parameters. The
selection of the two dimensions was guided by end-user needs
to assess the accuracy of the solution at different
spatiotemporal resolutions corresponding to a selection of
appropriate mitigation measures. We evaluated performance
metrics across both dimensions, making it easier to understand
how accuracy metrics may change for each baseline case. The
baseline results can be viewed using several evaluation
metrics, such as F1 score and Average Precision (Table 2),
which allows data analytics experts to understand the different
performance aspects of the algorithm in question. These results
were obtained by the Random Forest algorithm.

Table 2. F1 score || Average Precision results for various
number of clusters (1,3,7,86) and different prediction time
windows (1,3,5,11)

Window size, h

0.83]0.78 | 0.520.48 | 0.16]0.22 | 0.003]0.02
0.95]0.91 | 0.83]0.78 | 0.46]0.46 | 0.018]0.06
0.98]0.97 | 0.90]0.85 | 0.63]j0.60 | 0.040]0.10

11| 1.00)1.00 | 0.99]0.97 | 0.83]0.79 | 0.115]0.19
1 3 7 86

N clusters

3.2 Impact of different design implementation approaches

One can strive to improve the baseline at certain intersections
of clusters and window sizes by: model choice, data choice, or
the choice of hyperparameters directing the model’s training.
The goal is then to determine how much the baseline case can
be improved. This should align with end-user needs, as they
would understand specific performance thresholds and their
implications for design implementation.

Usually, for ML techniques, extensive models with many
parameters are better for modeling a phenomenon (Rizvi,
2023). Improving the outage prediction model to represent the
physical nature of how the outage takes place may help the
prediction task. Such form of regularization is usually used in
Physics Informed Neural Networks (PINN) (Hu et al., 2020).

The values of the baseline case (Table 2) represent the
variation over the target cluster's prediction window size and
spatial resolution. Increasing the number of clusters and
decreasing the window size decreases the prediction accuracy
since the number of data cases representing outages is much
less for this condition. For larger areas and more considerable
window lengths, there are a lot of data points representing
outages, which helps train the model better. Frequent
prediction, too, can help increase the number of training data
points that can be used for training. Larger data can help the
models to generalize more effectively for accurate prediction.
Variations in prediction lead times can affect accuracy.
Predicting outages based on conditions before the event is
more accurate when considering the circumstances
immediately prior to the event rather than those of the previous

day. This approach allows the model to capture better the
causality of the external conditions leading to these events,
demonstrating that these variables can influence the accuracy
of the outage prediction model in different ways.

Various data-based and algorithmic approaches can be
explored to improve the prediction models. Recently,
prediction of weather parameters has improved, allowing
acquiring weather information many days into the future with
acceptable accuracy. Moreover, extensive past weather
records are available, which can be easily obtained in bulk.
Since weather forecasts are easily available and weather
explains a lot of occurrences, incorporating the forecast
throughout appropriate lead time may result in better outage
predictions.

Another way to harness the information provided by weather
forecasts is to ingest the forecast parameters (temperature,
wind, etc.) in the form of images over the service territory. The
multi-input neural network can accommodate several different
forecasts at different timestamps inside the prediction window
(Chen et al., 2025). This approach allows us to account for
several dimensions of the weather forecasts: longitude,
latitude, forecast time, and weather parameters.

It is also possible to exclusively focus on the end ranges of
spatial and temporal specificity from Table 3, differentiating
the predictions across many more clusters and being more
specific in the temporal domain. Consequently, more involved
and deeper ML models are generally more suitable to tackle
such a task w.r.t. model learning capacity. For example,
specific model selection can be made by utilizing models
resilient to a low number of positive samples in the dataset
during training since there are generally significantly more
normal operation events than outage events (Rendle, 2010).
Aside from using a model robust to the ratio of positive
samples, another approach can include adjusting the loss
function to accommodate better learning under such a dataset,
usually given as the weight of positive or negative samples
(Lin et al., 2017).

3.3 The design option impacts on end-use applications

The choice of outage causes driving the input data, and the
input window is more apparent to the model developer rather
than the consumer. The end-user may be more focused on the
spatiotemporal aspects, the prediction window size, along with
prediction frequency since such choices help determine when
outage risk in a region increases, triggering preventive
mitigation actions. Higher predictions frequency keeps
utilities informed about sudden changes in SoR, while longer
prediction windows improve accuracy, though the exact
timing may remain uncertain. A combination of different
prediction frequencies and window sizes may allow utilities to
better plan mitigation measures. Longer lead times allow more
time to prepare, though at the cost of accuracy, whereas shorter
windows push utilities to rely on predefined emergency
responses.

To understand the impact of the spatial resolution options on
customers, one can think of the granularity of the predictions.
With a smaller number of clusters formed within the study
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region, the numerical accuracy of the prediction would be
higher. However, it would be difficult for the utility to decide
where to implement the countermeasures, harden the
infrastructure, or send maintenance crews since the prediction
granularity may encompass multiple feeders/substations. It
would also require a larger number of consumers to prepare
for possible outages. In this regard, the SoR prediction
application decision-making end uses might vary depending
upon the type of applied mitigation measures and their relative
financial costs and benefits.

4. INTERPRETABILITY IMPACT ON DECISION
MAKING

4.1 Importance of metrics interpretability

Performance metrics can be misleading when analyzed
separately from their intended uses. Each metric aims to
condense various factors of outage SoR prediction model
performance into a single figure, which inevitably results in
some performance information being lost. For this reason, data
analytics professionals should use a combination of
performance metrics to fully understand the model’s
predictive capabilities.

Both types of metrics, such as Precision versus Recall and
Accuracy and the aggregation of metrics across various
temporal and spatial resolutions, should be considered. For
example, one utility may be particularly interested in model
performance during summer and winter peaks, as disruptions
in electricity supplies during these seasons can have significant
impacts. A school might concentrate solely on model
performance during weekdays and business hours since
outages would have a limited effect at other times. An
industrial facility within a city limit would be more focused on
how the model performs for its specific feeder while being less
concerned about city-wide model performance.

Another important consideration is how SoR predictions can
improve optimization strategies for outage mitigation. The
selection of mitigation measures can pursue different
priorities, such as restoring service to the most critical
customers (hospitals, emergency facilities) or minimizing
overall power quality indices such as SAIFI (System Average
Interruption Frequency Index) and SAIDI (System Average
Interruption Duration Index) (IEEE, 2012). A utility may
prioritize rapid restoration in areas with high economic or
societal impact, while another may focus on minimizing the
total number of customers affected. Utilities may strike a
balance between several objectives by utilizing outage SoRs.

The trustworthiness of the outage prediction task can affect the
actions taken by the users to mitigate the effects of outages.
Repeated failures to detect outages will discredit the entity
generating predictions. Also, several false alarms might
impact the level of end-user preparedness. Still, the confidence
with which investments are eliminating or mitigating possible
outages might be affected by the rate of false alarms, miss rate,
and, ultimately, the model's performance. Therefore, it is
necessary to enhance model performance with existing and
newly available data or enhanced algorithms.

4.2 Importance of end-user decision-making interpretability

After fully understanding the implementation options, the end
user of the prediction model must participate in the selection
of the design parameters together with the algorithm
developers. That way, their needs will be best aligned with
resources at their disposal to mitigate the impact.

For instance, power system operators and other facility
operators (such as water supply) may prefer outage prediction
information with a lead time between a few hours (operations)
to a day in advance (operations planning). Upon receiving a
real-time SoR feed, an operator may plan and execute grid
mitigation and restoration schemes for the affected locations.

If the outage management team has information about the
outage 24 hours prior, they might focus on implementing
mitigation tasks such as issuing outage alerts, planning a
number of repair crews, notifying critical customers, rerouting
the supply path, etc. If the prediction is available only a few
hours before, the focus will be on preparing the customer
response units and restoration steps, such as optimizing the
routes for restoration crews to potential outage locations. If the
prediction is available several days before, they can make sure
that they are well-equipped in terms of manpower as well as
spare parts inventory to serve the size of the area to be affected.

In asset management teams' case, if the outage prediction is
available months before, they can take proactive steps to
harden the infrastructure against the faults and ensure they are
prepared once the outage occurs. However, for shorter lead
times, they would usually have to wait for the outage to occur
and take mitigation steps to remedy the effects of the outage
for stakeholders, such as equipment upgrades.

Residential users could benefit from a display that also
highlights other essential facilities relevant to their needs in
current situations: warming centers during cold weather, water
pumping stations supplying their homes, and hospital locations
for individuals with chronic health issues.

The selection of design parameters for the algorithm affects
the results presentation and ultimately drives the decisions
about the mitigation actions available to a given stakeholder.
Once these parameters are set and implemented by the
algorithm developer, users can expect a certain level of model
performance derived from the baseline cases to make informed
decisions about deploying mitigation measures in each
scenario. Every mitigation action carries a financial cost of
implementation but also has potential financial benefits, such
as avoided outages, fewer affected customers, and/or reduced
restoration time. The final decision on applying mitigation
measures depends on balancing these costs and benefits, the
level of trust in the model’s accuracy (based on historical
performance), and the potential consequences of poor outage
management (a lawsuit from a major customer, fines, for
failing to meet reliability metrics, customer dissatisfaction,
and reputational damage). Considering these interpretability
factors, a business case can be developed for the
implementation of the SoR prediction solution for each
individual application use case.
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