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Abstract—The methods for power system event detection using

field-recorded data from Phasor Measurement Units (PMUs)

often require many labeled events, which can be costly or

infeasible to obtain. We show that events in one power system can

be accurately detected by reusing a small number of carefully

selected labeled PMU data from another without the need for

additional labeling. Our transfer learning-based approach

outperforms alternative state-of-the-art conventional machine

learning (ML) methods on a large PMU historical dataset. We

demonstrate this approach with a use case of detecting events

from historical PMU data recorded in the Eastern

Interconnection in the USA by using similar labeled PMU data

from the Western Interconnection. This technique may be

propagated to other situations where some of the events’ data

from one power system may be applied to enhance learning in

another.

Keywords – Big data, Power system disturbance, Event detection,

Machine learning, Phasor Measurement Unit, Transfer learning.

I. INTRODUCTION

The reliability of electric power systems may be severely

impacted by many events of different types, caused by a

variety of factors that occur irregularly over time. Some events

such as transmission line faults due to severe weather,

vegetation impact, etc. may be local, and some such as

fundamental frequency events are system-wide. The volume of

data collected by numerous PMUs in a given utility or

interconnection system may reach hundreds of terabytes over

a single year since data are reported at the rate of 30 to 60

frames per second [1]. The manual means for analysis of such

elaborated historical recordings are impractical and efficient

automated analysis is needed but finding a solution may be

challenging [2].

With the increase in the availability of PMU measurements

in electric utilities, there is a potential for the development of

new machine learning (ML) applications that could

significantly increase the importance of storing and managing

the PMU data and provide new predictive decision-making

tools [3]. Event detection is one of the most beneficial

applications [4] focusing on the identification of instances in

PMU measurements that have a significant deviation from the

normal operating conditions of the system.

Various event detection approaches based on PMU

measurements have been investigated. The event detection

method based on the Principal Component Analysis was

introduced [5] and was applied for the analysis of cascading

events [6]. ML methods such as K-Nearest Neighbor (KNN),

Support Vector Machine (SVM), and Decision Tree (DT) were

also applied [7]. Convolutional Neural Network was used to

classify events based on wavelet analysis [8]. Other feature

engineering methods include: Detrended Fluctuation Analysis

[9] and Signal Energy Transform [10]. Applicability of transfer

learning (TL) to transient stability problem was investigated in

[11] and applied to the analysis of oscillation events in

transmission system [12], and fault detection in distribution

systems [13]. Supervised transfer learning was proposed for

event type differentiation and was applied on synthetic PMU

data [14]. However, accurate event labeling on real-world,

field-recorded PMU data remains a challenge.

In our study, we mitigate the essential need for extensive

event labeling by utilizing a TL approach that only requires a

small number of well-labeled events from one power system

to detect events in another without any additional labeling

efforts. We utilize a TL method combined with a semi-

supervised detector that leverages related labeled instances

from a source dataset to the target domain. Selected relates

instances aid semi-supervised detectors detect events since it

selects instances from the source that are similar to the target

domain. Our contribution is in the enhancement of the TL

method using a non-redundant approach that does not select

duplicates/similar instances in order to improve computation

efficiency. We improve the semi-supervised detector by using

an alternative similarity measure that is more applicable to the

dimensionality of the PMU data. Our approach demonstrates

superior performance over various state-of-the-art ML

algorithms (unsupervised, semi-supervised, and supervised)

when leveraging labeled data from one power system to detect

events in another.

II. TRANSFER LEARNING FOR EVENT DETECTION

A. Rationale for Transfer Learning

This material is supported by the Department of Energy under Award DE-

OE0000913.
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Most disturbances detected by the PMUs are typically not

labeled. Some labels can be created by utility using SCADA

event logs, but such event logs may not be reliable. Event

detection tasks are often performed using an unsupervised

approach since manually labeling data can be time-consuming

and costly. However, unsupervised approaches are not aided

by labeled data that allow the possibility of correcting errors.

On the other hand, supervised classification approaches

require enough accurate labels, which can be infeasible to

obtain. Thus, unsupervised as well as supervised ML

approaches for event detection in power systems have serious

limitations when labels are unavailable or imprecise. We

hypothesize that it might be feasible to transfer relevant labeled

instances from a source power system to address the problem

at the target power system by using minimal labeled data

instances.

TL objective is to use similar labeled instances from a

related source task to facilitate learning in the target domain

based on a minimal amount of labeled data. Because semi-

supervised detectors assume the availability of a finite number

of labeled data instances, TL is frequently used with semi-

supervised learning methods. In such instances, TL utilizes

labeled data from a similar dataset to train a model for the

unlabeled target dataset [15].

TL is frequently used on datasets that defy conventional ML

modeling assumptions. When solving event detection, the

following assumptions should be considered: (1) the

dimensionality of the feature space of the source and target

datasets might differ; (2) covariate shift assumption, i.e.,

marginal distributions of the source and target datasets might

be dissimilar; and (3) concept shift assumption, i.e.,

conditional distributions might differ since the meaning of an

identical behavior might differ in the source and target

domains. The second and third assumptions challenge the

transfer learning task [16].

B. Related Work

In [17], TL was applied to detect events using PMU

measurements by transferring relevant labeled data from a

power system collected in one year (2016) to detect events

from future instances (2017) in the same power system. In [18]

TL technique in conjunction with deep learning model was

utilized to enhance the detection of events in one power system

using a model pre-trained on another. The use case of using

PMU recorded data from the Western and Eastern

Interconnections (WI and EI) in the US demonstrates that the

use of TL enhances the performance by leveraging labeled data

from both WI and EI to enhance the detection on WI. This

model transfers parameters of the pre-trained model, trained on

EI to be used as the initial parameters of the model trained on

the data of the WI. As illustrated in Sec. IV, the quality of data

of the EI is poor compared to data from the WI, so detecting

events from WI based on EI only might be insufficient. There

are some limitations of the study reported in [18]: a) its

proposed model does not detect events from one power system

based on another without utilizing labeled data from both

power systems, b) it utilizes a fully supervised learning

estimator and considers only line, generator, oscillation events,

and normal/healthy signals.

C. New Event Detection Approach

To address the mentioned gaps, our paper extends and

enhances studies reported in [17, 18] by exploring the benefits

of knowledge transfer between two independent power

systems, such as the WI and EI in the USA using a transfer

function combined with a semi-supervised detector to identify

events based on minimal labeled data of the source task only,

and it downgrades to unsupervised mode if no related labeled

data instances were available in the source power system.

To address the mentioned issues, we propose the following

two methods based on TL techniques: 1) Spatial transfer,

sLocITR (spatial localized instance transfer reduced), which

leverages labeled data from one power system to detect events

in another system. Our approach does not require target labels,

since it relies only on related instances from the source power

system to detect events from the target power system, while

the study reported in [18] requires target labels since it

leverages labeled data from both power systems (source and

target) to detect events from the target power system. 2)

Spatiotemporal transfer stLocITR, based on leveraging labeled

data from one power system integrated with a small number of

labeled data from another power system to detect future events.

Table I summarizes the major differences between the

proposed approach and studies reported in [17, 18].

III. METHODOLOGY

A. Compression and Unification of Data Dimension

To transfer labeled instances from one power system to

another, we project time windows (TWs) from the source and

target datasets of the two power systems with different

numbers of PMUs to latent spaces of unified dimensions while

preserving the properties of the original data. This is achieved

by an Autoencoder, i.e., an unsupervised Neural Network

(NN) for dimensionality reduction. Autoencoders utilize

multiple neural computing layers to learn non-linear

transformations of data to a latent space [19]. Other

dimensionality reduction techniques such as Principal

Component Analysis (PCA) were also considered but failed to

learn a representation that preserves the properties of the

original data since such techniques are limited to linear

transformations only [5]. The feature vectors (TWs) from both

datasets were extended to 200 dimensions by padding with

zeros, thus standardizing the number of dimensions in the two

TABLE I

COMPARING THE PROPOSED METHOD TO TRANSFER LEARNING ALTERNATIVES.

Study Source Target Transfers Detector
Target

Labels

[17] WIpast WIfuture
Temporally

Related data

Semi-

supervised

Not

Required

[18] EI & WI WI Parameters Supervised Required

sLocITR WI EI
Spatially

Related data

Semi-

supervised

Not

Required

stLocITR
WI &

EIpast
EIfuture

Spatio-

Temporally

Related data

Semi-

supervised

Not

Required
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datasets. In the use case with the data from WI and EI, two

fully connected layers with batch normalization were used to

learn how to unify the 35-dimensional feature vectors from

both WI and EI datasets. To enhance the performance of the

ML models, the unified data were scaled to a standard range

using Standard Scaler [17], defined as ! =
!" #

$
.

B. Comparative Analysis

A comparative study was conducted to evaluate the

applicability and effectiveness of the TL method when

leveraging labeled data from one power system to detect events

from another. A multitude of ML algorithms of various types

(unsupervised, supervised, and semi-supervised learning) were

used as baselines.

Unsupervised learning-based baseline methods find hidden

patterns in data without using any labeled data instances,

which is the only option when labels are not available. On the

contrary, learning from normal data alone is based on the

premise that the occurrence of events is uncommon and

infrequent, which field-recorded PMU data contradicts. The

performance of the algorithms is degraded by the scarcity of

labeled data instances [20]. The isolation nearest neighbor

ensembles (iNNE) method [21], and the k-nearest neighbor

outlier (kNNO) detection method [4] are used in our study for

comparison.

We also considered supervised learning baselines that learn

from labeled cases. Moreover, supervised learning methods

assume that the marginal distributions of the WI source

training data and the EI target test data are similar (no covariate

shift assumption) which PMU data of both power systems

contradict [17]. Hence, these approaches might be infeasible to

train on one power system and detect events from another, due

to the scarcity of labels and distributional difference. We

utilized some of the most common and state-of-the-art

traditional supervised learning methods and compared them

with alternative learning types, including Logistic Regression

(LR), Support Vector Machine (SVM), K-Nearest-Neighbor

(KNN), and Multilayer Perceptron (MLP), available through

the Scikit-Learn library [22].

Semi-supervised learning baseline methods are often used

when larger amounts of labeled data are difficult or impractical

to obtain, which is applicable for PMU data. The aim is to learn

a classifier from integrated labeled and unlabeled instances to

outperform unsupervised and supervised learning algorithms

when training with an insufficient amount of labeled data [23].

For comparison, two semi-supervised learning detectors were

employed to classify TWs as events or normal operations. One

detector is the semi-supervised k-nearest neighbor anomaly

(SSKNNO) detection algorithm [20]. This method

downgrades to unsupervised mode if no related labeled data

instances are found in the labeled source data. This is

determined by a specified threshold. Since the algorithm

utilizes a distance metric, the number of labeled TWs does not

influence the detection tasks when well-labeled TWs from the

same signal pattern are available in the source labeled data.

This algorithm uses the Euclidean distance to compute the

similarity between TWs. This similarity measure is not

applicable when the sizes (dimensions) of TWs are large,

hence, we modified and enhanced the algorithm by replacing

the Euclidean distance with the Manhattan distance, since

Manhattan distance achieved better performance. Another

semi-supervised baseline method is the semi-supervised

detection of outliers (SSDO), which is derived from k-means

clustering [24].

The proposed TL approach consists of two steps. 1) A

relevant subset of labeled TWs is selected from WI (source

dataset Ds) to transfer to the target dataset Dtwhich contains

unlabeled TWs from EI. The algorithm transfers a certain TW

from the WI to EI if its local data distribution is similar in EI

and there is a lack of labeled cases in that region of EI feature

space. The transfer function employs unsupervised techniques

since labels for TWs in Dt are unavailable and the labeled TWs

in Ds do not affect the transfer decision. 2) A semi-supervised

learning algorithm computes an anomaly score based on a

nearest-neighbor technique that considers the related TWs that

were transferred from WI and the unlabeled target TWs from

EI. This algorithm takes as an input a partly labeled dataset

containing the transferred labeled TWs merged with the

unlabeled target TWs [17].

LocIT transfers a TW from Ds to Dt if the distributions of

two subsets are sufficiently similar. This is measured by

comparing the first and second order statistics using a subset

of the nearest neighbor in Ds and Dt and is computed as

#%(%1,%2) =

∥
∥
∥
∥
∥
1

+
, -

!!∈'%

.( − -

!"∈')

.*0

∥
∥
∥
∥
∥

)

. (1)

Equation 1 defines the location distance which is the l2-norm

of the difference of the centroids (i.e., arithmetic mean)

between two neighborhoods N1 and N2. High values of d1

imply less similarity and reduce the chance of a transfer. The

distance between the covariance of two neighborhoods

(correlation distance) is computed as:

#)(%1,%2) =
∥∥2'% − 2')∥∥+

∥∥2'%∥∥+

(2)

where ∥⋅∥! is the Frobenius norm (the Euclidean norm of a

matrix), and C is the covariance matrix. High values of d2

imply that the localized distributions of the Ds and Dt differ.

The TL algorithm transfers a TW from Ds if the distance to its

nearest neighbor in Ds and Dt is similar to the average distance

between any two neighboring instances in Dt.

Transfer Function. SVM classifier is trained by combining

the values of d1 and d!. The classifier predicts if a source TW

fits in the target by considering at the correlation and location

distance between the neighborhood sets of the TW. The size of

the neighborhood is specified to control the strictness of the

instance transfer. A positive training example is created for

each TW in Dt by identifying its nearest neighbor in Dt and

computing d1 and d2 on Dt. The negative training examples are

created by computing for each TW in Dt a feature vector

consisting of the distances between the neighborhood sets of

target TW and its farthest neighbor. Finally, each TW from Ds

is predicted using a trained SVM classifier on Dt using the

negative and positive training examples [17].

0458



The utilized transfer function selects and transfers all related

data instances, including duplicates and instances that are very

similar in distance. Due to the distance-based nature of the

semi-supervised detector, redundant instances do not

contribute to the classification task, but increase the

complexity of the algorithm and reduce efficiency. Thus, we

modified and enhanced the TL method to exclude similar

instances/duplicates. The Euclidean distance was utilized to

compute the mean µ of the transferred TWs, and iteratively,

compute the Euclidean distance of two independent TWs.

Then, we excluded all TWs for which their #456789: < µ,

indicating a certain instance does not contribute to the

classification task of the TL method, since another TW of the

same quality (pattern) was found.

IV. DATA PROCESSING

PMU Data. We utilize historical field measurements

collected over two years, 2016-2017 from 38 PMUs placed in

theWI, and from 178 PMUs placed in the EI in the U.S. electric

power system. The measurements from EI are collected at 30

frames per second (fps), while measurements from WI are

collected at 30 fps or 60 fps. Locations of PMUs and the system

topology are not provided to us. Some outliers, data duplicates

and missing data are observed in both datasets but do not affect

our method significantly [25]. Non-uniform number of PMUs

and data quality issues make this event detection task complex.

WI dataset contained higher quality measurements than the EI

dataset, since EI contains missing data ranging from ~1% to

~70%, whereas missing data of WI ranges from ~1% to ~30%.

Thus, we utilize labeled data fromWI to detect events from EI,

without using any labeled data from EI.

Event Log. Both WI and EI datasets contain phasor

measurements associated with line outages, transformer

outages, and fundamental frequency deviations that are labeled

in the event log. Visual inspection of these events revealed that

some events evolve from one type to another, hence, they were

considered “complex” events. Complex events include events

labeled generator, capacitor, bus, and oscillation. The provided

event log most likely was obtained from the SCADA data, and

therefore it contains temporally imprecise event labels (start

time with a precision of 1-minute). In addition, due to the

sparsity of PMU locations in the network, log events did not

necessarily occur in the vicinity of the PMUs used in this study.

To improve the temporal precision of the log events, visual

inspection was performed by the domain expert on our team.

Then, we used a more precise start time of the events confirmed

through visual inspection. The study reported in [17]

experimented various dimensions of TWs; 2-second TWs

resulted in performant classification results; hence, the

dimension of 2-seconds was used. Table II presents the number

of labels used for each proposed method.

Feature Extraction. For each TW and the selected PMU

device, we calculated the Rectangle Area (RA) features using

the frequency and positive-sequence voltage magnitude as:

=>,-.,01 = (?23! − ?2(4) ∗ (A23! − A2(4) (3)

where fmax and fmin are the maximum and minimum frequency

values, and Vmax and Vmin are the maximum and minimum

positive sequence voltage magnitudes, respectively [17].

Datasets fromWI comprise of feature vectors of 38 RA values,

where each RA value corresponds to a certain PMU in a certain

TW. Similarly, feature vectors from EI comprise the feature

vectors of 178 RA values.

V. EXPERIMENTAL SETUP

We propose two TL methods based on different splits of the

source and target datasets. 1) Spatial transfer, sLocITR, where

labeled TWs were selected from Ds which consisted of TWs

from WI and were used to detect events in Dt, which consisted

of unlabeled TWs from EI. In this experiment, Ds contained the

entire data of the WI, while Dt contained the entire data of the

EI. 2) Spatiotemporal, stLocITR, where Ds =WI ∪ EI2016; Dt=

EI2017; where WI denotes the entire TWs of the WI, EI2016

denotes the TWs of the EI collected from 2016, used to detect

events in EI2017which denotes the TWs of the EI from 2017.

We answer the following empirical questions: 1) How does

the proposed TL method perform compared to alternative

baselines? 2) How does the number of labeled source data

selected fromDs affect the classification accuracy for events in

the target domain Dt? The results validate our hypothesis and

illustrate the benefits of employing TL techniques in

conjunction with a semi-supervised detector to leverage

knowledge and detect events based on minimal labeled data.

To address question 2, we selected the top p related instances

excluding redundant/similar instances to experiment how the

proportion of labeled data affects the performance; where p ∈

{20, 51, 103, 259, 415, 570, 726} corresponding to 1% to

25% of labeled source data instances.

The performance of the TL algorithm was evaluated by

comparing it to common conventional ML algorithms of

varying learning types described in Sec. III (i.e., unsupervised,

supervised, and semi-supervised). The following metrics were

used to evaluate the algorithms: The area under the receiver

operating characteristic (AUROC), Precision, Recall, and F-1

score [26].

VI. RESULTS AND DISCUSSION

A. WI and EI Distribution Comparison

To validate the applicability of the TL on PMU data, we

utilized Kolmogorov-Smirnov (KS) metric to test if the

cumulative distribution functions of the source WI and target

EI datasets are similar. KS metric was applied to compare two

independent samples on the source and target system, where

the source is represented as a 1-dimensional array that contains

features from the WI and the target is a 1-dimensional array

that contains features from the EI. We obtained p-values by

iteratively computing similarities between two independent

samples. The maximum p-value was 2.7:
"%5
, thus, since the

obtained p-value is very small, we can safely reject the null

hypothesis, implying distributions of WI and EI are different.

TABLE II

NUMBER OF LABELS PER CATEGORY FROM BOTHWI AND EI DATASETS.

Method

# Event

Labels

from WI

# Normal

Labels from

WI

# Event

Labels

from EI

# Normal

Labels from

EI

sLocITR 1038 1846 0 0

stLocITR 1038 1846 849 762
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B. Transfer Learning versus Baseline Event Detectors

Table III presents and compares the performance of the

proposed TL methods stLocITR and sLocITR to alternative

baselines of various learning types. Consistent results

demonstrate the effectiveness of the proposed methods and

show that both methods outperformed fully supervised, semi-

supervised, and unsupervised algorithms. The sLocITR

method selected and transferred 570 (out of 2,884) related data

instances (543 abnormal events + 27 normal) excluding

redundant instances from WI to detect events from EI.

stLocITR transferred additional 362 (out of 1,611) temporally

disjoint related cases from EI, resulting in increased AUROC

by 11% when compared to the best performing supervised and

unsupervised learning algorithms, and a 5% improvement

when compared to the best performing semi-supervised

learning algorithms. sLocITR increases the AUROC by 12%

when compared with the best supervised learning algorithm,

10% improvement when compared with the best unsupervised

learning algorithm, and 3% improvement when compared with

the best semi-supervised learning algorithm. Unsupervised

learning algorithm, kNNO outperformed supervised variant

using the Spatial split, indicating that the source and target

label sets differ significantly. In other words, there are many

input-output relationships in the target domain that do not have

similar counterparts in the source. However, the underlying

anomaly patterns remain similar. Unsupervised learning is

based on detecting anomaly patterns only from the input

signals, whereas supervised algorithms attempt to learn the

relationship between the input signals and the output labels,

which might be misinforming for some cases due to the

distributional difference (label sets) of both interconnections.

Experiments provide evidence that TL-based methods are

more accurate than unsupervised, supervised, and semi-

supervised alternatives for detecting events from one power

system based on labeled data of another.

C. The Effect of Using Various Quantities of Labeled Data

Often, obtaining event logs or labeled data for event

detection tasks is non-trivial or costly. Thus, we studied the

effect of using various amounts of labeled source data to assess

what number of labeled data is adequate to detect events from

the EI of the U.S.A. based on minimal labeled data from the

WI of the U.S.A. (Spatial Split). We selected from Ds 20, 51,

103, 259, 415, 570, and 726 events to detect events from the

target data Dt. We repeated the experiments 10 times and

reported AUROCs, and their corresponding two-sided

confidence intervals calculated at 95% confidence level,

presented in the shaded area of Fig. 1. We selected the best

methods from various learning types (i.e., fully supervised,

semi-supervised, and unsupervised) and compared them with

the proposed TL method stLocITR.

Fig. 1 shows that the TL method outperforms supervised

learning on a large benchmark since there is a distributional

difference between the Ds and Dt. Results show that the TL

method outperforms baselines with varying quantities of

labeled data incorporated. The straight line of the unsupervised

learning algorithm kNNO with no labels incorporated is

included for comparison. When sufficient labeled data are

incorporated, semi-supervised SSKNNO outperforms

unsupervised learning. The increase in labeled source data is

not found to increase the performance of the supervised

algorithm, since the source and target label sets differ greatly.

This study demonstrates that transferring 570 labeled data

instances from the WI are sufficient to detect events from the

3,085 instances of the EI PMU data. We randomly select a

proportion of labeled data from Ds to train supervised and

semi-supervised learning algorithms, whereas the TL

algorithm uses the most relevant instances from Ds. When

comparing sLocITR with a supervised learning algorithm, Fig.

1 shows that selecting the top relevant instances results in not

only better performance, but a more stable model since

sLocITR has a significantly lower two-sided confidence

interval than RF. Table IV illustrates event types when

transferring the top selected 100, 300, and 500 instances.

TABLE III

COMPARATIVE ANALYSIS OF THE UTILIZED TRANSFER LEARNING METHODS

TO VARIOUS BASELINES USING THE SELECTED LABELED TWS FROM D"!

Method
Learning

Type
Model AUC Precision Recall F1

Spatio-

temporal

Transfer

Learning
stLocITR 0.90 0.90 0.90 0.90

Semi-

supervised

SSKNNO 0.85 0.86 0.86 0.86

SSDO 0.84 0.86 0.85 0.85

Supervised

RF 0.79 0.79 0.79 0.79

KNN 0.79 0.80 0.78 0.79

MLP 0.74 0.82 0.73 0.77

SVM 0.72 0.81 0.70 0.75

Unsupervised
kNNO 0.79 0.80 0.79 0.79

iNNE 0.74 0.75 0.73 0.74

Spatial

Transfer

Learning
sLocITR 0.87 0.87 0.87 0.87

Semi-

supervised

SSKNNO 0.84 0.84 0.84 0.84

SSDO 0.83 0.85 0.84 0.84

Supervised

RF 0.75 0.77 0.74 0.75

KNN 0.72 0.75 0.71 0.73

MLP 0.68 0.77 0.66 0.71

SVM 0.65 0.77 0.63 0.69

Unsupervised
kNNO 0.77 0.79 0.76 0.77

iNNE 0.74 0.76 0.73 0.74

Fig 1. Comparing the performance of the proposed method sLocITR

to baselines based on varying number of labeled source data evaluated

using AUROC and their corresponding two-sided confidence interval

calculated at 95% confidence level.
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This experiment shows that supervised learning algorithms

are infeasible when leveraging knowledge from one

interconnection to another due to covariate and concept shift

assumptions and when labels are scarce and difficult to obtain.

D. Misclassified Events

To further comprehend the errors made by the TL method, a

domain expert visually inspected the misclassified TWs. The

most common occurrence of these TWs is the presence of low-

frequency oscillations that the algorithm was unreliable in

detecting as only 0.3% of all events in WI were labeled as

oscillations even though these events are more common. Low-

frequency oscillation events are difficult to capture because

their impact is most obvious after performing modal analysis.

VII. CONCLUSION

This study shows that the TL method yields a substantial

increase in AUROC compared with other state-of-the-art ML

algorithms (fully supervised, semi-supervised, and

unsupervised). Experiments show that this method is more

feasible than alternative baselines when conventional ML

modeling assumptions are violated and outperforms the

baselines when reusing labeled data instances from one power

system to detect events from another. Furthermore, this

method can detect events based on a small amount of

transferred relevant labeled data from another power system.
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TABLE IV.

EVENTS TRANSFERRED PER CATEGORY AMONG TOP 100, 300, AND 500.

# Labeled

Events
Line Frequency Transformer Complex Normal

100 68 15 3 6 8

300 165 71 3 45 16

500 269 103 3 103 22
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