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Abstract—The Gaussian Conditional Random Fields (GCRF)
algorithm and its extensions are used for machine learning
regression problems in which the attributes of objects and the
correlation between objects should be considered when making
predictions. These algorithms can be applied in different domains
where problems can be seen as graphs, but their implementation
requires complex calculations and good programming skills. This
paper presents an open source software package that includes a
tool with graphical user interface (GCRFs tool) and Java library
(GCREFs library). GCREFs tool is software that integrates various
GCRF-based algorithms and supports training and testing of
those algorithms on real-world datasets. The main goal of
GCREFs tool is to provide a straightforward and user-friendly
graphical user interface that will simplify the use of GCRF-based
algorithms. GCRFs Java library contains basic classes for GCRF
concepts and can be used by researchers who have experience
in Java programming. Also, this paper presents the results of a
pilot usability evaluation of the GCRFs tool, where the software
was evaluated with expert and non-expert users. This evaluation
gave us detailed insight into the experiences and opinions of the
users and helped us outline priorities for future development.

Keywords: Gaussian Conditional Random Fields, Regression
Algorithms, Graphs, Software, Library

[. INTRODUCTION

Machine Learning (ML) is a sub-area of artificial intel-
ligence, where algorithms have the ability to learn from
experience [1]. Regression ML algorithms investigate the
relationship between independent variables (attributes) and a
dependent variable (output) with goal to learn how to predict
the output which is a continuous value. Structured regression
ML algorithms are designed to use relationships between
objects to predict output variables. In other words, structured
regression algorithms consider the attributes of objects and
the dependencies between objects to make predictions as ac-
curately as possible. Traditional ML algorithms, such as neural
networks, use only information contained in attributes (x) to
predict the output variable (y), whereas structured regression
algorithms use dependencies between outputs to improve final
predictions. Problems that can be solved using structured
regression can be seen as graphs, where nodes correspond to
objects with attributes (x) and outputs (y), while relationships
between nodes are application-specific and defined in advance,
either by domain knowledge or by assumptions. For example,
relationships between hospitals can be based on similarity of
their specialization [2], relationships between pairs of scientific
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papers can be presented as the similarity of sequences of
citation [3], relationships between people can be quantified
based on strength of their friendship [4], etc.

The Gaussian Conditional Random Fields (GCRF) [5] is a
structured regression algorithm that incorporates the outputs
of traditional ML algorithms (unstructured predictor) and the
correlation between the output variables to achieve a higher
prediction accuracy. It was first applied in computer vision
[6], but since then it has been applied in different areas and
extended for various purposes. The number of projects that
use GCRF-based algorithms could be significantly higher, but
implementing them is not easy, and there is no library that can
facilitate the implementation process.

In this paper, we present the open-source software package!
that includes a tool with graphical user interface (GCRFs
tool) and a Java library (GCRFs library). GCRFs tool is
software that integrates various GCRF-based algorithms and
supports training and testing of those algorithms on real-world
data from different domains without writing code. The main
goal of this tool is to provide a simple and user-friendly
Graphical User Interface (GUI) for GCRF-based algorithms
and to simplify the use of those algorithms for non-expert
users. Users can easily import their datasets and apply different
algorithms. In addition, researchers in the field of machine
learning can use this software to easily run GCRF-based
algorithms on their datasets to make comparisons in terms
of accuracy and execution time. GCRFs library can be used
by researchers who have experience in Java programming.
This library contains basic classes for GCRF concepts and
implementation of some concrete algorithms. It has an intuitive
and simple programming interface (API) and is very flexible
and extensible.

The remainder of the paper is organized as follows. Sec-
tion II introduces the GCRF algorithm and various GCRF
extensions that are integrated into the GCRF tool. Section III
presents the functional and technical description of the GCRFs
tool, and the analysis of time consumption. In addition, this
section contains a short description of the pilot usability
evaluation study and its results. Section IV introduces the Java
GCREFs library, and Section V concludes the paper.

Uhttps://gcrfs-tool.com/



II. BACKGROUND
A. GCRF algorithm

The Gaussian Conditional Random Fields (GCRF) [5] [6]
algorithm incorporates the outputs of unstructured predictors
and the correlation between the output variables to achieve
higher prediction accuracy. A main assumption is that if two
objects are closely related, they should be more similar to
each other and they should have similar values of the output
variable.

In a Conditional Random Field (CRF) algorithm [7], the
observable attributes x interact with each of the outputs y;
directly and independently of each other. The CRF probability
function can be represented by the Eq. (1), where A and /
are real valued functions that are known in CRF literature
as association (Eq. (2)) and interaction (Eq. (3)) potential. K
unstructured predictors are used to predict a single output y;
and L similarity functions are used to represent different types
of dependencies between nodes. The larger the value of A, the
more y; is related to the attributes x. The larger the value of
I, the more y; is related to y;.
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The GCREF is a CRF model with both quadratic feature and
quadratic interaction functions that can be transposed directly
onto a Gaussian multivariate probability distribution (Eq. (4))
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When setting these two conditional probability models equal
to each other, we get a precision matrix (Q) defined in terms
of the confidence of the input predictors and the pairwise
interaction structure, measured by o and P respectively. The
learning task is to choose the parameters & and 3 to maximize
the conditional log-likelihood of the set of training examples.
The precision matrix is calculated by the Eq. (5), where L; is
the Laplacian matrix of j* similarity matrix (S).
0=Y oul+) BiLj, (5)

k J
Representing the input predictions as a matrix R, the for-
mula for the final prediction can be concisely written as in Eq.

(6).

p=0 'Ra. (6)

GCRF has been used in a broad set of applications: climate
[51, [8], [9], energy forecasting [10], [11], healthcare [12], [2],
speech recognition [13], computer vision [14], [15], etc.
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B. GCRF extensions

GCRF is extended for various purposes, and following
extensions of GCRF are integrated in GCRFs tool:

o Directed GCRF (DirGCRF) [4] extends the GCRF
algorithm by considering asymmetric similarity, which
means that it can be applied on directed graphs. In many
real-world networks, objects are asymmetrically linked,
and standard GCRF could not be directly applied on
these problems since this method requires a symmetric
similarity matrix. In [4] DirGCRF is applied on the
Teenagers [16] dataset that consists of three temporal
observations of 50 teenagers. The friendship network (up
to 12 best friends) and teenager’s alcohol consumption
(ranging from 1 to 5) are provided for each time point.
The goal was to predict alcohol consumption at obser-
vation time point 3, based on two previous observations.
The results showed that the DirGCRF has 17% higher
accuracy than standard GCRF, and 4% higher accuracy
than neural network.

Unimodal GCRF (UmGCRF) [17] algorithm extends
the GCRF parameter space to facilitate joint modeling of
positive and negative influences. GCRF is restricted to
positive weights, and UmGCRF expands the parameter
search space to allow for negative links and negative influ-
ence of unstructured predictors. UmGCRF was evaluated
on the problem of predicting monthly hospital admissions
for 189 classes of diseases in California [18]. Relation-
ships between diseases were based on their similarity (on
a scale of zero to one) created using the disease-symptom
similarity network built in [19]. UmGCRF had 17% and
12% improvement in accuracy over the input baselines.
Also, the new mathematical formulation caused a huge
increase in speed, far exceeding the speed and scalability
of standard GCRF.

Marginalized GCRF (m-GCRF) [20] deals with missing
labels in partially observed temporal attributed graphs.
A common problem in a real-life applications is that
the large fraction of observations is often missing. This
method extends GCRF to naturally handle missing labels,
rather than expecting the missing data to be treated in
a preprocessing stage. The benefits of the m-GCRF are
demonstrated on a challenging application for predicting
precipitation based on partial observations of climate
variables in a temporal graph that spans the entire con-
tinental US [21]. Each temporal graph has 1218 nodes
(meteorological stations). The spatial information is used
for calculating similarities (correlations) between stations,
and for each station participation and 6 more attributes are
provided. There are no missing values in input variables,
but about 5% of the dependent variables (precipitations)
are missing. Experiments on this data provided an evi-
dence that m-GCRF brings accuracy improvement (5%
versus neural network).

Uncertainty Propagation GCRF (up-GCRF) [22] is an
algorithm for propagating uncertainty in temporal graphs



by modeling noisy inputs. It is aimed to support structured
regression for long-term decision making, which has
been of interest in many high impact applications. The
up-GCRF method takes into account uncertainty that
comes from the data when estimating uncertainty of the
predictions. The up-GCRF was evaluted on the California
HCUP data [18]. Problem considered in this study is long-
term prediction of admission and mortality rate based
on inpatient discharge data. In all experiments the up-
GCREF outperformed baselines in terms of both accuracy
and uncertainty propagation.

Representation Learning based Structured Regression
(RLSR) [23] simultaneously learns hidden representation
of objects and relationships among outputs. The objective
of the algorithm is to improve the representational power
of the standard GCRF by introducing hidden variables
that are nonlinear functions of the input variables. Such a
method can learn more informative representations and
structural dependencies simultaneously. One of RLSR
applications is prediction of the daily solar energy income
at 98 Oklahoma Mesonet sites. On this dataset, the RLSR
outperformed all baselines by at least 50%.

III. GCRFs TooL
A. Overview of the system

The GCRFs tool® can be used to train and test various
GCRF-based structured regression algorithms on datasets from
different domains. The common procedure for solving GCRF-
based structure regression problems includes the following
steps:

1y

2)

3)

4)

5)

0)
Users provide a dataset for their specific problem at step 1)
and GCREFs tool will finish all remaining structure regression
steps. Fig. 1 presents an overview of the system architecture
of the GCRFs tool.

The GCRFs tool provides dataset samples, but users can also
add their own dataset. The software trains the parameters of
the selected algorithm on the given dataset, and the parameter
values are stored on the local file system and used to test
the algorithm. The training process includes the training of
unstructured predictors. After the testing process, users can
get predicted values, accuracy, and execution time.

To calculate the regression accuracy of all methods, we used
coefficient of determination (R? ) that measures how closely
the output of the model matches the actual value of the data. A
score of 0 indicates a poor match, while a score of 1 indicates a
perfect match. Some very bad predictors can be characterized
by a negative coefficient of determination.

prepare data for training and testing
select and train an unstructured predictor
train one of the GCRF-based algorithms
test selected algorithm

obtain predicted values

calculate accuracy

Zhitps://gerfs-tool.com/about
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Different unstructured predictors can be incorporated in the
GCRF algorithm, and this software integrates following:

« Neural Network (NN) - Neurons in an artificial NN are

grouped in layers: input layer, output layer, and one or
more hidden layers. In the GCRFs tool, the number of
neurons in the input layer is the same as the number
of attributes in the chosen dataset, while the number of
neurons in the output layer is 1 since we have only one
predicted variable. There is one hidden layer, and the user
is asked to insert the number of neurons in it.
Linear Regression (LR) or Multivariate Linear Re-
gression (MLR) - LR is an approach for modeling the
relationship between a dependent variable y and one or
more explanatory variables x. This relationship is mod-
eled using linear predictor functions whose parameters are
estimated from the data. LR has only one explanatory
variable, while MLR incorporates multiple explanatory
variables. In the GCRFs tool, LR or MLR is selected
based on the number of attributes in the dataset.

B. Functional description

To use the GCRFs tool, users should download a zipped
file from the website® and extract it to the desired location.
The user manual is included in the folder, but it can also
be downloaded from the website. All required libraries are
included in the folder and there is no need to install any
dependencies. The standard GCRF and DirCGRF can be used
without MATLAB, but if the user wants to use the remaining
four algorithms, MATLAB should be installed as well. When
the tool is run for the first time, the Configuration panel will
be displayed. In this panel, main parameters for all algorithms
can be configured, and an optional connection with MATLAB
can be established. Most of the parameters have default values.

This software provides 7 dataset samples. Also, users can
add their own datasets using the Add dataset option in the
Datasets menu item. Data for GCRF-based methods are nat-
urally modeled as graphs, where objects are represented as
nodes, and relations are represented as edges between the
nodes. The similarity matrix that quantifies the relationships
among the nodes is denoted with S. Each node is characterized
by one or more attributes (x) and has one output variable (y).
For each dataset, the user should provide .zxz files with edges,
attributes, and outputs. The required formats of these files are
described in the user manual. Once the new dataset is added,
it will be stored in the Datasets folder and the files will be
denoted as follows:

e X.txt - attributes

o y.txt - desired output

o s.txt - edges (graph that presents relationships between

objects).
Since some of the algorithms have the ability to learn simi-
larity between nodes, a file with edges is not mandatory and
“Learn similarity” option can be selected instead. In that case,
only those algorithms can be applied to the specific dataset.

3http://gerfs-tool.com/installation-and-user-manual/
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Fig. 1: System architecture of the GCRFs tool

All datasets are listed in the Manage datasets option in the
Datasets menu item.

In the Help menu item, users can find general information
about the software, datasets and methods. For all datasets,
Help provides an explanation of the nodes in that dataset, the
connections between the nodes, the number of attributes each
node has, what they represent, what should be predicted, etc.
The Methods option in the Help menu item provides a basic
description of each method (algorithm).

The main software functionalities can be presented through-
out the two case studies:

o Case study 1: The Geostep [24] dataset consists of 50
treasure hunt games. Each game can have a maximum
of 10 clues and each clue belongs to one of 4 categories
(business, social, travel, and irrelevant). Each game has
six attributes: the number of clues in each category,
game privacy scope, and game duration. The training
data contains 25 games that are randomly chosen, while
the rest of the games are in the test data. The file
with edges contains similarity between games, which is
calculated based on domain knowledge. Two versions of
this dataset are provided within the GCRFs tool, “Geostep
Asymmetric” with asymmetric similarities, and “Geostep
Symmetric” with symmetric similarities. The goal is to
predict the probability that a game can be used for tourist
purposes. In this case study, the “Train on networks”
option is used to train the DirGCRF method on the
“Geostep Asymmetric” dataset. Since this dataset has
an asymmetric similarity matrix, DirGCRF is the only
method that can be applied. NN is used as an unstruc-
tured predictor. Additionally, an option “Apply standard
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GCRF” is selected, and the similarity matrix will be
automatically converted from asymmetric to symmetric
in order to apply standard GCRF and obtain its accuracy
for comparison. After clicking the “TRAIN and TEST”
button, the training and testing process will start, and the
execution time and R? in the training and testing data will
be displayed. The predicted values of the test data will
be exported to a .txt file. An example of this setup and
training and testing results is presented in Fig. 2.

Case study 2: The Energy* dataset consists of solar
energy forecasting in Oklahoma Mesonet sites. The orig-
inal dataset contains 15 attributes for 98 sites measured
in 1600 time points. To reduce the dataset that will be
included in the GCRFs tool, we randomly selected 10
sites, and for each site we extracted only one attribute for
all 1600 time points. The file with edges is not provided
in this dataset, which means that the selected method
should be able to learn similarities between sites. The
goal is to predict the total daily incoming solar energy at
these sites. This problem can be modeled as a temporal
graph, but the structural dependencies (edges) should be
learned simultaneously with the training phase. In this
case study, the “Train and test on temporal networks”
option is used to train and test the RLSR method on the
“Energy” dataset. It is required to split the dataset on
training, validation and testing subset, and in this example
we are using 1000-300-300 time points, respectively.
For all other parameters, default values are used. Since
this datasets does not contain similarity information, the

“https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest



“Learn similarity” option is automatically checked. When
the “TRAIN and TEST” button is clicked, MATLAB
is automatically called since the RLSR method is im-
plemented in MATLAB. When MATLAB completes all
calculations, the results from the training and testing
phase will be provided, and the predicted values for the
test data will be exported to a .zxt file. An example of
this setup is presented in Fig. 3.

C. Technical description

The GCRFs tool was implemented in Java, using the Eclipse
integrated development environment (IDE)>. This is an open-
source project, and the code is publicly available on GitHub®.
GUI was implemented using components from the Swing GUI
toolkit. The tool is installed and run locally, so its performance
is not influenced by the number of users accessing the tool.

The following main functions are implemented in Java:

« gradient descent algorithm that is used to train GCRF-
based algorithms
unstructured predictors (neural network, linear regression
and multivariate linear regression)
random graph generator

« two algorithms (GCRF and DirGCRF)

The remaining four algorithms (UmGCRF, m-GCRF, RLSR,
up-GCRF) are implemented in MATLAB. These are called
from Java, the input arguments for different functions are
automatically passed, and the output values are automatically
collected. Each time the user chooses any of the MATLAB
methods, GCRFs tool launches and then controls a MATLAB
session without any user intervention. When the process is
completed, the session is automatically closed.

The Java libraries that have been used include: library for
matrix calculations (OjAlgo’), library for the implementation
of neural networks (Neuroph®), and libary for calling MAT-
LAB from Java (MATLABcontrol®).

D. Time consumption

The scalability of the tool and the running behavior of
different methods were assessed on different datasets with
varying numbers of nodes: 100, 500, 1000 and 5000. Time
consumption varies depending on the methods chosen. All
experiments were run on Windows with 16GB RAM memory
and a 3.4GHz CPU. The time consumption is presented after
50 iterations, and the results are shown in Table I. We can see
that models implemented in Java take more time due to Java’s
object-oriented nature, which requires more memory and more
time to handle large matrix computations. On the other hand,
MATLAB has much more support for high-level mathematical
operations, as well as built-in matrix operations, so it runs
faster than Java. The advantage of using Java is that it can be
downloaded for free, and almost all users already have Java

Shttps://eclipse.org/
Shttps://github.com/vujicictijana/GCRF_GUI_TOOL
Thttp://ojalgo.org/

8http://neuroph.sourceforge.net/
%https://code.google.com/archive/p/MATLABcontrol/
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installed on their machines, while MATLAB is expensive, and
including it on a computer can be very costly for users.

E. Usability evaluation

Usability [25] is a quality attribute that evaluates the ease
with which user interfaces are used. The main usability at-
tributes [26] are usefulness, efficiency, effectiveness, learnabil-
ity, and satisfaction. The goal of usability testing is to collect
empirical data while observing users using the software to
perform realistic tasks and to utilize those data to improve the
product and make it more useful and usable. There are various
testing methodologies, and this chapter briefly describes the
methodology used for GCRFs tool usability evaluation and
the results of a pilot usability study.

In the first stage, GCRFs tool was tested by a group of
internal experts, trying to identify design flaws, bugs, or any
other problems that may occur during the use of the software.
Some issues were identified, and the tool was updated and
optimized. In the second stage, an evaluation was conducted
with different types of end-user. Since the GCRFs tool should
be intuitive and easy to use for both experts and beginners
in the ML field, it was decided to test the software with two
groups of users: experts and students. All participants were
asked to complete four tasks using this tool. Before getting
the assignments, the participants received a short description
of the system, without any instructions on the specific tasks.
The technical requirement for all participants was to have a
computer with Java 8 installed, and MATLAB was optional.

To get a detailed insight into the experiences and opinions of
users, the authors have created a questionnaire for evaluation!?
that participants were supposed to fill out once they had
completed all tasks. The main purpose of the questionnaire
is to collect information from participants to clarify and
deepen understanding of the strengths and weaknesses of the
software [26]. The questionnaire is designed to be easy for
both the authors (to facilitate the analysis of the responses)
and the participants (to minimize their time filling out the
questionnaire). Participants are asked to check boxes, circle
answers, or score statements on a scale of 1 to 5. The
questionnaire contains only one open-ended question, which
is not mandatory. These questions can help authors gather
information about users’ opinions and feelings about ease of
use and ease of learning, as well as reveal their satisfaction
with the software. The questionnaire has five parts, and those
parts are briefly described together with the results of the pilot
usability evaluation study:

1) User profile - This part of the questionnaire is used
to collect basic information that will help the authors
understand the backgrounds of users. During the pilot
usability evaluation study, GCRFs tool was tested with
34 users, 12 experts, and 22 undergraduate and graduate
students. Most of the participants were males (82%),
from 20 to 30 years old (71%). When it comes to
the education level, the majority of participants were

1Ohttps://goo.gl/forms/1kVVMLc11VeleYU32/
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Fig. 2: Example of the use of GCRFs tool for Case study 1
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Fig. 3: Example of the use of GCRFs tool for Case study 2

TABLE I: Execution time of GCRFs tool for different methods with varying numbers of nodes in a graph

No. of nodes No. of edges GCRF DirGCRF | UmGCRF | m-GCRF | up-GCRF RLSR
100 5,094 0.27 s 0.17 s 6.02 s 8.49 s 26.84 s 69.25 s
500 127,540 16.98 s 9.49 s 745 s 17 s 6.58 min 8.25 min
1000 509,376 1294 s 69.57 s 8s 53.15s 27.6 min 1h 18 min
5000 12,749,518 4h 45 min | 2h 12 min 3448 s 65 min N/A N/A
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PhD students (56%), but we also had master (26%)
and undergraduate students (18%), which means that
different user profiles were included in this evaluation.
We had participants with different pre-knowledge levels,
30% of the participants had no experience in ML, but
64% of participants were not familiar with structured re-
gression. The participants have used different operating
systems to test the software, and the majority of them
had MATLAB installed on their computer (76%).
Level of tasks - The main goal of this part of the
questionnaire is to determine whether specific tasks are
easy or difficult for different types of users. During the
pilot usability evaluation study, all tasks had an average
score of 4.4/5 or higher. It is important to mention that
80-94% of users have seen the tasks as “Very easy” or
“Easy”, while for 3-8% of them, the tasks have been
“Very difficult” or “Difficult”.

Terminology and system information - This part of
the questionnaire assesses what users think about GUI
and its components. During the pilot usability evaluation
study, all statements had average scores greater than 4/5,
which means that users are generally satisfied with the
clarity of the terminology used. However, some of them
would like better help, more detailed error messages and
clearer input prompts.

System Usability Scale - This part of the question-
naire uses the System Usability Scale (SUS), which has
proven to be a valuable evaluation tool and a reliable
measure of system usability [27]. The results of the
pilot usability evaluation study showed that 76% of the
participants would like to use GCRFs tool, and that 82%
think the software is easy to use. On the other hand, 12%
of the participants think that the software is too complex
and 6% think it is very cumbersome to use. 18% of
participants would need the support of a technical person
to be able to use this software, while 9% think that most
people would not learn to use it very quickly.
Comments/suggestions - This part contains an open-
ended question for users’ opinions and suggestions.
From the comments that the participants gave during
the pilot usability evaluation study, we concluded that
they found the first-time experience encouraging and
that the majority of them think that the GCRFs tool is
very simple and easy to use. The primary user feedback
remarks were regarding the help and explanations in the
software, so the first goal is to improve that aspect.

2)

3)

4)

5)

After the pilot usability evaluation study, this questionnaire is
published on the project website. At the time of submission
of the paper the total number of completed surveys was 76
and the average grades were 4.2/5 for “Level of tasks” and
4.3/5 for “Terminology and system information”, while the
SUS grade was “A” (82.3/100). The summary results of the
questionnaire are updated in real time and publicly available
on the website'!.

http://gcrfs-tool.com/results/
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IV. GCRFs JAVA LIBRARY

The GCRFs Java library is an open-source library and its
code!? and jar file!® can be downloaded from GitHub and
project website. Basic classes!* provide a general structure
and logic components that are common for GCRF-based
algorithms:

BasicCalcs - class that contains static methods for re-
quired mathematical calculations, such as vector and
matrix multiplication, matrix trace, inverse matrix, etc.
Calculations - interface that specifies a list of methods that
should be implemented by all GCRF-based algorithms
regarding calculation rules.

CalculationsGCRF - class that implements Calculations
interface using the rules of standard GCRF. Other GCRF-
based algorithms should extend this class and override
calculation rules that are different for the specific algo-
rithm.

LearningAlgorithm - interface that specifies a list of
methods to be implemented by the learning algorithm.
GradientAscent - class that implements the LearningAl-
gorithm using the rules of the gradient ascent.
Parameters - class that specifies all parameters that are
required by the gradient ascent algorithm.

Algorithm - interface that specifies a list of methods that
should be implemented by all GCRF-based algorithms.
Basic - basic class for GCRF algorithm (implements
Algorithm interface). All GCRF-based algorithms should
extend this class and specify its own calculation rules
(class that implements Calculations interface) and learn-
ing algorithm (class that implements LearningAlgorithm
interface).

Different GCRF-based algorithms are implemented by extend-
ing basic classes and by overriding existing or adding addi-
tional methods. The library can be easily extended with new
GCRF-based algorithms. The full list of packages, classes, and

methods can be found in GCRFs library API documentation!>.

V. CONCLUSIONS

This paper presents GCRFs tool, open-source software
that integrates various GCRF-based algorithms and supports
training and testing of those algorithms on real-world data
from different domains. The main functionalities of software
were briefly described and demonstrated through two case
studies. Also, this paper presents open-source Java library than
can be used to include existing GCRF-based algorithms in Java
code and that can be easily extended with new GCRF-based
algorithms. Since a very important aspect of the GCRFs tool
is that it should be intuitive and easy to use, evaluation with
experts and non-expert users has been conducted. Based on the
overall evaluation results, we can conclude that both groups of

2https://github.com/vujicictijana/GCRFs_Library
Bhttp://gcrfs-tool.com/use/
http://gcrfs-tool.com/class-diagram/
http://gerfs-tool.com/api/



users were very satisfied with the software, and some of their
suggestions are very useful for planning future development.

The main advantage of the proposed tool is that it provides
users with the opportunity to test multiple GCRF-based algo-
rithms without writing code, while the main limitation is that
it is not fully free to use, since some of the algorithms require
having a MATLAB license.

As future work we would like to improve GCRFs tool
according to the users’ comments and to provide a web
version to facilitate its usage. Additionally, we plan to upgrade
the proposed software package with Phyton and MATLAB
libraries for GCRF-based methods.
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