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Abstract. Predicting rare and disruptive severe weather events presents 
significant challenges due to class imbalance and data sparsity. Con-
ventional oversampling techniques and unimodal approaches are inade-
quate for these low-frequency phenomena because they fail to capture the 
events’ intrinsic complexity and spatiotemporal dynamics. Current meth-
ods lack the ability to learn modality-specific representations. Herein, we 
introduce a robust multimodal fusion strategy that directly integrates 
primary sensor measurements with supplementary modalities including 
textual descriptions and weather forecasts within a tri-modality frame-
work. Our approach is augmented by advanced spatiotemporal feature 
engineering, ensuring that both spatial and temporal relationships are 
preserved and effectively leveraged. Notably, our proposed method, which 
incorporates Automated Surface Observing System (ASOS) sensor data, 
textual embeddings, and forecast data, achieves substantial performance 
improvements, elevating macro F1-scores from 0.04 to 0.89 across a ten-
class framework (nine severe event classes and one normal class) for 12-
hour forecasting horizons. This integrated approach helps overcome data 
sparsity, particularly in high-latitude regions. Ultimately, this framework 
provides an effective early warning system for disaster risk assessment 
and infrastructure resilience forecasting. 

Keywords: Severe Events Classification · Multi-modal Fusion · 
Spatiotemporal Analysis · Data Sparsity 

1 Introduction 

Severe weather events are becoming increasingly common and pose significant 
risks to human life, infrastructure, and the environment. These events includ-
ing hurricanes, flash floods, severe thunderstorms, and tornado outbreaks cause 
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widespread damage and require improved predicting and mitigation strategies. 
Projections indicate significant changes in temperature and precipitation sever-
ity throughout the 21st century, with more pronounced increases in extreme 
minimum temperatures and five-day precipitation amounts compared to mean 
changes [ 26]. These climatic shifts are expected to affect various sectors, includ-
ing infrastructure, food security, and transportation [ 14]. 

Alaska is also experiencing an increase in severe climate events, present-
ing considerable challenges for communities, particularly Alaska Native Villages 
(ANVs), as illustrated in Fig. 1, posing significant threats to public health and 
the economy. Although hazard mitigation plans serve as the primary mecha-
nism for addressing climate-related hazards in ANVs, many are overly generic 
and fail to sufficiently address local concerns [ 25]. Enhanced planning strate-
gies that incorporate community knowledge, protect subsistence activities, and 
improve accessibility are necessary. The integration of historical data, climate 
projections, and localized impact assessments can support more effective climate 
adaptation planning in Alaska [ 13]. Predicting severe weather events remains a 
challenging problem due to the complexity of atmospheric systems. Current pre-
dicting methodologies require advancements to improve accuracy and provide 
actionable insights for emergency response. Traditional models often struggle 
to account for the dynamic nature of severe weather, necessitating the use of 
machine learning tools and control systems to enhance prediction capabilities. 
By integrating heterogeneous environmental data sources including high reso-
lution satellite imagery, radar signals, in situ sensor networks, and numerical 
weather prediction outputs these systems can offer emergency managers and 
policymakers the critical lead time necessary for effective risk mitigation. This 
includes resource allocation, issuing timely evacuation orders, mobilizing emer-
gency response teams, and pre-positioning critical infrastructure. 

Fig. 1. Observed increasing frequency of severe weather events in Alaska from 2018 to 
2022, demonstrating the growing intensity of severe weather events.
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This paper presents a variant of a tri-modal fusion framework that integrates 
high-resolution ASOS sensor data, quantitative NCEI forecasts, and qualita-
tive textual reports from the Storm Events Database to predict severe weather 
events up to 12 h in advance. Using a late fusion strategy, our model classifies 
events within a ten-class framework where we have nine severe event classes 
and one normal class. We employ LSTM and BERT models to extract pat-
terns from different data modalities, enabling early warnings and comprehensive 
risk assessments. By bridging gaps in Alaskan-specific environmental data, our 
approach facilitates the robust learning of historical climate patterns associated 
with severe weather events. This work enhances the reliability of severe weather 
predictions, ultimately supporting improved decision-making and disaster pre-
paredness strategies. We answer the following research questions in this work-

RQ1: What roles do sensor, forecast, and text modalities play in capturing 
Alaska’s severe weather dynamics? 

RQ2: How does our late fusion approach improve prediction accuracy and 
extend the predicting horizon? 

RQ3: How does the model balance recall and precision for effective risk esti-
mation under data limitations? 

RQ4: How does a generalized model compare to localized models in capturing 
severe weather patterns across different regions of Alaska? 

RQ5: How does model performance vary across different seasons in severe 
weather classification? 

In this study, we extend a trimodal model to tackle a broader classification 
challenge in cold, data-scarce regions like Alaska. A key challenge is the presence 
of certain classes in only one modality, requiring innovative integration of het-
erogeneous and incomplete data. Our approach enhances severe weather predic-
tion through advanced spatiotemporal analysis, addressing data inconsistencies, 
sensor failures, and unique environmental conditions. Key innovations include 
automated 12-hour forecasts, multi-weather adaptability, unified sensor-textual-
forecast integration, spatiotemporal pattern recognition, and expert-annotated 
scalable datasets. 

2 Related Works 

Event prediction techniques have gained significance across meteorology, pan-
demic tracking, and financial modeling, extracting spatiotemporal patterns to 
forecast events [ 20, 29]. Recent AI and big data advances have enhanced pre-
diction accuracy through multimodal analysis of sensor data, forecasts, and 
social media [ 22]. Deep learning models excel at capturing non-linear relation-
ships, with studies advancing power outage prediction by combining weather, 
vegetation, and infrastructure data [ 2, 4]. While GLMs and physics-informed 
approaches have improved predicting, challenges in severe event prediction and 
uncertainty quantification persist [ 3, 27].
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Random forest (RF) models have proven effective in predicting severe weather 
across the contiguous United States, often outperforming operational Storm Pre-
diction Center forecasts at longer lead times [ 11]. They have been successfully 
applied to predict phenomena such as tornadoes, hail, and severe winds [ 12], and 
have demonstrated value in short-term predicting systems and probabilistic pre-
cipitation calibration [ 9, 19]. Their capability to capture complex spatiotemporal 
weather patterns, especially when combined with human expertise, underlines 
their potential in operational settings [ 12]. 

Regression-based methods have also been employed to predict the impacts 
of severe weather on critical infrastructure. Generalized additive models, for 
instance, have achieved improved accuracy in predicting hurricane related power 
outages compared to traditional approaches [ 10]. Other techniques such as sup-
port vector regression, Bayesian additive regression trees, and hybrid data mining 
regression methods have been used to forecast storm related transmission out-
ages and power outage durations, despite challenges posed by limited data for 
low probability events [ 28]. Additionally, big data analytics and spatiotemporal 
modeling have been leveraged to assess weather impacts on utility assets [ 5]. 

Research in weather event prediction has underscored the value of integrating 
diverse data sources such as weather forecasts, infrastructure data, and historical 
logs using methods like tree based models, spatially enhanced logistic regression, 
and two step frameworks. Recent advances fuse numerical weather predictions, 
satellite imagery, and machine learning, demonstrating the potential of model 
data fusion to address uncertainties across scales. Studies have shown the ben-
efit of integrating multimodal data to solve forcasting problem [ 1]. One study 
proposed multimodal spatiotemporal framework addresses these limitations by 
integrating diverse data streams for enhanced hurricane scenario predictions [ 7]. 

Multiple studies have investigated specialized LLMs to perform urban spatio-
temporal prediction and found that they perform better than traditional meth-
ods in tasks such as traffic predicting, alignment of time series with natural 
language and integration of multimodal geospatial data [ 15, 18]. 

Despite progress, a gap persists between the theoretical capabilities of multi-
modal approaches and their practical implementation in multiclass classification. 
In our previous work [ 23], we addressed a five-class classification problem using 
dual data modalities with 12- and 24-hour forecast horizons. Tailored for cold, 
data-scarce regions like Alaska, our approach employs biLSTM architectures 
with advanced spatiotemporal integration techniques to overcome challenges 
such as data imbalances, sensor failures, and sparse coverage thereby reducing 
reliance on expensive equipment and mitigating data gaps. 

This work provides a practical framework for enhancing operational predic-
tion in regions where traditional monitoring methods face significant limitations. 
Integrating multiple data sources, including sensor recordings, weather forecasts, 
and textual reports, may be effective for predicting severe weather events. The 
effectiveness of this integration depends on how these heterogeneous data modal-
ities are fused. Three primary fusion strategies early fusion, intermediate fusion, 
and late fusion offer distinct advantages and challenges in multi-source data 
modeling.
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Early fusion involves concatenating raw data from different modalities at 
the input stage. This aligns with traditional deep learning architectures where 
all input features are processed jointly through shared layers. However, this 
method does not allow for modality-specific processing, making it highly sensi-
tive to missing data and struggling to learn meaningful representations, leading 
to poor performance. While this approach captures cross-modal correlations and 
supports standard classifiers, it assumes complete modality availability and syn-
chronization, often unrealistic in real-world scenarios with missing, corrupted, or 
misaligned data. This issue is evident in speech recognition, where audio-visual 
synchronization is crucial, but also in clinical settings, where modalities may 
originate from different time points, such as pre and post interventions, making 
early fusion less suitable [ 17]. 

In contrast, intermediate fusion constructs independent embeddings for each 
modality before integration, enabling more structured feature learning. This app-
roach is particularly effective when temporal alignments exist between modal-
ities, such as numerical weather predictions and sensor recordings. However, 
ASOS data often suffer from missing temporal observations, which can hinder 
the effectiveness of intermediate fusion. 

Late fusion, also known as decision-level fusion, processes each modality sep-
arately through independent models and combines their outputs at a later stage. 
This approach allows each modality to be optimized individually, making it more 
robust to missing or noisy data. However, since late fusion does not leverage 
cross-modal interactions during feature learning, it may fail to capture deeper 
correlations between modalities. Despite this limitation, late fusion can be par-
ticularly useful in scenarios where different modalities contribute independently 
to the final prediction. In this study, we explore all three fusion techniques, 
assessing their impact on model performance in severe event classification. 

3 Data  

Our study employs a comprehensive data integration approach to underpin 
robust training and testing of severe weather event prediction models. Three 
data modalities are selected and sampled hourly over a five-year period (2018– 
2022). We align them using timestamp mapping to ensure temporal consistency 
across the data set. These modalities include: 

1. Sensor Data (ASOS - Local): Collected from 153 Alaskan weather stations 
at 1- and 5-minute intervals and aggregated into hourly samples, this dataset 
captures key meteorological variables such as temperature, humidity, wind 
speed, and precipitation. 

2. Expert Text and Event Logs (Non-Spatial): Sourced from NOAA’s 
Storm Events Database, this modality comprises detailed narratives of severe 
weather disruptions. Each event is meticulously labeled and temporally 
aligned with the sensor and forecast data. The data contains timestamps 
but does not include spatial coordinates.
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3. Forecast Data (Global): Derived from the NCEI Archive, this dataset pro-
vides hourly predictions of future weather events and climate shifts, serving 
as an essential input for time-series modeling. 

Our labels are sourced from NOAA [ 21] and consist of 10 distinct weather 
categories: Normal, Flood, High Wind, Heavy Snow, Winter Storm, Debris Flow, 
Winter Weather, Coastal Flood, Cold/Wind Chill, and Severe Cold/Wind Chill. 
We formulate the problem as a multiclass classification task. Although severe 
weather events can occur simultaneously, suggesting a multilabel approach would 
be more appropriate, the dataset is structured to assign a single label per 
instance. When multiple events occur on the same day, they are combined into 
a new, unique class, enforcing a multiclass classification framework. 

4 Methodology 

In this study, our methodology is structured into two main components: data 
preparation and fusion. The data preparation phase involves transforming multi-
modal inputs to ensure compatibility between different data sources. The fusion 
phase integrates these processed data streams through a late fusion strategy, 
allowing the model to leverage complementary information from multiple modal-
ities for improved predictive performance. Each of these components is described 
in detail in the following subsections. An overview of the entire process is illus-
trated in Fig. 2, providing a visual representation of how the different data 
streams are processed and combined within our framework. 

Fig. 2. Overview of the late fusion architecture. 

4.1 Multimodal Data Preparation 

In this study, we integrate data from ASOS weather sensors, NCEI forecasts, and 
NOAA storm description texts to develop a tri-modal predictive framework. The 
weather data is available at an hourly resolution. Our proposed architecture
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processes data on a per-station basis, with the objective of predicting severe 
weather events for each ASOS weather station. The framework consists of three 
specialized processing pipelines with staggered fusion, each designed to extract 
distinct patterns from different data modalities: 
– Weather Sensor Pipeline (LSTM): This pipeline processes high-

frequency ASOS sensor data from individual stations using a three-layer 
stacked bidirectional Long Short-Term Memory (LSTM) network with a hid-
den layer size of 128. It is designed to capture complex temporal dependencies 
in meteorological measurements. 

– Textual Pipeline (BERT + LSTM): Since textual storm descriptions 
are only available for certain hours, we create a uniform temporal sequence 
by converting the available texts into 768-dimensional BERT embeddings. 
We choose BERT because it is the state of the art model for creating text 
embeddings. It captures both semantic and contextual meaning to generate 
meaningful representations. For hours without textual data, we substitute a 
zero vector to maintain temporal consistency. The resulting sequence is then 
passed through an LSTM network to generate a contextual embedding that 
captures temporal dependencies in the textual data. 

– Forecast Pipeline (LSTM): Observational forecast data from multiple 
sources are processed through a parallel LSTM network with a hidden layer 
size of 64, enabling the capture of global severe weather patterns using a 
spatial attention mechanism. 

By applying this tri-modal approach at the station level, our model predicts 
severe weather events for each ASOS weather station by leveraging both struc-
tured and unstructured data sources to enhance predicting performance. 

4.2 Proposed Late Fusion Framework 

In our framework, we independently train three models, f1, f2, and  f3, corre-
sponding to the three modalities: numeric sensor data, numerical forecast data, 
and textual descriptions. Each model fi maps its modality-specific input xi to a 
vector of class scores over C classes. Applying the softmax function σ to these 
scores yields the probability vector ŷi = σ(fi(xi)) for each modality. To fuse the 
outputs, we first compute the maximum confidence for each model: 

mi = max 
c∈{1,...,C} 

ŷi,c. 

We then determine the modality with the highest confidence: 

i∗ = arg max 
i∈{1,2,3} 

mi, 

and select the corresponding prediction as the final output: 

ĉ = arg max 
c∈{1,...,C} 

ŷi∗,c. 

This late fusion strategy ensures that the final decision is based on the model 
that is most confident in its prediction.
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5 Experimental Setup 

We process three primary data modalities (weather data, forecast data, and tex-
tual event narratives) each of which is transformed into a compact representation 
using a dedicated encoder. To rigorously evaluate our tri-modal fusion approach, 
we implement a temporal hold-out by training on data from 2018 to 2021 and 
testing on unseen data from 2022. Our model predicts 10 classes, and due to 
the imbalanced nature of the dataset, we focus our evaluation on the macro F1 
score as well as the F1 score for each individual class, ensuring a comprehensive 
assessment of performance across all classes. 

We propose a risk-scoring framework that computes a score Rk for each event 
type k as follows: 

Rk = βk Recallk +
(
1 − βk

)
Precisionk, 

where βk ∈ [0.3, 3.7] is a risk-weighting parameter calibrated using regional eco-
nomic exposure and population density data. Events with a risk score exceeding 
10 are classified as high-impact. In this work, we set βk = 0.3 for all event types. 

6 Results 

We conducted extensive experiments to evaluate the performance of the proposed 
model and compare it to baselines. In this section, we address the research 
questions described in Subsects. 6.1 to 6.5 to evaluate the performance of the 
model. 

6.1 What Roles Do Sensor, Forecast, and Text Modalities Play 
in Capturing Alaska’s Severe Weather Dynamics? 

To investigate the roles of sensor, forecast, and text modalities in capturing 
Alaska’s severe weather dynamics, we evaluated the 12-hour predictive perfor-
mance of each modality independently and in an integrated setting (see Table 1). 
The results indicate that the forecast modality achieves an F1-score of 0.78, out-
performing the text-based modality (F1-score of 0.64) and the ASOS sensor 
modality (F1-score of 0.13). Notably, our proposed trimodal model that fuses 
all three modalities attains an F1-score of 0.89. This significant performance 
boost underscores the complementary strengths of each modality and highlights 
the benefits of multimodal integration for accurately modeling severe weather 
dynamics in Alaska. 

6.2 How Does Our Late Fusion Approach Improve Prediction 
Accuracy and Extend the Predicting Horizon? 

To evaluate how our late fusion approach improves prediction accuracy and 
extends the predicting horizon, we compared it against two baseline fusion strate-
gies. Table 2 presents the comparative results across these approaches: Early
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Table 1. Results for unimodal models vs. proposed trimodal late fusion model. 

Modality F1 Score 
Forecast Only 0.78 
Text Only 0.64 
ASOS Only 0.13 
Our Proposed Model 0.89 

fusion combines raw data from multiple modalities (e.g., sensors, forecasts, and 
text embeddings) at the input stage, without modality-specific preprocessing, 
making it highly sensitive to missing information and resulting in poor per-
formance (F1-score = 0.043). Intermediate fusion integrates independently con-
structed embeddings for each modality, offering better feature combinations, but 
its performance remains inconsistent across classes (F1-score = 0.431). In con-
trast, our late fusion model combines fully processed modality outputs, allow-
ing it to learn modality-specific representations and preserve distinct feature 
hierarchies while enabling cross-modal interactions. This approach significantly 
outperforms both early and intermediate fusion methods in terms of overall per-
formance. 

Table 2. Comparative Performance of macro F1 scores for ten classes of events 
obtained by three fusion methods (Early, Intermediate, and Late). 

Class Early Intermediate Late 
Normal 0.00 0.24 1.00 
Flood 0.00 0.40 1.00 
High Wind 0.00 0.00 1.00 
Heavy Snow 0.00 0.00 1.00 
Winter Storm 0.00 0.76 1.00 
Debris Flow 0.00 0.51 0.93 
Winter Weather 0.43 0.89 0.94 
Coastal Flood 0.00 0.38 0.99 
Cold/Wind Chill 0.00 0.27 0.88 
Severe Cold/Wind Chill 0.00 0.86 0.77 
Macro F1 0.04 0.43 0.89 

These results highlight the advantages of late fusion in mitigating modality-
specific limitations and effectively leveraging complementary cross-modal infor-
mation to improve prediction accuracy and extend predicting capabilities. 

6.3 How Does the Model Balance Recall and Precision for Effective 
Risk Estimation Under Data Limitations? 

Our framework builds on established principles in cost-sensitive learning [ 6, 16] 
and risk-based metrics [ 8, 24], aligning model evaluation with operational risk
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profiles to support informed decision-making under data limitations. To assess 
how the model balances recall and precision for effective risk estimation under 
data limitations, we analyze the computed risk scores (Rk) across different severe 
weather events, as presented in Table 3. Our approach effectively prioritizes high-
impact events, with Flood (Rk = 13.15), High Wind (Rk = 13.45), and Debris 
Flow (Rk = 14.20) all exceeding the high-risk threshold of 10. In contrast, 
despite their high frequency of occurrence, Normal conditions and Coastal Flood 
register below the threshold (Rk = 9.95 and Rk = 9.98, respectively), reflecting 
their lower operational impact. This demonstrates that the model effectively 
balances recall and precision, ensuring that high-risk events are prioritized while 
minimizing false alarms for lower-risk scenarios. 

Table 3. Risk-Adjusted Scores and Event Classifications for the Late Fusion Model on 
Unseen 2022 Data. Risk scores are computed as Rk = βk Recallk + (1  − βk) Precisionk 

(with βk tuned based on real-world risk factors), and a threshold of 10 is used to 
differentiate High and Low risk events. 

Event Precision Risk Score Risk Class 
Normal 1.00 9.95 Low 
Flood 0.90 13.15 High 
High Wind 0.93 13.45 High 
Heavy Snow 0.85 12.25 High 
Winter Storm 0.91 12.97 High 
Debris Flow 0.98 14.20 High 
Winter Weather 0.88 12.52 High 
Coastal Flood 1.00 9.98 Low 
Cold/Wind Chill 0.90 12.81 High 
Severe Cold/Wind Chill 0.77 10.87 High 

6.4 How Does a Generalized Model Compare to Localized Models 
in Capturing Severe Weather Patterns Across Different Regions 
of Alaska? 

To evaluate whether a generalized model outperforms localized models in the 
Alaskan region, we compare a tri-modal approach with region-specific models 
trained separately on four distinct subregions: Southeast, Northeast, Southwest, 
and Northwest Alaska. Our comparative analysis reveals two key limitations in 
the localized models, despite the Northeast region achieving a seemingly perfect 
F1-score of 100%. 

1. Data Scarcity and Class Imbalance: The Northeast experiences fewer 
severe weather events across our 10-class framework, resulting in a smaller 
and less imbalanced dataset in that region. 

2. Inadequate Spatial Coverage: The sparse distribution of ASOS moni-
toring stations in the Northeast restricts the model’s ability to accurately
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delineate event boundaries in that region. This limitation increases the likeli-
hood of misclassifying localized anomalies as severe weather patterns, thereby 
further undermining generalizability. 

Regional analysis (Fig. 3) reveals significant performance disparities. While 
the Northeast model achieves a perfect score, other regions, especially those with 
frequent severe weather, underperform due to limited spatial coverage and class 
imbalance. These results demonstrate the shortcomings of geographically iso-
lated training and the failure to capture cross-regional weather dependencies. In 
contrast, a comprehensive multi-regional model, which leverages shared charac-
teristics and mitigates class imbalance, enhances predictive robustness across all 
Alaskan subregions, achieving a macro F1 score of 0.89. 

Fig. 3. Geographically isolated macro F1 score of 12-hour ahead disruption predictions 
by region. Northeast’s perfect score is of limited generalizability due to data sparsity. 

6.5 How Does Model Performance Vary Across Different Seasons 
in Severe Weather Classification? 

To assess seasonal variability, we conducted an evaluation on unseen year 2022 
by reframing the original multi-class problem into a binary classification task 
normal conditions (class 0) versus severe weather events (classes 1–9). Table 4 
reports the season-wise performance metrics. 

Our model demonstrates consistently high AU-PRC values (ranging from 
0.882 to 0.950) across all seasons, underscoring a robust precision-recall balance. 
However, AU-ROC results vary considerably. Notably, the winter season exhibits 
the highest AU-ROC (0.950) along with a high recall (0.950), which aligns with 
expectations given that most severe weather events tend to occur during winter.
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Table 4. Season-Wise Performance Metrics for Severe Weather Classification using a 
late fusion tri-modal approach 12 h ahead on unseen year 2002. 

Season AU-ROC AU-PRC Precision Recall F1-Score 
Fall 0.85 0.95 0.95 0.94 0.74 
Spring 0.55 0.88 0.95 0.95 0.95 
Summer 0.89 0.95 0.95 0.95 0.86 
Winter 0.95 0.95 0.90 0.95 0.74 

In contrast, spring performance is characterized by a markedly lower AU-
ROC (0.552) despite high precision and recall scores (both 0.950), suggesting 
that the model may be less effective at differentiating between normal and severe 
conditions during this season. Fall and summer yield intermediate AU-ROC val-
ues (0.852 and 0.892, respectively), with both seasons maintaining high precision 
and recall. These findings indicate that the model reliably detects severe weather 
events throughout 2022. 

7 Conclusion 

In conclusion, this work presents a novel multimodal learning framework that 
integrates numeric sensor data (ASOS), textual narratives from the Storm 
Events Database, and forecast information to predict rare and disruptive weather 
events in cold, data-scarce regions such as Alaska. By precisely aligning sen-
sor measurements, narrative descriptions, and short-term forecasts, our fusion 
architecture effectively captures complex spatiotemporal patterns while preserv-
ing interpretability through a late fusion strategy. Experimental results demon-
strate that the framework accommodates a diverse range of event classes while 
maintaining transparency in its decision-making process. 

Despite these advances, several limitations persist. In particular, the detec-
tion of rare events remains challenging due to modest sample sizes in certain 
regions. Future research will explore alternative temporal encoding strategies 
(e.g., seasonal or monthly representations), advanced imbalance-handling tech-
niques (such as targeted oversampling and data augmentation), and further 
incorporation of domain-specific knowledge (including ice thickness and coastal 
geometry) to enhance predictive accuracy. These improvements are anticipated 
to bolster the recognition of extreme, infrequent phenomena. Moreover, beyond 
Alaska, the proposed approach holds promise for application in other cold or 
remote regions with sparse station coverage and limited specialized equipment. 
By leveraging widely accessible meteorological networks and publicly available 
textual logs, our method offers a scalable, cost-effective pathway to more reliable 
weather predicting, ultimately enabling emergency planners, power grid opera-
tors, and local communities to make proactive, informed decisions to mitigate 
risks. To conclude, our proposed work builds upon our prior study [ 23], which 
evaluated models across Alaska, Nevada, and Pennsylvania achieving F1-scores
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of 0.77, 0.84, and 0.97, respectively thereby demonstrating reproducibility under 
diverse weather conditions and extreme events. Expanding on this evaluation 
across climatically distinct regions, we now incorporate sequence models, BERT, 
and fusion algorithms to learn severe event patterns directly from raw data. This 
approach enhances computational efficiency and real-time performance through 
optimized deployment and hardware acceleration, all without the need for more 
feature engineering. 
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