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Data-driven phenotype discoveries on Electronic Health Records (EHR) data have recently drawn benefits
across many aspects of clinical practice. In the method described in this paper, we map a very large EHR
database containing more than a million inpatient cases into a low dimensional space where diseases
with similar phenotypes have similar representation. This embedding allows for an effective segmenta-
tion of diseases into more homogeneous categories, an important task of discovering disease types for
precision medicine. In particular, many diseases have heterogeneous nature. For instance, sepsis, a
systemic and progressive inflammation, can be caused by many factors, and can have multiple manifes-
tations on different human organs. Understanding such heterogeneity of the disease can help in
addressing many important issues regarding sepsis, including early diagnosis and treatment, which is
of huge importance as sepsis is one of the main causes of in-hospital deaths in the United States. This
study analyzes state of the art embedding models that have had huge success in various fields, applying
them to disease embedding from EHR databases. Particular interest is given to learning multi-type
representation of heterogeneous diseases, which leads to more homogeneous groups. Our results show
evidence that such representations have phenotypes of higher quality and also provide benefit when
predicting mortality of inpatient visits.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Large-scale Electronic Health Records databases (EHRs) are an
important source of detailed patient information that can poten-
tially be used for more effective computational and statistical
modeling aimed towards improved disease characterization and
intervention [1,2]. For example, benefits of big EHR analytics were
evident in improving precision medicine by reducing uncertainty
in decision-making and in design of preventive and therapeutic
strategies [2,3], in discovering novel relationships between human
phenotypes and genotypes [4], and in improving overall healthcare
by unearthing deeper medical insights. EHR modeling has been the
focus of many studies aimed to improve healthcare [5–8]. In
clinical practice, these studies can allow medical practitioners to
obtain novel insights in the patients’ conditions and therapeutic
processes, thus improving treatment and accelerating medical
research. Such discoveries are especially important for infectious
diseases such as influenza or Ebola that can spread rapidly and
for complex diseases with fast progression such as sepsis that are
insufficiently understood [9]. An emphasis has recently been
placed on the effective mining of those big EHR databases in order
to obtain actionable insights for improving healthcare, a concept
often termed ‘‘data driven healthcare” [10,11]. However, mining
such data comes with challenges as it is often sparse, heteroge-
neous, noisy and biased due to different hospital and insurance
company polices and non-standardized physician practices [12].

Large-scale efforts for generating and sharing phenotypes were
established recently [13,14]. The initial result of these initiatives is
that many phenotypes are now shared via Electronic Medical
Records and Genomics (eMERGE) Network [15] or the Observa-
tional Medical Outcomes Partnership (OMOP) [16]. However, many
of EHR-derived phenotypes are based on supervised, rule-based or
heuristic-based approaches and often require a consensus of
medical experts, thus limiting their scalability [12]. Necessary
human annotations require substantial time, effort, and expert
knowledge to develop, and these limitations further complicate
phenotyping approaches [3]. A potential method of mitigating this
issue is using active learning approaches to compensate for the
lack of labeled samples [17,18]. However, this approach falls short
when a large number of labels are necessary to model noisy EHR
data. Nevertheless, the state-of-the-art is far from being optimal,
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Fig. 1. Admission (blue) and mortality (red) trends of sepsis diagnoses in California
for the period 2003–2009. (For interpretation of the references to colour in this
figure caption, the reader is referred to the web version of this article.)

46 D. Gligorijevic et al. /Methods 111 (2016) 45–55
as the labeling process can be tedious, and models require a large
number of labels to achieve satisfactory performance on noisy EHR
data [12]. To create a scalable phenotyping environment applicable
to large databases, the phenotyping process needs to minimize
human supervision and should be more automated [12].

Recently, promising approaches, known as computational or
electronic phenotyping, have been proposed for data-driven pheno-
typing [19]. Computational phenotyping refers to the process of
mapping raw patient EHRs into meaningful medical concepts,
which can be seen as a feature selection process [20,21]. It is worth
noting that this is typically done on tens of thousands of EHRs
although there are tens of millions available [22]. Data-driven
healthcare approaches differ in their general objectives and data
used for their research. However, the main contribution of such a
body of work can be seen as learning useful representations of
human interactome,2 whether that be a phenotype network of
human diseases [23,24,4], network of human genes and proteins
[25,26], temporal networks of hospital records [8,27,20], or general
tensor representations for discovering latent dimensions of the con-
cepts involved [6,7,3,28,19]. Most of these approaches can be unified
by their aim to exploit available EHR data [1] in order to develop rep-
resentations of medical concepts for their further utilization in pre-
cision medicine by improving the understanding of disease etiology.

Causes of health and wellness span multiple body systems and
physiologic processes, thus the complexity of the phenotyping
process is increased. This creates a nonlinear relationship among
observed measurements, making the process of learning robust
representations of human physiology challenging [19]. The discov-
ery of disease types can benefit both the practice and science of
medicine [29]. For physicians, having defined disease types of good
quality can decrease uncertainty in diagnosing and monitoring
patients’ wellness resulting in improved treatment decisions. It
can also aid in prognosis of, i.e. treatment outcome or expected
cost of care [30]. For researchers in medical science, it can provide
a novel lens allowing for more focused analysis. Furthermore, it is
in the interest of many researchers to discover segments of dis-
eases in order to better understand more homogeneous subsets
[31–33]. Previously studied disease segmentation approaches
often consisted of observing metabolic, genetic or proteogenomic
interactions, thus differing from the purely EHR-based approach
proposed in this study. Our goal is to automatically detect such
segments of diseases from large EHR databases by exploiting
disease comorbidity information contained in patient discharge
records.

To provide evidence of benefits from using the proposed disease
multi modal embedding approach, we conducted a case study
discovering segments for all sepsis related diagnoses. Sepsis is a
potentially life-threatening complication of pathogen infection
that triggers the systemic inflammatory response [34,9]. Such
systemic and progressive inflammation can lead to multiple organ
dysfunction syndrome and even death [35]. It can occur due to
many reasons (i.e. infection from bacteria, fungi, viruses, or other
organisms on different organs, etc.) and it has a wide range of
symptoms. Hence, sepsis is not a yet fully understood condition
while treatments are still far from optimal; it is often diagnosed
too late, which can result in a mortality rate as high as 30–50%
in the case of septic shock [36,34].

It is a disease that afflicts a large population [37] and was the
largest cause of death in the state of California from 2003 to
2011 (Fig. 1). Furthermore, sepsis is recognized as one of the main
causes of in-hospital deaths in the United States [38], with more
than 750,000 cases annually [39], and it contributes to 1 in every
2 Human interactome is defined as all interactions(connections) of diseases, genes,
and proteins discovered on humans.
2 to 3 deaths [40]. In addition to overwhelming presence of the
sepsis, hospital costs of over $20 billion in 2011 in the United
States [41] provide a huge motivation for research in fields of
understanding, diagnosing and treating such condition, as the
incidence of sepsis is rising [42]. Therefore, complicated coding
techniques are applied by the physicians to discriminate between
different sepsis cases while documenting patients’ discharge
records [43]. In this study, we aim to exploit such information
recorded in a large EHR database in order to automatically build
multi modal representations of sepsis diagnoses with the purpose
of proposing a system for improving sepsis diagnostics and poten-
tially aiding in early prediction of outcomes.

The proposed novel, multi modal neural embedding model
[44,45] is adapted for use in medical records for disease embed-
dings [30], following from the major success of such models in
the field of Natural Language Processing (NLP) and other fields
[46–48]. Unsupervised neural embeddings have shown promising
disease modeling capabilities from EHR data [30], outperforming
representatives of other state-of-the-art approaches on predicting
hospital quality indicators such as length of stay, total charges and
mortality. The goal of these models is to learn low dimensional
distributed representations of diseases by utilizing context from
inpatient diagnoses and learn multiple type-specific embeddings
for diseases of interest that would differ in the embedded space
according to differences in contexts. The models for such tasks
are described in Section 3. Such embeddings were shown to be
able to capture disease-disease and disease-procedure relations,
while also being very useful in further analyses in preventative
and responsive medicine. This study further improves representa-
tional power of neural embeddings for learning distributed
disease representations by allowing them to capture disease
heterogeneities and automatically discover disease types. As
discussed earlier, this is of great importance for highly heteroge-
neous diseases such as sepsis. Disease embedding approaches
are described in Section 3.2, while novel type-specific approaches
are described in Sections 3.2.2 and 3.2.3. Their benefits are
evaluated and discussed in detail in Section 4 followed by conclu-
sions in Section 5.
2. Large Electronic Health Records database from California

The rapid growth in the development of healthcare information
systems has led to an increased interest in utilizing the patient



Table 1
ICD-9 codes related to septic inpatients.

Diagnosis code Diagnosis name

995.90 Systemic inflammatory response syndrome, unspecified
995.91 Sepsis
995.92 Severe sepsis
995.93 Systemic inflammatory response syndrome due to

noninfectious process without acute organ dysfunction
995.94 Systemic inflammatory response syndrome due to

noninfectious process with acute organ dysfunction
785.52 Septic shock
038.9 Unspecified septicemia

Fig. 2. Prevalence of sepsis related diagnoses in SID California database.
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Electronic Health Records (EHR) in attempts to better understand
human diseasome.

2.1. Healthcare Cost and Utilization Project (HCUP) data

For the purpose of this study, the State Inpatient Database
(SID),3 an archive that stores the inpatient discharge abstracts from
a number of data organizations, is explored. The data is provided by
the Agency for Healthcare Research and Quality and is included in
the Healthcare Cost and Utilization Project (HCUP). In particular,
the SID California database, which contains 35,844,800 inpatient
discharge records over a period of 9 years (from January 2003 to
December 2011) in 474 different hospitals, is utilized. SID data pro-
vides discharge records for each inpatient, which may contain up to
25 diagnosis codes in an International Classification of Diseases cod-
ing schema that were applied during this particular admission of the
patient. This coding schema4 originates from the 9th revision of the
International Classification of Diseases (ICD9), a hierarchical coding
scheme that is a part of standard diagnostic tools for epidemiology,
health management, and clinical practice. Additionally, the SID data-
base contains demographic information about each inpatient (e.g.,
age, birth year, sex, and race), as well as detailed information about
a hospital stay, including length of stay, total charges, type of pay-
ment, insurance type, discharge month, and survival information.
In total, the SID California database covers 13,004 unique disease
codes (out of around 14,000 present in the ICD9 schema).

2.2. Sepsis inpatient discharge records dataset

We sample only discharge records containing one of the sepsis
related codes from the SID CA database. Among the conditions
considered we have included Systemic inflammatory response
syndrome (SIRS), sepsis, and septicemia (names and ICD-9 codes
given in Table 1). SIRS is defined as a clinical response to an insult,
infection, or trauma that includes a systemic inflammation as well
as elevated or reduced temperature, rapid heart rate, rapid respira-
tion, and elevated white blood cell count. Sepsis is additionally
defined as SIRS due to infection without organ dysfunction, while
severe sepsis is defined as SIRS due to infection with organ
dysfunction. Please note that terms septicemia and sepsis are often
used interchangeably, but are not considered synonyms in the
ICD-9 coding. Septic shock is defined as a systematic disease
associated with the presence of pathogenic microorganisms within
the blood stream only. The selected sepsis targeted subset of the
entire SID CA database constitutes 1,127,114 discharge records,
comprising 3.14% of total discharge records over the state of
California from 2003 to 2011.

The process of coding sepsis in the EHR databases is tedious
work, even under the most obvious circumstances, and requires
proper application of the AHA Coding Clinic guidelines [49] and
the Official Guidelines for Coding and Reporting for inpatient care
[50], as well documented physician notes [43]. SIRS can be
diagnosed with fairly easily, as there are strict physiological
parameters that need to be satisfied. The EHR data records are
represented by at least two codes, one for the underlying cause
of infection (i.e., 038.xx, . . .) and another for the sepsis subcategory
(995.9x). Severe sepsis requires a minimum of three codes: a code
for systemic infection (i.e., 038.xx, . . .), the code 995.92 and the
code for the associated organ failure. Septic shock is defined as
severe sepsis with circulatory system failure, and in coding it only
differs from severe sepsis in the second code where 995.92 is
3 HCUP State Inpatient Databases (SID). Healthcare Cost and Utilization Project
(HCUP). 2005–2009. Agency for Healthcare Research and Quality, Rockville, MD.
www.hcup-us.ahrq.gov/sidoverview.jsp.

4 http://www.who.int/classifications/icd/en/, accessed May 2016.
changed to 785.52. Finally, unspecified septicemia, code 038.9, is
used when there is not enough information in the doctors’ notes
and other diagnoses do not show a clear sign of the state of the
patient’s inflammation [43]. As can be seen from Fig. 2, the SIRS
conditions are the least prevalent, including virtually no cases
where codes 995.90, 995.93 and 995.94 were used. On the other
hand, the difficulty in properly diagnosing septic patients as
described above is manifested, with the most dominant diagnosis
being unspecified septicemia (0389) which was registered in
around 36% of patient that were septic.

The discharge record containing a sepsis-related diagnosis is
expected to have more than 2 diagnoses related to sepsis. More-
over, in the selected subset of the SID CA database, 16 diagnoses
are observed on average per inpatient case. Thus, the context of
one’s inpatient stay includes other conditions observed in the
record, which may provide additional insight in analyzing septic
patient cases.
3. Methodology

We propose a new approach for the task of EHR phenotyping,
motivated by the recent success of distributed language models
[47,51]. In NLP, distributed models were able to learn word repre-
sentations in a low-dimensional continuous vector space using a
surrounding context of the word in a sentence, where in the result-
ing embedding space, semantically similar words are close to each
other [47]. Previously, in the medical domain, such approaches
have been applied to help understand physician notes or medical
texts [52], while our goal is to apply them directly on the struc-
tured medical records (as described in Section 2.2), in order to
learn meaningful low-rank disease representations. The advantage
of such an approach is that diseases do not have to co-occur within

http://www.hcup-us.ahrq.gov/sidoverview.jsp
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same discharge record for the model to learn their connection,
rather, their surrounding diseases, or disease context, has to be
similar. Disease context is, as discussed before, governed by the
proposed guidelines, and as such has a certain ‘grammar’ of
diseases, which distributed language models can potentially
exploit. However, there are aggravating factors when dealing with
EHR records, i.e., inpatient diagnoses records vary in terms of both,
type and physical system location, which increases heterogeneity
of the data, but allows for discoveries of novel and interesting
medical concepts. Such an approach would allow identifying
similar diseases by trivial K-nearest-neighbor search in the new
embedding space. Finding the nearest neighbor disease of a query
disease will be referred to as phenotyping in this study, as
neighboring diseases in the embedded space should have fairly
similar traits. One shortcoming of such an approach is that
each disease will be assigned a single vector, thus ignoring the
heterogeneity present in the discharge records and resulting in a
representation of lower quality.

In this paper, these issues are addressed by the applications of
two state-of-the-art distributed language models [47] for learning
disease representation, followed by two extensions aiming to learn
multiple types [53] for selected diseases. We show that novel
type-specific approaches are capable of learning more meaningful
phenotypes, as well as aiding in patient mortality prediction.

3.1. Problem definition

We are given a set P of patient discharge records, where a
patient’s discharge record pi ¼ ðdi1; . . . ; diMi

Þ 2 P is defined as a
sequence of Mi diagnosed diseases di 2 D at the end of the hospital
stay. The objective is to find the D-dimensional real-valued
representation vd 2 RD of each disease d such that diseases with
similar phenotypes have similar representation.

3.2. Low-dimensional disease embeddings

Background. Neural language models take advantage of word
order, and state the same assumption of n-gram language models
that words closer in the word sequence are statistically more
dependent. Typically, a neural language model learns the probabil-
ity distribution of the next word given a fixed number of preceding
words, which act as the context. More formally, given a word
sequence ðw1;w2; . . . ;wTÞ in a training data, the objective of the
model is to maximize the average log-likelihood,
Fig. 3. Graphical representatio
L ¼ 1
T

XT

t¼1

log Prðwt jwt�nþ1 : wt�1Þ; ð1Þ

where wt is the tth word, and wt�nþ1 : wt�1 is a sequence of
successive preceding words ðwt�nþ1; . . . ;wt�1Þ that act as the context
to the word wt . The probability distribution Prðwtjwt�nþ1 : wt�1Þ is
typically approximated using a neural network [54] trained to
predict a word wt by projecting the concatenation of vectors for
context words ðwt�nþ1; . . . ;wt�1Þ into a latent representation
with multiple non-linear hidden layers and the output softmax
layer [54]. More recently, novel approaches have shown great
improvements in representational power and training speed
compared to the traditional neural embedding models [46]. Their
representatives are discussed below.

3.2.1. Disease2vec disease representation
The method learns representations of diseases in a low-

dimensional space using each patient discharge record as a
‘‘sentence” and the diseases within as ‘‘words”, to borrow the
terminology from the Natural Language Processing (NLP) domain.
The diseases in each record are ordered by their importance with
principal diseases coded at the beginning of the record. The
disease2vec model has two architectures, differing in the indepen-
dence assumption in the observed context.

CBOW disease2vec representation. In a continuous bag of words
(CBOW) disease2vec approach disease representations are learned
by maximizing the objective function L over the entire set P of
records, as

L ¼
X
p2P

X
dm2p

log Prðdmjdm�b; dm�1; . . . ;dmþ1;dmþbÞ: ð2Þ

Probability Prðdmjdm�b : dmþbÞ of observing a center disease dm

given its disease context dm�b : dmþb is defined using the soft-max
function,

Prðdmjdm�b : dmþbÞ ¼
expðv>v0

dm
Þ

PD
d¼1 expðv>v0

dÞ
; ð3Þ

where vd and v0
d are the input and output vector representations of

D-dimensional disease d, and 2b is the length of the context for dis-
ease records. v is obtained by averaging input vector representation
of all diseases in observed context,

v ¼ 1
Tc

XTc
c¼1

vdc ð4Þ
ns of disease2vec models.
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As illustrated in Fig. 3a and Eq. (3), CBOW disease2vec represen-
tation uses surrounding Tc ¼ 2b diseases dm�b : dmþb to predict cen-
tral disease dm for each disease dm in the discharge record. Thus,
diseases that often co-occur and diseases with similar contexts
(i.e., with similar neighboring diseases) will have similar
representations.

SkipGram disease2vec representation. In SkipGram-based repre-
sentation, central disease dm is used to predict b diseases that occur
before and b diseases that occur after it in the discharge record, as
illustrated in Fig. 3b and Eq. (6). The SkipGrammodel introduces an
additional assumption that neighboring diseases are independent
of each other. Disease representations are learned by maximizing
the objective function L over the entire set P of records, as

L ¼
X
p2P

X
dm2p

X
�b6i6b;i–0

log PrðdmþijdmÞ: ð5Þ

The probability PrðdmþijdmÞ of observing a ‘‘neighboring” disease
dmþi given disease dm is defined using the soft-max function,

PrðdmþijdmÞ ¼
expðv>

dm
v0
dmþi

Þ
XD

d¼1
expðv>

dm
v0
dÞ
; ð6Þ

where vd and v0
d are the input and output vector representations of

disease d with dimensionality D, and 2b defines the length of the
context for disease records.

3.2.2. Multi-type disease2vec disease representation
A major limitation of previously described models is that they

assume a single vector representation for each disease. Such a
disease representation is aimed to capture global trends in the
discharge records, but it will not be able to represent the hetero-
geneity of each disease appropriately. For example, sepsis is a
heterogeneous disease triggered by pneumonia, abdominal
infection, kidney infection, bloodstream infection or other causes,
and manifested on multiple organs, with different severity.
Multi-type representations for such a complex disease can result
in a more appropriate low-dimensional representation.

The multi-prototype approach for vector space models, which
uses multiple representations to capture different senses and
usages of a word is successfully used in the field of NLP [53] and
a related approach is also applied to neural language models
[44]. Here we also extend disease2vec models to a model using
multiple types, which we call t-CBOW and t-SkipGram. In particu-
lar, we represent each discharge record by a sum of vectors of
diagnoses found in that record. This global context representation
Fig. 4. Graphical representations of
dataset of inpatient visits is then clustered using K-means
algorithm [53,55] to obtain types of patient records that contained
sepsis as a diagnosis. Finally, each sepsis occurrence in the
discharge data is re-labeled to its associated cluster. Due to known
heterogeneity of the discharge records data, sepsis types are
obtained by clustering inpatient visit representation rather than
observed disease contexts as in [44]. New vectors of sepsis types
are initialized as its global vector, and updated on the dataset
such that the original sepsis disease spans a larger portion of the
embedded space (via its types) thus capturing novel, previously
undiscovered relationships.

This approach works globally for the entire dataset, in the form
of a pipeline. However, it is possible to make disease2vec automat-
ically model multiple types for each disease, specifically SkipGram,
by locally discriminating contexts of each disease using either
the MaxOut method or the K-means model and then deciding on
the type vector update [45]. Such an approach is described in the
following section.

3.2.3. Multi-sense SkipGram disease representation
This model, based on multi-sense SkipGram (MSSG) [45] (Fig. 4),

is capable of learning multiple types for each disease by locally dis-
criminating contexts of each disease by either the MaxOut method
or the K-means model. It performs multi-modal learning by clus-
tering the embeddings of context around each disease. For each
disease, clusters are maintained, and once the cluster is predicted
the disease context representation for a disease type is updated.
The difference between this and a multi-type disease2vec approach
is that local contexts are clustered to decide the type of the disease
and that the entire process is performed jointly by predicting the
sense of the disease using the current parameter estimates. In
the MSSG model, a global vector vgðdÞ is assigned to each disease
d 2 D and each type of the disease has a separate embedding
vsðd; kÞ ðk ¼ 1;2; . . . ;KÞ, as well as a context cluster with center
lðd; kÞ ðk ¼ 1;2; . . . ;KÞ. Clustering is performed in the following
manner. First, for each disease d, a context vector is obtained by
vcontextðcdÞ ¼ 1

Tm

PTc
c¼1vgðdcÞ, where cd is context of disease d, and

Tc is the size of the context. For context representation global
vectors vg are used rather than type-specific vectors to avoid
additional computational complexity. Context representation
vcontextðcdÞ is then used to predict the type of the disease d. In
previous work [45], two approaches are discussed. Type of the
disease sk can be determined either by the MaxOut method:

sk ¼ argmax|fflfflfflffl{zfflfflfflffl}
k¼1;2;...;K

ðvsðd; kÞ>vcontextðcdÞÞ; ð7Þ
the disease2vec MSSG model.



Table 2
Accuracy, F-1 measure, Sensitivity and Specificity aggregated over 90 experiments for
Logistic Regression model used on features learned by 6 embedding models: 4 type-
specific and 2 global, for three values of hyperparameter b. The best results are
bolded.

Accuracy F1-measure

b = 2 b = 4 b = 16 b = 2 b = 4 b = 16

t-CBOW 77.2% 77.2% 76.1% 77.7% 77.9% 76.0%
t-SkipGram 76.6% 76.9% 74.7% 77.1% 77.5% 74.3%
MSSG K-kmeans 67.9% 68.0% 69.3% 69.0% 69.2% 71.0%
MSSG MaxOut 67.9% 68.0% 69.1% 69.0% 69.2% 69.9%
CBOW 56.0% 56.1% 67.1% 58.3% 59.6% 67.8%
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or by K-mean clustering:

sk ¼ argmax|fflfflfflffl{zfflfflfflffl}
k¼1;2;...;K

simðlðd; kÞ;vcontextðcdÞÞ: ð8Þ

Here the cluster center lðd; kÞ is the average of all the context
representation observed that belong to that cluster. For sim, cosine
similarity is used in our experiments.

Finally, the objective function is obtained as in the SkipGram
model (Eq. (5)), with addition that the softmax function (Eq. (6))
is conditioned on the cluster in which disease d belongs.
SkipGram 55.0% 55.4% 67.1% 57.0% 57.6% 69.8%

Sensitivity Specificity

b = 2 b = 4 b = 16 b = 2 b = 4 b = 16

t-CBOW 79.4% 80.1% 78.2% 75.1% 74.4% 73.5%
t-SkipGram 79.1% 79.5% 76.2% 74.0% 74.4% 71.6%
MSSG K-kmeans 71.3% 72.0% 73.9% 64.5% 63.9% 64.9%
MSSG MaxOut 71.3% 72.0% 72.7% 64.5% 63.9% 64.7%
CBOW 59.3% 59.4% 70.5% 52.4% 51.9% 62.0%
SkipGram 58.2% 58.2% 71.6% 51.5% 51.2% 62.0%
4. Experimental evaluations

In this section we describe experimental setups and the results
obtained from such experiments. Mortality prediction results on
sepsis-diagnosed patients using both type-specific and global
embedding models are shown and an analysis of discovered types
of sepsis related diagnoses is conducted.

All models were trained on 1,127,114 sepsis diagnosed
discharge records using a machine with 32 GB of RAM memory
and 4 cores. Diseases were mapped into D ¼ 200 dimensional
space. The value of parameter D was decided based on model
complexity, and resulting model performance, where larger values
marginally improved accuracy for mortality risk prediction of all
models while making discovered types more overlapped and thus
more difficult to interpret, while smaller values had worsen the
accuracy of all models significantly. The context parameter b
was varied in a set {2,4,16}, where 2 and 4 are determined with
respect to coding patterns described in Section 2.2, and 16 was
chosen to observe larger heterogeneous context as 16 was the
average number of diagnoses in the dataset. We used 25 negative
samples in each vector update for negative sampling, following a
previously proposed approach for efficient learning [47]. The
number of types K is considered in the range 1 to 15, where 15
is the number of reported different underlying infections causing
sepsis according to potential causes listed in ICD-9 coding for 038.
xx diagnoses.5 The results reported in this section are obtained for
K ¼ 5 types based on the accuracy in mortality prediction.

4.1. Mortality prediction

In this section we evaluate the representational power of
the discovered disease types. Feature vectors are learned in the
embedded space for each disease and can be used for predictive
tasks as such. Specifically, we used discovered sepsis types to pre-
dict patient survival probability, taking into consideration learned
representations of diagnosed conditions and compared benefits of
a type-specific approach versus predicting mortality based on glo-
bal features of sepsis. The hypothesis evaluated in this experiment
was that the multi-type sepsis vectors carry more information
about mortality (some causes/effects can be more fatal than
others) than the ones learned via global embedding models. We
compared embeddings learned by four models from the family of
type-specific embeddings (t-CBOW, t-SkipGram, MSSG MaxOut and
MSSG K-means) to two global embedding models (learned by CBOW
and SkipGram).

Features learned by those 6 embedding models were the input
to the Logistic Regression algorithm used for mortality prediction
(similar results were obtained by running SVM and neural network
based classifiers). The model is trained on different subsets using
10% to 90% of data obtained as a balanced random sample and
10-fold validation for each sample size to remove any sampling
5 http://www.icd9data.com/2013/Volume1/001-139/030-041/038/, acc. May 2016.
bias. Learned models were then evaluated on the remaining EHR
data. The results show stable performance (low variance of the
obtained results from 10-fold validations) of both accuracy and
F1 measure, as well as its components sensitivity and specificity,
with respect to the entire range of training data sizes. The
mentioned metrics are defined in terms of true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN) of
binary classification results. Accuracy is computed as
Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

; ð9Þ
F1 measure ¼ 2TP
2TP þ FN þ FP

; ð10Þ
and its components sensitivity and specificity as
Sensitivity ¼ TP
TP þ FN

; and Specificity ¼ TN
TN þ FP

: ð11Þ

Therefore, Table 2 aggregates the evaluation results (accuracy,
F-1 measure, sensitivity and specificity) of 6 models on 90
experiments from 10 validations on 9 different training-test sizes.
Additionally, the influence of the context window size defined by
parameter b on the overall predictive accuracy is examined, where
b is chosen from a set {2,4,16}.

All type-specific embedding based sepsis mortality models
were more accurate than the global models, where the best
performing algorithm was the proposed t-CBOW model described
in Section 3.2.2. The results were stable with respect to the param-
eter b when shorter context is used (b = 2 or 4), while larger
context (b ¼ 15) resulted in slightly decreased accuracy for
t-CBOW and t-SkipGram models. The proposed multi-type
approaches were more robust to the context window size. Larger
context allows partial learning of broader concepts in a single type,
which is why CBOW and SkipGram were more accurate with larger
window size b. As the accuracy was fairly stable for multi-type
models, but highly increased for global models for b ¼ 16 (when
compared to lower values of this parameter), phenotyping results
are shown for the embedding with this parameter in Tables 3–7.
Finally, this experiment provides evidence that discovered sepsis
segmentation is clinically relevant.

http://www.icd9data.com/2013/Volume1/001-139/030-041/038/


Table 5
Four segments of Severe Sepsis (995.92 code) and their 5 nearest neighbors in the
embedded disease space.

5 most related diagnoses in the embedded space
to Severe Sepsis (995:92)

Rank in
type

Global
rank

Severe sepsis type 1 (995.921) [17.49%]
Hemicrania continua 1 1650
Chronic Eustachian salpingitis 2 1604
Other nongonococcal urethritis unspecified 3 3562
Other manifestations of yaws 4 9435
Acute pyelonephritis without lesion of renal medullary

necrosis
5 466

Severe sepsis type 2 (995.922) [41.64%]
Chondrocalcinosis due to pyrophosphate crystals upper arm 1 9054
Meningitis in sarcoidosis 2 7550
Other persistent mental disorders due to conditions

classified
3 933

Hyperosmolality and-or hypernatremia 4 6337
Paralysis agitans 5 913

Severe sepsis type 3 (995.923) [29.54%]
Burn involving 50–59 % of body surface

w 3. degree burn 40–49%
1 8730

Letterer-siwe di. unspec. site extranodal and solid organ
sites

2 8584

Pneumococcal peritonitis 3 9546
Defibrination syndrome 4 9352
Tuberculosis of intestines peritoneum and mes. glands

tubercle bacilli
5 6584

Severe sepsis type 4 (995.924) [11.32%]
Hypertensive chronic kidney disease (V or end

stage renal dis.)
1 7013

Nephrotic syndrome in diseases classified elsewhere 2 7728
End stage renal disease 3 4992
Diabetes with renal manifestations type II . . . 4 5307
Other complications due to renal dialysis device

implant and graft
5 7142

Table 6
Four segments of Septic Shock (785.52 code) and their 5 nearest neighbors in the
embedded disease space.

5 most related diagnoses in the embedded
space to Septic Shock (785:52)

Rank in
type

Global
rank

Septic shock type 1 (785.521) [15.65%]
Chronic Eustachian salpingitis 1 1604
Other nongonococcal urethritis unspecified 2 3562
Cocaine dependence episodic 3 2459
Encounter for removal of intrauterine contraceptive device 4 7827
Inconclusive mammogram 5 3110

Septic shock type 2 (785.522) [39.76%]
Chondrocalcinosis due to pyrophosphate crystals upper arm 1 9054
Meningitis in sarcoidosis 2 7550
Hyperosmolality and-or hypernatremia 3 6337
Closed lateral dislocation of elbow 4 5474
Paralysis agitans 5 913

Septic shock type 3 (785.523) [33.98%]
Defibrination syndrome 1 9352
Pneumococcal peritonitis 2 9546
Letterer-siwe disease unspec. site extranodal and solid

organ sites
3 8584

Burn involving 50–59 % of body surface w 3. degree burn
40–49%

4 8730

Acute and subacute necrosis of liver 5 9741

Septic shock type 4 (785.524) [10.61%]
Hypertensive chronic kidney disease (V or end stage

renal dis.)
1 7013

End stage renal disease 2 4992
Other complications due to renal dialysis device implant

and graft
3 7142

Nephrotic syndrome in diseases classified elsewhere 4 7728
Hypertensive heart and chronic kidney disease w. heart

failure
5 8387

and chronic kidney disease stage V or end stage

Table 4
Four segments of Sepsis (995.91 code) and their 5 nearest neighbors in the embedded
disease space.

5 most related diagnoses in the embedded
space to Sepsis (995.91)

Rank by
types

Global
rank

Sepsis type 1 (995.911) [36.36%]
Transient arthropathy shoulder region 1 1104
Tension headache 2 525
Unspec. abortion 3 786
Unspec. abortion complicated by damage to pelvic organs 4 2919
Paratyphoid fever A 5 566

Sepsis type 2 (995.912) [33.41%]
Variations in hair color 1 1410
Other persistent mental disorders 2 933
Paralysis agitans 3 913
Senile dementia uncomplicated 4 1525
Unspec. senile psychotic condition 5 4091

Sepsis type 3 (995.913) [16.11%]
Open skull fracture with cerebral laceration and contusion 1 3684
Nervous system complications from surg. implanted device 2 7486
Inclusion conjunctivitis 3 5704
Malignant neoplasm of other and unspec. testis 4 8215
Anemia of mother unspecified 5 8164

Sepsis type 4 (995.914) [14.09%]
Hypertensive chronic kidney disease (stage V) 1 7013
End stage renal disease 2 4992
Infection and inflammatory reaction due to oth.

vascular device
3 1418

Complic. due to renal dialysis device implant and graft 4 7142
Hypertensive heart and chronic kidney disease 5 5254

Table 3
Sepsis (995.91 code) vector and its 5 nearest neighbors in the embedded global
disease space vs 4 type-specific embedded disease space. For each of the types, there
is one (bolded) globally relevant disease that is higher ranked in that type than other
diseases in the same type.

Rank for (995.91): global type 1 type 2 type 3 type 4

Closed fracture of lower and
of forearm unspec.

1 5990 9118 604 4965

Acute upper respiratory infections
of unspec. site

2 637 6746 1993 881

Urinary tract infection site not
specified

3 5845 8185 91 274

Leukocytosis uspec. 4 4643 4649 1408 761
Legaly induced abortion with

other spec. complications
5 9230 350 8770 2797
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4.2. Disease types and their phenotypes

In this section we discuss sepsis disease phenotypes discovered
by both global and type-specific embeddings. Here, phenotypes are
defined as query disease’s nearest neighbors in the embedded
space. For the type-specific models, we discuss phenotypes found
by the t-CBOWmodel, as it was the best competing model for mor-
tality prediction, and the CBOW model for the global embeddings,
as there was no significant difference from the SkipGram model
on the same task. Parameter b is fixed to be 16 in this section for
both models, as results on mortality prediction gave the most
balanced accuracy performance over all models examined.

We show the 5 embedded disease-types for each of the 7 sepsis
diagnoses in Fig. 5. The five discovered disease types emancipated
cluster-like groupings in the new embedded space. Furthermore,
we observe that all diagnoses in the same type share similar
phenotype properties. Concrete findings will be discussed in more
details below. Another interesting finding is the outlier type (upper
right corner of Fig. 5). The observed type we refer to as the outlier
type has low prevalence, with less than a thousand cases in our



Table 7
Four segments of Septicemia (038.9 code) and their 5 nearest neighbors in the
embedded disease space.

5 most related diagnoses in the embedded space to
Septicemia (038:9)

Rank in
type

Global
rank

Septicemia type 1 (038.91) [25.53%]
Basal cell carcinoma of scalp and skin of neck 1 2172
Inappropriate diet and eating habits 2 1703
Screening for other disorders of blood and blood-forming

organs
3 9037

Impairment of auditory discrimination 4 778
Other arthropod infestation 5 451

Septicemia type 2 (038.92) [41.79%]
Loose body in joint other specified sites 1 1337
Other circadian rhythm sleep disorder 2 1901
Meningitis in sarcoidosis 3 7550
Other persistent mental disorders due to conditions

classified elsewhere
4 933

Variations in hair color 5 1410

Septicemia type 3 (038.93) [21.92%]
Burn involving 50–59 % of body surface w 3. degree burn

40–49%
1 8730

Congenital anomalies of corneal size and shape 2 6577
Open fracture of mandible alveolar border of body 3 9357
Open skull fracture, cerebral laceration, contusion, loss of

consciousness
4 3684

Subarachnoid hemorrhage, open intracranial wound, loss
of consciousne

5 5619

Septicemia type 4 (038.94) [10.75%]
Hypertensive chronic kidney disease (V or end stage

renal dis.)
1 7013

End stage renal disease 2 4992
Nephrotic syndrome in diseases classified elsewhere 3 7728
Hypertensive heart and chronic kidney disease w. heart

failure
4 5254

and chronic kidney disease stage V or end stage
Other ectopic pregnancy without intrauterine pregnancy 5 1951
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dataset (or less than 1% of the discharge records). As such, it will be
removed from further discussion, even though it forms the purest
phenotype cluster, given that the main focus of this study are
prevalent phenotypes, while analysis of outliers will be left for
future work.
Fig. 5. In the embedded space (here displayed 2D reduced space) each of seven seps
(For interpretation of the references to colour in this figure caption, the reader is referr
Additionally, we have observed that SIRS conditions also have
much lower prevalence than sepsis (less than 1% as shown in
Fig. 2). Thus, the analysis reported in this paper is focused on seg-
menting four types for each of four sepsis diagnoses as shown in
Fig. 6. Analysis of disease type records shows that each of the
remaining four discovered types of diseases occur in at least 10%
of discharge records (Fig. 6), and therefore, are well represented
in the dataset.

In Table 3, we list five nearest non-sepsis diseases to the sepsis
diagnosis 995.91 in the embedded space representation learned by
the global embedding model. Sepsis global phenotype shows
heterogeneous properties where most similar diagnoses are infec-
tions on different parts of organs, but also abortion or fracture
related diagnosis, which are known as possible sepsis causes or
effects [56,57]. For each of the five most similar diseases in the
Sepsis global phenotype, their rankings by the type-specific models
are provided in columns type 1–type 4 (for each of the types).
Globally relevant diseases are not particularly close in the embed-
ded space for most homogeneous types of sepsis, which can also be
concluded from Fig. 5. Note that ICD-9 codes provide disease
coding on a very fine scale. For instance, the same condition can
be present in multiple locations of an organ, and there are multiple
codes for such a disease. Fine scale disease coding is the cause of
low ranks of globally relevant diseases in type-specific phenotypes
as other similar but type-specific conditions are ranked higher,
demonstrating the limitations of the global embeddings. Addition-
ally, for each of the types, there is one (bolded) globally relevant
disease that is higher ranked in that type than other diseases in
the same type. For example, in sepsis disease type 4, which is
represented in majority by the urinary related phenotype, the
closest condition is the urinary tract infection, while the other
conditions are at least three times lower ranked. In case of patients
with sepsis and a urinary tract infection, physicians often use the
term urosepsis [43] due to its prevalence, giving evidence of
interpretability of obtained phenotypes.

Four discovered types of Sepsis (diagnosis 995.91) will be
referred to as Sepsis type 1 to Sepsis type 4 and will be labeled as
995:911 to 995:914. For each of the types, five most similar diseases
in the embedded space representation were listed in Table 4 as
obtained based on the t-CBOW model for 995.91. The global rank
is-related ICD-9 diagnoses is partitioned to five types marked in different colors.
ed to the web version of this article.)



Fig. 6. Fraction of disease types 1–4 from Fig. 5 in four sepsis-related ICD-9 diagnoses code groups (995.91, 995.21, 038.9 and 785.52).
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for each of the listed diseases is also shown as obtained by the glo-
bal CBOW embedding model.

As compared to the global phenotypes, sepsis type-specific phe-
notypes are more homogeneous. For example, sepsis in pregnant
and postpartum women can develop as the result of many compli-
cations, such as miscarriages (spontaneous abortions) or induced
abortions, prolonged or obstructed labor, ruptured membranes,
cesarean sections, infection following a vaginal delivery, etc.
[58,59]. Some of these causes related to delivery (i.e., prolonged
labor or ruptured membranes) are found in Sepsis outlier type,
while causes related to abortions are found in Sepsis type 1. Both
types have these causes ranked highly (they are close to sepsis
vector in the embedded space) by the t-CBOW model, whereas
the global ranking model assigns low ranks (e.g 1963, 2919,
8583), which shows the better representational ability of the
proposed model over the global embedding.

Sepsis can cause a lot of damage in a person that is affected by
this disease and its treatment can also leave different conse-
quences. The kidneys are often among the first organs to be
affected by sepsis and published studies report that between 32%
and 48% of acute kidney injury cases were caused by sepsis [60].
Therefore, it is not surprising that Sepsis type 4 is very related to
kidney diseases (not just for sepsis, but also for the other sepsis
diseases shown in Tables 5–7).

Another category of sepsis consequences consists of mental and
stress-related disorders, which are found in Sepsis type 2. It is
reported that 17% of elderly sepsis survivors developed dementia
and around 40% experienced nervous system damage and could
not walk without assistance in the years after [61]. It has also been
reported that sepsis patients can develop large amounts of stress
molecules [62], i.e. cortisol which is known to accumulate in
human hair thus leading to color changes. Stress related conditions
for sepsis survivors are becoming more evident as they reportedly
experience stress disorders, including Post-Traumatic Stress
Disorder (PTSD), as a result of prolonged treatments in Intensive
Care Units (ICUs) [63]. Conditions described above are highly
ranked by t-CBOW in Sepsis type 2.

Sepsis type 3 covers diseases related to serious brain tissue inju-
ries and nervous system complications from surgically implanted
devices, which can both lead to septic inflammation [64] and
reproductive system related causations of sepsis [65]. Since, Sepsis
type 1 covers a large fraction of impatient record cases (36.6%), it is
expected that this phenotype is the most heterogeneous among all.
Therefore, in addition to abortion cases, we observe other possible
causes and effects of this disease.

Discovered phenotypes of global and type-specific embeddings
of severe sepsis, septic shock, and septicemia diagnoses are
presented in Tables 5–7, respectively. We observe that disease
types show similar traits, as anticipated from Fig. 5. The pheno-
types discovered for the three diseases are consistent with the
sepsis types: type 4 sepsis diseases are related to kidney and urinal
tract problems, type 2 sepsis diseases are related to nervous
system inflammations, while type 1 and type 3 sepsis diseases
are related to external irritations such as burns, fractures and
different inflammations. As expected, severe sepsis and septic
shock phenotypes share 65% of the closest diseases, as they are
considered the same condition, with septic shock being a severe
sepsis with circulatory system failure.
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5. Conclusions

Neural embedding models have shown great promise in many
fields, but they have not been used yet in the field of electronic
phenotyping. Hence, this paper studied low-dimensional models
for disease type discovery from large EHR databases. Such low-
dimensional embedding can be very useful not only for disease
phenotyping but also for more accurate diagnostics. In this study,
several approaches were proposed for addressing disease pheno-
typing challenges related to disease heterogeneity. As a case study,
the proposed methodology is applied to phenotype characteriza-
tion of sepsis, which is a highly heterogeneous disease and one
of the main causes of death in the US hospitals. Conducted exper-
iments provide evidence that the proposed approach can effec-
tively discover informative phenotypes for sepsis. The discovered
phenotypes for identified homogeneous groups were more rele-
vant as compared to global vectors for the same diseases. Benefits
were also evident for a mortality prediction task, where an increase
in accuracy and prediction quality was observed when using multi-
type disease embedding rather than single global embedding. In
our experiments, we have compared two approaches for disease
type discovery, a global clustering approach and an automatic
approach, where disease types are learned within the model itself.
Although easier to use, an automatic approach failed to outperform
global clustering (t-models). However, it was better than the
original single vector approach. Discovering disease types has
shown great promise as a future research direction in electronic
phenotyping, and further efforts will be taken to further the under-
standing of the discovered disease types as well as to build effec-
tive models capable of jointly using existing medical knowledge
and big data to discover disease embeddings of higher quality.
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