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ABSTRACT Electric grid continually monitors spatiotemporal data from sparse service areas. As power
systems grow and get more complex, and with the deployment of more sensors and data collection
capabilities, monitoring and analyzing data streams for outage prediction will get more complicated. In
addition, the burden on human operators to analyze such data is getting challenging. Furthermore, climate
change introduces new challenges to power grid reliability and makes the human grid operators’ task more
critical. To address some of these challenges, this research proposes a novel model to jointly predict power
grid outages and discover precursors from spatiotemporal data using multi-level data. The new method
utilizes multi-task learning (MTL) and multi-instance learning (MIL) to jointly predict outages and learn
event precursors. This is achieved by introducing distance-aware self-attention to capture relationships
between locations and improve event detection and precursor discovery while utilizingmulti-level data (local
weather data, global demand, and forecast data) in a sparse setting. Experiments are conducted using five
years of data collected in the U.S. Pacific Northwest. The proposed methodology achieves an Area Under the
Precision-Recall Curve (AU-PRC) of 0.97 using 12 hours of data before the event. Experiments showed that
the proposedmodel could predict events several hours aheadwith high accuracy, where such early predictions
allow grid operators to deploy outage mitigation plans. In addition, the new framework effectively discovers
spatiotemporal precursors for power outages. Grid operators can use such event precursors to help mitigate
outages and improve grid reliability.

INDEX TERMS Weather, event detection, event precursors, machine learning, power system faults, smart
grids, time series analysis, big data, climate change.

NOMENCLATURE
N Set of events.
n Event n ∈ N .
L Set if locations, |L| = Q.
Lq Location in set of locations L, where |L| = Q.
Yn Label for event n, Yn ∈ {0, 1}.
Y Set of labels for all events.
B Set of data bags.
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Bn One data bag representing event n.
tn Time for event n.
θq Model for location q.
Nq Events for location q.
γ q Neighbors of location q where γ q ∈ L.
θ̂ Global model across all locations.
F Generic function.
λ , β Regularizartion hyper pramater represented by

λ1, λ2, λ3, β.

σ Scaled dot product between two vectors.
x Data vector.
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α Calculated probabilities from σ .
γ́ One location where γ́ ∈ γ .
dq,l Normalized inverse distance between loca-

tions q and l.
pj Probability elation of xj to the original

labels Yn.
ŷ Predicted label for x.
Ŷj Predicted label for Bj.
A Aggregate function.
Pn Aggregated probabilitt over Ŷj.
h (θ) Loss function.
11 Log-loss, which equals: −(Yn log (Pn) +

(1 − Yn) log (1 − Pn)).
Xi nMIL temporal group. Xi = {xij}.
xij nMIL data vectors for time i and the j−th data

source.
Pi Probabiliy of Xi.
pij Probabiliy of xij.
g nMIL temporal penalization.
K Similarity metric, such as cosine.
12 Sequare loss, 12 (a, b) = (a − b)2.
h Hinge loss.
m0, p0, ε Hing loss hyper parameters.
τ Precursor thresholds.
s String.
lp The length of a common prefix.
m The number of matching characters.
u The number of transpositions for s.
simj Jaro-Winkler similarity.
LSimilarities List if string similarities.
s̄ Similarity between two strings.

I. INTRODUCTION
Electric grids are a vital part of any modern economy and
are deemed a critical infrastructure that serves society in
manyways. Climate change presents significant challenges to
power grid reliability. The increasing frequency and intensity
of extreme weather events, such as storms and wildfires,
can damage infrastructure and disrupt power transmission.
Rising temperatures and cooling demands during heat waves
strain the grid, potentially leading to failures and blackouts.
Changing precipitation patterns and adding renewable energy
sources introduce grid stability challenges. Addressing these
issues requires investments in grid resilience, infrastructure
upgrades, advanced forecasting, renewable energy, and col-
laboration among various governing entities to ensure a
reliable power grid in the face of climate change [1], [2], [3].
Given the importance of power grids, power outages can cost
countries billions of dollars and disrupt many people’s lives
[1]. In the last two decades, weather-related events have been
the leading cause of power outages in the United States [1],
[2]. As such, they lead to significant economic and social
costs and implications. Weather-related power outages can
cost countries’ economies billions of dollars in the form of

lost wages, spoiled inventory, impeded emergency services,
and damage to infrastructure.

Between 2018 and 2020, more than 231,000 power out-
ages occurred in the United States that lasted more than
one hour, out of which 17,484 lasted at least eight hours,
where power outages lasting eight hours or more can be
deemed medically relevant [2]. In the same period, the power
outages resulted in an annual loss of 520 million customer
hours across 2,447 US counties [2]. Between 2000 and 2021,
approximately 83% of significant power outages impacting
a minimum of 50,000 customers in the United States were
attributed to severe weather conditions [4]. As the frequency
and intensity of extreme weather events increase and the
power grid infrastructure ages, the occurrence and severity
of power outages are expected to increase. The power grid
continues to be vulnerable to outages due to weather events,
where 70% of the U.S. power grid is over 25 years old. The
average number of weather-related power outages increased
by approximately 78% between 2011 and 2021 [4]. Fig. 1
shows the increase in the number of major weather-related
outages in the years 1992-2012. Achieving grid resilience
against weather events can be done on multiple fronts, such
as strengthening the aging infrastructure, increasing systems
flexibility and robustness, and introducing situational aware-
ness using advanced systems such as Phasor Measurement
Units.

FIGURE 1. Observed major bulk outages in the United States electric
systems [1]. The figure shows the increase in weather-related outages
from 1992 to 2012. The y-axis represents the number of major outages in
the United States.

This paper introduces a novel machine-learning methodol-
ogy to predict power outages and provide leading indicators
(event precursors) to assist grid operators in power outage
mitigation. This paper presents a novel method that learns
the system’s state by examining data spatially and temporally
using both local and global system data, then simultaneously
providing an event prediction and prediction explanation
using event precursors.

A. PROBLEM STATEMENT AND OBJECTIVES
Using advanced machine learning tools and control systems
is important to combat power outages. When applied to
critical grid components, these advanced systems provide
grid operators with alerts and actionable information that
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provides adequate time in advance for planning and risk
mitigation (e.g., taking equipment offline, load transfers, and
crew deployments). The problem of designing effective event
prediction and precursor discovery of weather-related power
outages relies on understanding each grid component’s state
and the relations between each grid component and other
components within the same vicinity.

Furthermore, the state of each component can be under-
stood by examining its local data and the global data that
represents the system’s status. The hypothesis is twofold:
first, power outage event prediction and precursor discov-
ery can be improved by examining locations’ local weather
and global system data. This data modeling scheme can be
referred to as multi-level data. Secondly, this examination is
performed spatially and temporally by studying each loca-
tion’s data and considering data from neighboring locations
where such locations can affect and interact.

Proposing solutions for event prediction and precursor
discovery in power grids requires a multi-faceted approach.
Such approaches are needed due to the complexity of the
involved systems. This research proposes models to answer
the following research questions:

1) how to predict weather-related power outages using
integrated spatiotemporal and multi-level data repre-
senting local data at spatial locations and global system
state conditions data.

2) how to provide explainable spatiotemporal predictions
to help grid operators mitigate outages ahead of time
and plan for effective action plans.

This study suggests a principal approach to answer the fol-
lowing questions:

1) when an event might happen.
2) why an event may occur, providing explainable insights

that can assist power grid operators in defining timely
plans.

This research assumes that weather conditions directly cause
the studied outages. While the event logs used (described in
Section III-B.2) are selected based on the main reason, the
weather, the proposed model doesn’t consider other outage
factors, such as equipment status or age as such data is not
available for our current study.

B. RELATED WORK
Event prediction has many applications and is studied in
domains such as pandemic and disease outbreaks, finance and
the stockmarket, and crime prevention [5].Machine Learning
(ML) based power outage prediction models have recently
gained more popularity with machine learning techniques
advancement. Several models were used to predict power
outages. A tree-based model (random forest) was utilized
in [6] to predict power system outages caused by tropical
cyclones. Similarly, tree-based models were used in [7] to
study parts of the U.S. in New England to predict power
outages. A tree-based outage prediction model is introduced
in [8] for the northeastern united states using multi-modal
optimizations, where data presentations for weather parame-
ters and vegetation are created. Logistic regression was used

in [9] to define a decision boundary to predict component
outages efficiently. Quantile regression forests (QRF) and

Bayesian additive regression trees (BART) were used in
[10] for predicting storm outages on electric distribution
networks. A combination of a data preprocessing heuristic
and standard methods was used in [11]. In this work, the
data preprocessing heuristic divides the training dataset into
subsets of events representative of the predicted power grid
event’s severity by calculating the quantile weight distance
(QWD) between severe weather-related events in the dataset
and the predicted event. After that, standard methods such as
tree-based approaches are used for prediction. An extension
of logistic regression was used in [12], where the model
embeds the spatial configuration of the network used for
outage prediction in the western United States. Similarly,
a two-step model was used in [13] to predict damages from
weather-related events. Amodel training combined clustering
to group spatial coherent data, followed by training linear and
tree models to predict outages and using a scoring model to
assess the severity on the grid. Predicting power outages due
to equipment failure is a widely studied problem [14], [15],
[16]. Suchmodels rely on understanding the equipment status
(such as transformers) and use their physical properties to
predict outages. Such methods require access to data repre-
senting the current physical status of the equipment.

Model interpretability can be classified based on the inter-
pretation stage: pre-model, in-model, and post-model [14].
Pre-model interpretation is performed before the machine
learning stage using exploratory data analysis and feature
engineering methods. Pre-model interpretation aims to gain
a deeper understanding of the data, leading to a better under-
standing of the modeling results. Pre-model interpretation
can be labor intensive and requires domain experts to assess
the analysis. Post-model interpretation attempts to explain
the trained ML model and perform post-moretem analy-
sis of the model. Due to the increasing complexity of ML
models, post-model interpretability has become the main
direction of current interpretable ML research. It is mainly
focused on the field of deep learning. In-model aims to train
machine learning models that are intrinsically interpretable
[17]. Such interpretations are contained within the model,
allowing the decisions to be understood without additional
preprocessing.

Our paper introduces a model that falls under the in-model
class of explainable models. Simple ML models (such as
linear regression and generalized additive models) [11], [12],
[18] can achieve in-model interpretability since these models
are inherently transparent. In addition, rule-based models
(such as decision trees) [6], [7], [8], [10] can be regarded
as interpretable models. In the power grid domain, there is
still a need for interpretable and generalizable models. The
gap can be described as follows: new models are needed
to generate human-centered interpretations, where interpre-
tations are produced according to the audience’s operational
needs. At the same time, this interpretation should expose the
logical reasoning behind the model while giving the desired
decisions.
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Furthermore, interpretable models are needed to address
spatiotemporal data [17]. Also, interpretable models are
required to assess more grid operational areas, such as dis-
patch, control, and power safety. Previously discussed lit-
erature still needs to include these aspects, and additional
models have been recently developed to address these needs.
For example, several recent works are focused on design-
ing in-model interpretable ML techniques. Multi-instance
learning is introduced in [19] that jointly predicts power
outages and discovers precursors; this method focuses on
discovering temporal precursors. In other applications, such
as societal events, multi-instance learning was utilized [20]
to develop a methodology to propagate information from bag
labels to individual instances and allow the distribution of
labels to group features. In [21], [22], multi-instance learning
was expanded by introducing nested multi-instance learning
and applying it to spatial correlations. A spatial correlation
approach was introduced in [22] that utilizes shared labels
between locations rather than a data-driven approach where
the similarity of the underlying data is utilized.

C. PURPOSE AND NOVELTY
This paper aims to introduce a model to aid in analyzing
complicated and correlated data streams. Where such a task
can be challenging and time-consuming, and the use of auto-
mated systems is preferred. Event precursors add challenges
to grid operators since event precursors aim to find useful
indicators within large amounts of data streams. Effective and
fast precursor discovery allows grid operators to design better
power outage mitigation methods.

The novelty of this paper is in using multi-level data in a
spatiotemporal setting to predict outages and discover pre-
cursors jointly. Modeling prediction and precursor discovery
jointly enable leveraging event labels for precursor discov-
ery, where labels for individual precursors do not exist. In
addition, joint models can alleviate the need of designing and
training two separate models. Using multi-level data provides
a methodology to incorporate different data streams from
disjointed monitoring systems where it will be beneficial to
be used within power grid monitoring systems. Furthermore,
this paper introduces a novel methodology that learns spa-
tially and temporally, which to the best of our knowledge,
has not been reported before. This methodology allows for
predicting events accurately and discovering spatial and tem-
poral precursors. This is achieved by modeling the data in a
multi-level fashion, then utilizing multi-task learning (MTL)
and multi-instance learning (MIL) to learn spatially and tem-
porally. A local attention mechanism is also introduced to
allow MTL models to learn complex relations within spatial
locations. This attention mechanism allows for better event
prediction and the discovery of event precursors.

D. CONTRIBUTION AND ADVANTAGES
Event prediction and precursor discovery present a multitude
of challenges. These challenges can be described under two
main categories: modeling and data labeling. There are no
standard models for event prediction and precursor discovery

formodeling challenges, andwhen it comes to spatiotemporal
modeling of this problem, this becomes even more challeng-
ing. Regarding data labels, event precursors are parts of the
data that indicate the probability of an event occurring in the
future. In most cases, there are no predefined labels for event
precursors. This adds further challenges to modeling event
prediction and precursor discovery. Modeling event predic-
tion and precursor discovery for power grids present addi-
tional challenges. Power grid data is noisy, with many details
hidden for confidentiality reasons. The data collected from
the electric grid has missing values, measurement outliers,
and data labels which are inaccurate and lack information.
Furthermore, power grid data, when available, is generally
sparse and suffers from the big data paradox (large amounts
of data with a small number of events of interest). Modeling
such datasets to make informed decisions can be complex and
resource intensive; however, such datasets can be particularly
useful if paired with models designed to inform operators
and facilitate data-driven decisions. The advantages of the
approach proposed in this paper can be summarized as the
following:

1) introducing automated models to assist power grid
operators in predicting events in an informed fashion.
Where with each prediction, event precursors are iden-
tified. This allows grid operators to knowwhen an event
might happen and to have enough information to assist
in outage mitigation.

2) introduce a methodology to predict events and dis-
cover precursors in a spatiotemporal fashion jointly.
This methodology utilizes attention to capture relations
between locations.

3) utilize local and global data in a multi-level fashion;
this allows for capturing the system’s status from dif-
ferent angles.

4) utilize multi-task learning with multi-instance learning
to extract spatial relations and discover precursors. This
enables the models to extract precursors without prede-
fined labels.

5) utilize large datasets without resorting to extensive data
studies and feature engineering. This approach allows
extending the model with more datasets if needed.

E. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Section II
describes the proposed methodology for spatiotemporal out-
age prediction and precursor discovery. Section III described
the used data and the preprocessing steps. Section IV intro-
duces the experimental setup and the results. Section V
concludes the paper, and Section VI discusses future work.
The references are provided at the end.

II. SPATIO-TEMPORAL EVENT PREDICTION AND
PRECURSOR DISCOVERY
Formulating spatiotemporal event prediction and precursor
discovery relies on multi-task learning with multi-instance
learning. This section will start by formally defining the
problem, then describe the proposed methodology.

VOLUME 11, 2023 94843



M. Alqudah, Z. Obradovic: Enhancing Weather-Related Outage Prediction and Precursor Discovery

The power grid consists of multiple locations within a
geographical area of interest. For a location Lq ∈ L, where
L is a group of locations in a geographical area, the goal of
the proposed methodology is to predict the probability of an
event Yn ∈ Y at the location Lq, where Yn is an event that
occurs at a time tn at the location Lq.
To predict the probability of an event, and for every event

Yn ∈ Y there exists a bag of data Bn ∈ B. Each bag of
data Bn represents all the data related to the period before
the event. Bags (Bn) are a collection of data instances {xj in
an unordered fashion.

One commonly studied task within the power grid domain
is event detection [9],which vastly differs from the work pre-
sented in this paper. Event prediction and precursor discovery
differ from event detection in the following aspects:

1) event detection focuses on studying the event signa-
tures at the time tn. In event detection and precursor
discovery, event data at the time tn is not used, and
only the data before the event is utilized. For each event
at the time tn, the period used is formally defined as
[tn−k,tn) to indicate the omission of time tn. k rep-
resents the period length (in hours) examined before
the event at the time tn. All event signatures at the
time tn are discarded, and event detection and precursor
discovery are performed without the data at the time tn.

2) there are no labels for data instances xj within the
bag Bn. Labels Yn are only assigned at the bag level,
and there are no labels for any individual instance
within Bn.

Every event Yn ∈ Y is mapped to a label Yn ∈ {′,∞} where
the value of 1 represents the occurrence of an event at the
time tn.

A. MULTI-TASK LEARNING FOR EVENT PREDICTION AND
PRECURSOR DISCOVERY
Multi-task learning (MTL) is a paradigm that leverages
shared and useful information in multiple tasks. Leveraging
MTL helps improve task performance and helps achieve
greater generalization of learning.

1) MULT-TASK LEARNING
MTL has gained fame over the past decade with many appli-
cations in machine learning. MTL has been applied to many
tasks, such as computer vision and speech analysis, especially
in domains with sparse and high-dimensional spaces [23].
MTL utilizes data from different tasks simultaneously. Com-
pared to single-task learning, MTL can learn from sparse data
and produce more robust models. The simultaneous learning
paradigm leads to better knowledge sharing between tasks
and lowers the risk of model overfitting in single tasks [23].

As discussed in Section I, power grid data suffers from data
sparsity challenges. The MTL paradigm helps alleviate the
data sparsity problem by utilizing knowledge sharing. More
than the labeled data is needed in a sparse setting to train
individual tasks effectively. Using MTL, the simultaneous
learning aggerates all labeled data and acts as data aug-
mentation for single tasks. Generally, in MTL, all tasks are

treated equally, and there is no distinction between individual
tasks. MTL can be formulated in several ways; one common
methodology to formulate MTL is regularized multi-task
learning (R-MTL) [24]. R-MTL assumes that tasks are close
to each other and should inhabit similar behaviors. This
allows sharing of information between tasks and helps reg-
ularize individual tasks.

2) ATTENTION-BASED MULTI-TASK LEARNING FOR EVENT
PREDICTION AND PRECURSOR DISCOVERY
This section describes the novel methodology that aims to
predict events and discover precursors using attention mech-
anisms.
Task: Assuming multiple locations L, where |L| = Q,

within a geographical area of interest in the power grid for
a location Lq ∈ L,⨿ ∈ Q, the goal is to learn a model θq for
each Lq, where:
1) θq predicts the probability of weather-related events

and discovers event precursors.
2) θq predicts events only for one location Lq, but in its

learning, θq utilized shared knowledge between differ-
ent locations.

R-MTL assumes that there are inherent relationships between
tasks. Formally, the loss function to learn R-MTL is defined
as:

minθ

∑
q∈Q

(
Nq
N
F

(
θq

)
+

λ1

2

∥∥∥θ̂ − θq
∥∥∥2
2
+

λ2

2

∥∥θq
∥∥2
2

)
(1)

where λ1 and λ2 are hyperparameters for the regularization,
and θ̂ is the average model across all locations. F represents
a general loss function to learn event detection. N is the total
number of events for all locations, and Nq is the number of
events at location q.
Power systems can span large geographical areas, and the

weather is a local factor that affects the power grid. A novel
self-attention approach is introduced to capture the spatial
relationships between the locations.
Hypothesis: for each location q ∈ Q, the spatial infor-

mation in R-MTL can be captured through self-attention α

calculated on γ q, where γ q represents the nearest neighbors
of q. The hypothesis is to utilize self-attention to parametrize
spatial coherence between locations and direct model learn-
ing to utilize nearby locations’ data. The rationale behind this
hypothesis is as follows:

1) effects of weather tend to degrade as distances grow.
Using the nearest locations helps narrow the model
search for the best parameters.

2) self-attention helps to direct models with similar con-
ditions to learn similar parameters.

To formally define the attention-based multi-task learning
model (A-MTL), equation (1) is redefined as follows:

minθ

∑
q∈Q


Nq
N F (θq) +

λ1
2

∥∥∥θ̂ − θq
∥∥∥2
2
+

λ2
2 ∥θq∥22

+
λ3
2

Nq∑
i

∑
l∈γ αq,l

(
θq − θ l

)2
 (2)
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where λ3 is a hyperparameter for balancing. To calculate α,
the scaled dot product (σ ) is calculated between the respective
data vectors in the data bags of q, l, which is formally defined
as:

σ =

∑ xTq xl√∣∣xq∣∣∀xq, xl ∈ Bq, Bl (3)

Then, the next step is to map σ to respective probabilities by
calculating the data vector α, where each value αz ∈ α is
calculated as:

αz =
eσz

|γ |∑
i=1

eσi
(4)

where |α| = |γ |.

3) DISTANCE AWARE ATTENTION-BASED MULTI-TASK
LEARNING FOR EVENT PREDICTION AND PRECURSOR
DISCOVERY
Section II-A.2 defines the attention-based multi-task learning
model (A-MTL). This model utilizes the nearest γ locations
without considering the spatial distance. In this variation
of the proposed methodology, a distance-aware method in
addition to attention is introduced.
Hypothesis: for each location γ́ ∈ γ , the self-attention

α calculations can be further improved by relying on the
absolute distances. The distances are converted to a ratio
between 0 and 1 using a combination of distance inverse and
range normalization. Equation (3) defines the distance aware
A-MTL (DA-MTL) as:

minθ

∑
q∈Q


Nq
N F (θq) +

λ1
2

∥∥∥θ̂ − θq
∥∥∥2
2
+

λ2
2 ∥θq∥22

+
λ3
2

Nq∑
i

∑
l∈γ dq,lαq,l

(
θq − θ l

)2
 (5)

where dq,l is the normalized inverse distance between loca-
tions q and l.

4) TEMPORAL INFORMATION PROPAGATION
MULTI-INSTANCE LEARNING
Each task θq is learned through a function F as part of the
equations (2)-(5). Labels for data instances (xj) are needed
to learn individual models. As discussed earlier, obtained
labels (Yn) are assigned to only the bag level where data
instances (xj) don’t have any associated labels. Information is
propagated from bag labels to data instances to achievemodel
learning and utilize the bag labels. This information propaga-
tion process is achieved through multi-instance learning. This
section discusses how this process is utilized.

Assuming an unknown function F , the goal is to train F
where:

F (Bn | θ) → Yn∀n ∈ [∞,N ] (6)

and N = |Y|. F is modeled as a logistic binary function on
the data instances. This modeling allows to learn probabilistic

values (pj) that represent the relation of xj to the original
labels Yn. Formally, pj is defined as:

pj= sigmoid
(
θTxj

)
=

1

1 + e−θT xj
(7)

Each individual instance xj is assigned a label ŷj using the
probability pj. To extract the predicted labels for the bags Ŷj,
an aggregate function on the individual instance probabilities.
This process is formally defined as follows:

Pn = A(F (Bn | θ)) (8)

By modeling F on the data instances using a sigmoid func-
tion, it allows propagating information from bag labels and
learning labels for individual data instances. The information
propagation is controlled through the loss function h (θ) .One
effective loss function is the Nested Multi-Instance Learn-
ing (nMIL) loss function, which performed well on several
applications [21]. nMIL defines the loss function hnMIL (θ) as
a combination of bag-level loss h (θ)Bag, instance-level loss
h (θ)Instance, and regularization h (θ)reg [21]. Formally nMIL
loss is computed as:

hnMIL (θ) = h (θ)Bag + h (θ)Instance + h (θ)reg (9)

The intuition behind the bag level loss is to control the learn-
ing process and ensure that the aggregated bag level labels
calculated by (8) are similar to the true bag label. This can be
defined as:

h (θ)Bag =
β

N

N∑
n=1

11

(
Yn, Ŷn

)
(10)

where 11 is the log-loss of the bag level prediction, defined
as:

11

(
Yn, Ŷn

)
= −(Yn log (Pn) + (1 − Yn) log (1 − Pn))

(11)
where β is a hyperparameter. To calculate the instance cost,
nMIL introduced a nested data approach [21], which allowed
it to account for the temporal information within the bag.
To achieve this, nMIL redefined the bags from an unordered
set of data instances xj to an ordered set of temporal groups
B = [Xi]. Each temporal group is an unordered set of data
instances Xi= {xij where xij represents data from grouping
time i for the j − th data source.
Temporal dependencies in the instant cost rely on the

assumption that temporal groups Xt that are close in time
have similar data properties and thus should have similar
probabilities Pi. This relationship was captured through a
specific function g, which uses temporal order in combination
with a similarity metric K to account for temporal relation-
ships [21]. This is defined as

g = K (Xi,Xi−1) 12 (Pi,Pi−1) (12)

and Pi is defined as the aggregation of individual instance
probabilities, and 12 is defined as the square loss function.
More formally,

Pi = A
(
F

(
xij ∈ X i | θ

))
= A(pi)

12 (a, b) = (a − b)2 (13)
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Finally, h (θ)Instance is defined as:

h (θ)Instance =
1
N

B∑
i=1

1
t

T∑
t=1

g
(
Xi,t ,Xi,t−1

)
(14)

Regularization is added to prevent the model from overfitting
the data and help produce generalizable models. Regulariza-
tion is defined as:

J (θ )Reg =

∑
B∈B
xi∈B
xij∈xi

1
T

T∑
i=1

1
B

B∑
j=1

h
(
xij, θ

)
+ εR(θ ) (15)

where h is unsupervised hinge loss. Equation (16) defines h
formally. In (16), m0, p0 are hyperparameters and sgn is the
sign function.

h(xij, θ) = max(0,m0 − sgn
(
pij − p0

)
θT xij) (16)

5) PRECURSOR DISCOVERY
Precursor discovery is performed after event detection. The
precursors can be determined on a data instance or temporal
group level. Once the predicted label is Ŷj = 1, pij and Pi
are examined using a predefined threshold τ . A precursor is
identified if pij ≥ τ or Pi ≥ τ .

III. DATA MANAGEMENT
This section discusses the data sets utilized in the study and
the preprocessing steps performed. One of the goals of this
study is to use datasets without the need for manual feature
engineering, which can be labor extensive. Firstly, this section
introduces the datasets. After that, the preprocessing steps
performed on the datasets are discussed.

A. DATA DESCRIPTION
This study utilizes multi-level data, where data exists on the
local level and global levels. Here, weather data will represent
local data, while power systems demand and forecast data
will present global data.

1) WEATHER DATA
Comprehensive and accurate weather data is needed to pre-
dict weather-related power outages effectively. One public
and reliable data source for weather data is the Automated
Surface Observing System (ASOS) network data [25]. ASOS
is a network of weather stations deployed across various
locations in the United States. ASOS stations are auto-
mated weather observation systems that provide real-time
weather data and observations. The network is operated by
the National Weather Service (NWS). It is a joint effort
of the National Weather Service (NWS), the Federal Avia-
tion Administration (FAA), and the Department of Defense
(DOD). The ASOS data is collected regularly, typically
reported at intervals such as every 1-minute and 5 minutes.
ASOS contains weather data from more than 900 sites in the
United States. The exact location of each weather station is
known.

ASOS is a widely studied data set in many applications,
including power outage prediction. ASOS data reports many
variables describing the current conditions of data. In this
study, the following measurements are utilized: air temper-
ature in Fahrenheit, dew point temperature in Fahrenheit,
wind direction in degrees from north, wind gust in knots,
wind gust direction, visibility in miles, atmospheric pressure,
precipitation total, and wind speed in knots.

2) POWER SYSTEMS DEMAND AND FORECAST DATA
The power systems demand and forecast data is obtained
from the U.S. Energy Information EIA-930 data [26]. The
EIA-930 dataset comprehensively aggregates hourly demand
and demand forecast data. The data is collected for the
lower 48 states in the United States. The dataset covers vari-
ous aspects of energy production, consumption, and infras-
tructure in the United States. EIA-930 is collected from
balancing authorities responsible for balancing the power
system demand and supply in real time. This dataset reports
on an hourly basis. The reported measurements include
demand, demand forecast, and net generation. The follow-
ing measurements are used from EIA-930: demand forecast
(MW), demand (MW), net generation (MW), the total inter-
change (MW), demand (MW) adjusted, net generation (MW)
adjusted, Direct Interchange with directly interconnected
Balancing Authorities (DIBAs) in (MW). The adjustment
means incorporating dynamic scheduling arrangements and
interchanges, balancing authorities adjusting metered phys-
ical flow values to produce an alternative view of power
system operations [26].

3) LOCAL DATA VS. GLOBAL DATA
Weather data is local by nature, and weather conditions
are measured in small geographical regions compared to
the power grids. The power grid can span vast areas with
multiple weather regions, where each region can have dif-
ferent weather conditions. In contrast, the EIA-930 data is
considered global data since it represents the state of the
whole examined grid, where for example, demand forecast
(MW) represents the electric demand on the entire grid.While
temperature measured from a weather station only represents
the area near that station.

B. DATA PREPROCESSING
This section describes the preprocessing steps performed on
the two utilized datasets. The explained steps don’t include
any feature engineering.

1) GEOGRAPHICAL AREA SELECTION
TheWestern Interconnection contains 136,000miles of trans-
mission lines, and it spans 1.8 million square miles across
14 western U.S. states, in addition to parts of Canada and
Mexico [27]. This paper focuses on studying the Pacific
Northwest (PNW), specifically the events in the geographical
area of the Bonneville Power Administration (BPA) [28].
Using this area gives two important aspects: (1) the PNWarea
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has diverse climatological topography, and (2) weather plays
a role in affecting power system stability. BPA operates in
the following states: Washington, Oregon, and Idaho, in addi-
tion to eastern Montana, a small part of eastern Wyoming,
northern Utah, northern Nevada, and a small part of northern
California. Secondly, BPA provides public historical logs of
outages caused by weather conditions, and this is crucial to
this study since publicly available data for power systems are
rare. The overlapping weather stations with the BPA maps
were selected [28], which resulted in 81 weather stations.
After that, the power systems demand and forecast data
for BPA is filtered by using identifier columns part of the
EIA-930 data.

2) FILTERING POWER OUTAGE EVENTS
After selecting the geographical area in section III-B.1, the
next step is to select the power outage events. BPA publicly
reports all power outage events for all reasons. Since not every
power outage is of interest to this study, the following criteria
were used:

1) selecting power outages for five years (2018-2022).
This period allows for enough data to train and test the
prediction models.

2) selecting weather-related events only. BPA reports the
general causes of the outages. Using the outage codes,
maintenance, and planned outages were excluded from
the event log

3) excluding overlapping events. Since the model utilizes
the period before the event at ti, this event will be
excluded if any other events are in the period [ti−k , ti).

4) excluding non-transmission line events. Transmission
line events affect more customers and can span wide
geographical areas.

3) MAPPING POWER OUTAGE EVENTS TO LOCATIONS
BPA publicly publishes Power outage logs. After filter-
ing out unneeded outages with the process described in
section III-B.2. The next step is to map the outages to loca-
tions on the map. BPA releases information about the grid’s
topology and some grid assets. Despite this, mapping out-
ages to transmission lines are only partially achievable. BPA
outage logs provide a textual description of the location
of the outage, which doesn’t necessarily have a one-to-one
mapping to one of the transmission lines. To overcome this,
an approach was adopted to search for matching transmission
lines. Table 2 describes the Algorithm. To calculate the sim-
ilarity between the outage description and the transmission
line name, the Jaro-Winkler similarity metric is utilized [29].
Equations (17, 18) define the Jaro-Winkler similarity between
two strings s1, s2. Where m is the number of matching char-
acters, and u is the number of transpositions. A transposition
is the number of matching characters not in the right order
divided by two. lp is the length of a common prefix at the
start of the string up to a maximum of 4 characters, and v is
a constant scaling factor for how much the score is adjusted
upwards for having common prefixes.

TABLE 1. Outage description to transmission line matching algorithm.

4) DATA SPATIAL CORRELATION
Mapping outages to transmission lines helped narrow down
the events’ locations. A more granular correlation is needed
to map weather data to outage locations. To achieve this, each
outage was mapped to the nearest power substations. This
allowed outages cross-correlated with weather data, power
demand, and forecast data. This step was achieved using the
transmission assets data published by BPA in addition to
public map data available from OpenStreetMaps. This step
is needed since BPA doesn’t explicitly disclose the locations
of substations.

simj =


0 if m = 0

1
3

(
m

|s1|
+

m
|s2|

+
m− u
m

)
otherwise

(17)

simw = simj + v× lp × (1 − simj) (18)

IV. EXPERIMENTAL EVALUATION AND RESULTS
A. EVENT PREDICTION AND PRECURSOR DISCOVERY
MODELS
The attention-based model (A-MTL) introduced in
section II-A.2 and the DA-MTL introduced in section II-A.3
are utilized in the next experiments. There have been some
advances in event prediction in the last few years. To com-
pare, models must be able to predict events and discover
precursors jointly with in-model interpretability capabilities.
This task is different from traditional event prediction, and
models to be compared with must have these properties.
Hence baseline experiments are performed using R-MTL.

B. UTILIZED DATA AND EXPERIMENTAL SETUP
As discussed in Section III. five years of data were used for
training and testing. When testing data containing a temporal
aspect, it’s crucial to split it temporally to gain accurate
results. The years 2018 to 2020 are used for training, and
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2021 and 2022 are used as testing datasets. This ensures there
is no information leakage between training and testing data.
The models above use the full year for training and testing.
These models are named global models.
Weather data contains a great amount of seasonality. Sea-

sonal models were trained and tested to study the effects of
seasonality on the modeling results. In this setup, seasons
were used to split the data further. For example, the summer
data for 2018 to 2020 are used for training, and summer data
for 2021 and 2022 are used for testing.

The number of outages in the training dataset is 796, and
the number of outages in the testing dataset is 488. To get
data with no events, random time stamps across all years and
all seasons were chosen as negative events; these timestamps
don’t overlap with any event or the k hours before the event.
The total number of events in the training data is 1,624 and
the total in the test data is 1,074. A total of 482 substations
exist in the dataset. Weather data was pulled using 5 min
intervals. k is set to 12 hours of data before each event. Using
hyperparameter tuning, the mini-batch size is set to 5, λ1 =

0.25, λ2 = 0.4, λ3 = 0.4, β = 0.25, learning rate = 0.01.
m0 and p0 are kept at the default value of 0.5. The number of
neighbors γ = 5.

The metrics to evaluate the performance of the models
were chosen to be suitable in a power system setting. Pre-
cision and recall were used to measure the false positives
and false negatives, which can give a detailed picture of
the model’s performance. Furthermore, the Area Under the
Receiver Operator Curve (AU-ROC) is reported to measure
the effects of different decision boundary limits. Finally,
the Area Under the Precision-Recall Curve (AU-PRC) is
reported as an indicator of the tunability and flexibility of the
model. All metrics (AU-ROC, AU-PRC, Precision, Recall)
have values between 0 and 1, with a higher value indicating
a better-performing model.

TABLE 2. Global model experiment results.

C. EXPERIMENTAL RESULTS
The first set of experiments aims to evaluate the performance
of themodels DA-MTL,A-MTL, andR-MTL.All thesemod-
els were evaluated using the global models. Table 2 shows
the results of detecting the events using 12 hours of data,
and the decision is made 1 hour ahead. One can notice that
the proposed models (A-MTL and DA-MTL) achieved a lift
in recall equal to 8.1% and 15% compared to the baseline
recall. Recall, also known as the true positive rate (TPR),
is the percentage of events that the trained model correctly
identifies as weather-related outages out of the total studied

weather-related outages. The recall is specifically useful in
scenarios where identifying all positive instances is crucial,
and the cost of false negatives (missed detection of actual
positive instances) is high. In power grids, where the cost
of missing the prediction of an actual outage is high, it is
crucial to prioritize event recall over precision and general
detection metrics. Precision measures the model’s ability to
correctly identify power outages out of the total data points
predicted as outages. Table 2 shows that DA-MTL has the
highest Precision and Recall metric among all models.

The second set of experiments is to train and test seasonal
models. This setup uses the best-performing model from
Table 2 (DA-MTL) for four experiments. The model was
retrained and tested in each experiment on a year’s season.
Table 3 represents the results of the seasonal experiments.

TABLE 3. Seasonal model experiment results using DA-MTL.

From Table 3, the best-performing model is the Winter
model. This is expected since weather-related outages tend
to increase in the wintertime. Furthermore, since this model
studies one season, the data tend to be more homogeneous.
Several factors can explain the degradation of the perfor-
mance for Spring and Fall. The Pacific Northwest has a
microclimate where weather is less predictable. In addition,
the outage labels need to be more accurate.

FIGURE 2. Model early detection represented by AU-PRC. X-axis
represents the hours ahead of the event where the prediction is made.

The next study is to assess how early the model can predict.
In power systems, the earlier the model predicts, the more
beneficial the prediction is. An early prediction can be crucial
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to allow the grid operators enough time to deploy a mitigation
plan. Fig. 2 shows the AU-PRC for early prediction. The
x-axis represents how many hours ahead of the event used
to predict the event. Fig. 2 shows that the accuracy increases
as the time gets closer to the event. This behavior is expected
since weather effects tend to be more predictable within short
time frames. On the other hand, Fig. 2 shows that the event
detection is still accurate far ahead of the event. This behavior
is specifically beneficial to allow grid operators to act early.

FIGURE 3. Heatmap of prediction probabilities 12 hours before the event.
The event location is marked with the tower symbols. The blue dots are
weather stations.

D. PRECURSOR DISCOVERY
As discussed in section II, precursor discovery uses the
threshold τ to determine the significance of data towards the
predicted label Ŷn. A threshold of τ ≥ 0.7 is used to visualize
the events. Fig. 3-6 shows an example of an event and how the
model shows precursors. Each figure shows a heat map of
how the probabilities are captured, where the event location
is marked by the power tower symbol and is marked as the
number 5 site in Fig. 3. Each figure represents a heat map,
where the heat map represents the probabilities learned by
each model θ γ́ for each of the neighbors’ γ́ where γ́ ∈ γ and
the event location. By examining the probabilities Pi across
locations γ́ ∈ γ and the event location, the model can visu-
alize how each location (through its model) is analyzing its
local data at a specific time. In Figs 3-6, the areas with higher
outage probability are colored darker. This visualization aims
to demonstrate the discovery process of event precursors over
time. This illustrates how grid operators can monitor the
locations and observe how the models discover and highlight
the patterns. Each figure represents the probabilities for all
locations at a certain time. This can be considered a precursor,
where multiple locations determined that the probabilities at

this time (12 hours ahead) are significant enough. As the
time progresses, 9 hours before the event and as shown in
Fig. 4, the larger outage probabilities shift towards the event
location. As time progresses, Fig. 4 shows that location 1 has
a lighter color than Fig. 3 (representing lower probability),
but location 3 is still darker. This indicates that the prob-
abilities are shifting south from locations 1 to 3. Fig. 5,
which represents the probabilities 3 hours before the event,
shows probabilities shifting even closer to the event location
and getting darker in color (indicating higher outage risk).
Location 4 shows a dark color now, while location 1 has an
insignificant probability.

FIGURE 4. Heatmap of prediction probabilities 9 hours before the event.
The event location is marked with the tower symbols. The blue dots are
weather stations.

Finally, Fig. 6 shows the outage probabilities 1 hour before
the event, with the highest probabilities at the event location
(location 5). At this time, one can notice the darker and more
widespread probabilities. The progress of change in outage
probabilities is considered as the spatiotemporal precursors
of the outage, where hours before the event, one can see
how the probabilities are shifting with a specific pattern. As
it gets closer, the probabilities concentrate in one location
and get darker as time progresses. Fig. 3-6 visualize how the
model captured the spatiotemporal relationships between the
locations. The model reliably captured how the probabilities’
progress started early (and at a relatively far location), then
shifted toward the event location. One could see such infor-
mation useful to a human operator, where large amounts of
data are streamed to control rooms.

The proposed model can analyze, combine and summa-
rize multiple data streams using simple heat maps. Such
information can be part of many data streams shown to the
grid operators. On the other hand, other data streams can
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FIGURE 5. Heatmap of prediction probabilities 3 hours before the event.
The event location is marked with the tower symbols. The blue dots are
weather stations.

FIGURE 6. Heatmap of prediction probabilities 1 hour before the event.
The event location is marked with the tower symbols. The blue dots are
weather stations.

be used as inputs to the proposed methodology. When such
information is utilized, it can provide amore complete picture
of the status of the power grid. This research only utilized the
datasets that could be reliably accessed in a research setting.

V. CONCLUSION
To conclude, this study:

• proposed a novel methodology for spatiotemporal event
detection and precursor discovery designed to help
power grid operators analyze large amounts of data and
utilize it for power outage mitigation.

• showed how to use the proposed methodology with
minimal preprocessing and without the need for feature
engineering.

• showed that the proposedmethod can predict events with
good performance, and seasonal models can improve
detection accuracy.

• showed how the proposed model can capture spatiotem-
poral relations and expose event precursors.

• showed how to utilize multi-level data for predicting
events and how to achieve event detection and precursor
discovery at the same time.

• demonstrated how early detection could be achieved
with good performance.

The introduced models are designed to be generalizable to
other components of the power system, such as generation
and load centers. The proposed models can be used to predict
component failures and power generation issues beyond the
scope of this study. By leveraging the proposed models,
it becomes feasible to predict potential component failures
within the power system infrastructure and anticipate power
generation issues that may arise. However, it should be noted
that the experiments necessary to validate the effectiveness of
these models in those specific applications were conducted
outside of this particular study. The broader applicability
and performance of the models in predicting component fail-
ures and power generation issues would require further basic
research and empirical evaluation.

The data used in this study reports outages on a transmis-
sion line granularity. In the preprocessing steps, each outage
was mapped to the nearest substations. This can be a limi-
tation since some transmission lines cross long distances. To
our knowledge, no public data is available that reports outages
on a more granular scale. With such data, better models could
be trained. Furthermore, the proposed model doesn’t have
access to internal data about the electric grid, such as PMU
data. If such data is available, it can give a better picture of
the internal state of the grid at a local level.

VI. FUTURE WORK
This paper utilized non-parametric attention to capture rela-
tions within the power grid. One future step is to learn a
joint attention model that can, in parallel, learn relationships
within the studied space. On the data side, one dataset that
could be helpful is temporal weather forecasts. Such data
can be utilized within the same model, further improving
the detection. Another area of future research is to explore
prediction for longer time horizons (24, 36 hours), which
allows for better planning by utility companies.
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