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A Bayesian Sparse Generalized Linear Model
With an Application to Multiscale Covariate

Discovery for Observed Rainfall
Extremes Over the United States

Debasish Das, Auroop R. Ganguly, and Zoran Obradovic

Abstract—Predictive insights on extreme and rare events are
important across multiple disciplines ranging from hydrology, cli-
mate, and remote sensing to finance and security. Characterizing
the dependence of extremes on covariates can help in identification
of plausible causal drivers and may even inform predictive model-
ing. However, despite progress in the incorporation of covariates in
the statistical theory of extremes and in sparse covariate discovery
algorithms, progress has been limited for high-dimensional data
where the number of covariates is large. In this paper, we propose
a general-purpose sparse Bayesian framework for covariate dis-
covery based on a Poisson description of extremes frequency and
a hierarchical Bayesian description of a sparse regression model.
We obtain posteriors over regression coefficients, which indicate
dependence of extremes on the corresponding covariates, using a
variational Bayes approximation. Experiments with synthetic data
demonstrate the ability of the approach to accurately characterize
dependence structures. The method is applied to discover the co-
variates affecting the frequency of precipitation extremes obtained
from station-level observations over nine climatologically homoge-
neous regions within the continental U.S. The candidate covari-
ates at multiple spatial scales represent station-level as well as
regional and seasonal atmospheric condition, indices that attempt
to capture large-scale ocean-based climate oscillators and hence
natural climate variability, as well as global warming. Our results
confirm the dependence structures that may be expected from
known precipitation physics and generate novel insights, which
can inform physical understanding and perhaps even predictive
modeling.

Index Terms—Bayesian model, climate change, covariate dis-
covery, sparse regression, statistical downscaling.

I. INTRODUCTION

D ESCRIPTIVE analysis and predictive modeling of ex-
treme values are growing in importance and urgency

across societal priorities, ranging from remote sensing, natural
hazards, geosciences including hydrology, weather, and climate
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to security of physical and cyber systems, as well as financial
markets [1], telecommunication signals, and even relatively
newer fields like social media [2]. Extremes are particularly
relevant for climate due to the connection of consistent change
in extreme weather patterns with the warming climate, as
identified by the Intergovernmental Panel on Climate Change
in their Special Report on Extremes [3]. Characterizing the
dependence of extreme events on multiple covariates is often
a first step in developing causal insights involving physical and
empirical relations.

Both the frequency and intensity of regional rainfall extremes
are undeniably showing change in the recent times, leading to
increased number of flood events and related catastrophes
around the world. Statistically significant increase in heavy to
extreme rainfall has been shown in scientific studies over re-
gions spanning multiple continents including Europe [4]–[6],
Asia [7]–[9], Australia [10], [11] and the U.S. [12]–[14]. How-
ever, an accurate understanding of the sources of variability and
change patterns of extreme rainfalls is necessary for man-
agement and adaptation strategies to succeed. Identifying the
covariates with known pattern of variability on which extreme
rainfall shows statistical dependence may be immensely helpful
in predicting future change in extreme rainfall patterns and
designing adaptation strategies. To that end, a large number
of studies exist, which relate variability of rainfall extremes
with large-scale climate indices (“teleconnections”) with pre-
dictable pattern of fluctuation. Examples include linking change
in European winter extremes to the change in North Atlantic
Oscillation (NAO) [15], [16], relation of Atlantic Multi-decadal
Oscillation with rainfall (not extremes) and river flows in the
U.S. [17], [18] and Mexico [18], influence of Pacific Decadal
Oscillation (PDO) on Arizona winter precipitation [19],
ENSO influence on intraseasonal extreme rainfall frequencies
in the U.S. [20], and influence of three different climate in-
dices on Eastern Mediterranean rainfall extremes (using climate
model simulations) [21] among many others. Although these
studies vary in terms of analytic methods, these can be roughly
categorized as statistical methods driven by specific hypothesis
about dependence between two variables to prove or disprove
the hypothesis. At their core, these are efforts to link the
temporal trends in rainfall extremes with the regular temporal
pattern of variations shown by the large-scale indices. However,
while teleconnections are important, local and regional atmo-
spheric conditions typically tend to dominate in the context
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of climate-related extremes. Spatial variation in hydrologicz
extremes at regional level has been studied using methods
like regional frequency analysis [22] where the distribution
of extremes over space has been assumed to follow the same
distribution except for a site-specific scaling factor, and at-
tempts were made to link the variation of extremes with a
spatial explanatory variable [14], [23]. Only a small number
of studies consider both spatial and temporal variations of
extremes and attribute them to the appropriate explanatory
variables. Kriging was used in [10] to account for the spa-
tial correlation among extremes while modeling the temporal
change. However, no spatial explanatory variable was used.
On the other hand, Gregersen et al. [24] used regional spatial
explanatory variables to handle spatial correlation in addition to
using large-scale indices to explain temporal variability of the
frequencies of rainfall extremes over Denmark and estimated
the contribution of each explanatory variables (covariates) to-
ward explaining spatial or temporal variation using a unregular-
ized multivariate regression technique. While we borrow their
approach of using regional-scale spatial variables to explain
the spatial variability of the rainfall frequencies, our goal is to
use as many variables as possible—both atmospheric variables
at multiple spatial scales and large-scale climate indices—
to use as potential covariates to explain any possible variability
in extreme frequencies. The intent behind the choice of covari-
ates at different spatial scales is to capture the influence of at-
mospheric processes at different spatial scales on precipitation
extremes.

However, it is well known that solutions to unregularized
multiple regression are not identifiable when the number of
potential covariates is larger than the number of samples. Linear
regression methods are generally trained to only minimize the
prediction error on the target variable and therefore often infer
nonzero coefficients for irrelevant covariates due to overfitting,
even when the number of samples is larger than the number
of potential covariates. Using a regularizer that constrains the
L2-norm (ridge regression) of the coefficients will shrink the
coefficient values, but the resulting regression model still suf-
fers from overfitting as it also infers nonzero coefficients for the
irrelevant covariates. The solution is to use a regularizer that
constrains the L1-norm of the coefficient vector and thereby
induces a sparse solution where the coefficients tend to shrink
toward zero if the corresponding covariate is irrelevant. The
theoretical and experimental proof of this advantage of the L1
regularizer over the L2 regularizer can be found in [25], which
shows that sample complexity (minimum number of samples to
learn a correct model) grows at least linearly with the number
of irrelevant features for the L2 regularizer, while sample com-
plexity grows only logarithmically for the L1 regularizer. Since
we are interested in developing a generic statistical framework
for modeling extremes, we expect to have only few training
data in many applications while dealing with a large number of
covariates. Therefore, the L1 regularizer is a much better choice
in terms of avoiding overfitting.

Sparse models are more interpretable in the presence of a
large number of potential covariates since it selects relevant
covariates only. From the view-point of bias-variance tradeoff,
the L1 regularizer is more restrictive than L2 and therefore re-

duces variance of the model by increasing the bias. As a result,
L1-regularized models generalize better than the L2-regularized
models. Sparse regression techniques based on L1 regulariz-
ers such as LASSO [26], basis pursuit [27], and elastic net
[28] have gained prominence as tools for finding dependence
between variables in many application areas due to the de-
velopment of efficient algorithms [26], [29] that can handle
millions of potential feature variables. These methods have
been used extensively for covariate selection tasks in many
fields starting from healthcare [30], [31] and biology [32],
[33] to signal and image processing [34], [35] (in compressed
sensing) and geosciences [36]. Although the sparse regression
methods are overwhelmingly used to model target variables that
are Gaussian, these methods have been extended to general-
ized linear model (GLM) framework to fit variables that are
not Gaussian [37]. However, the ability of the sparse GLM
algorithms to recover the true underlying sparse dependence
structure depends heavily on the choice of tunable hyperparam-
eter used in the methods. Here, we used a Bayesian hierarchical
description of the sparse GLM that has three major advantages
over the widely used non-Bayesian techniques. First, unlike
non-Bayesian approaches, no hyperparameters are required to
be tuned here. Second, non-Gaussian target distributions are
accommodated naturally into the hierarchical Bayesian frame-
work, and third, unlike non-Bayesian methods, which provide
a deterministic estimate of the regression coefficients, Bayesian
methods provide probability distributions over the regression
coefficients. As evidenced later by the experimental results
on synthetic data, this additional information about the coef-
ficients facilitates a statistically sound inference of dependence
structure and thereby drastically increases the accuracy of the
resulting sparse solution. Although Bayesian versions of sparse
regressions [38], [39] and its extension to accommodate GLM
[40] were proposed in literature before, the later used expec-
tation propagation method which is not guaranteed to converge
and often produces nonsparse posterior even with a sparse prior.
We developed a variational Bayes (VB) inference algorithm to
estimate the posteriors, which is both fast and guaranteed to
converge. We obtained a sparse solution empirically by using
t-test on the posterior distribution of the regression coefficients
for their significance.

The goal of this paper is to correctly identify the covari-
ates that explain the variability of the precipitation extremes
frequency, while predicting the extremes frequencies is out
of the scope of this paper. We applied our method for co-
variate discovery for rainfall extremes as neither intensity nor
frequency of the extremes follows Gaussian distribution. The
statistical approach developed to model extremes is the ex-
treme value theory (EVT) [41] that provides a natural family
of probability distributions for modeling extremes. We will
discuss this briefly in the next section. However, we need to
be careful not to infer causality directly from the statistical
dependence relations discovered by our method. The proposed
method can be regarded as a selector of novel hypotheses
out of a pool of a large number of potential ones which can
then be validated using the physical understanding of causality.
Our hope is that this will lead to better understanding of the
processes that affect the changes in the pattern of precipitation
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extremes. We would also need to be careful in interpreting
the significance of covariates that are highly correlated. This
is an issue with any regression problem, which is inherited by
the Bayesian approaches as well. Unregularized ordinary least
square solutions assume no linear dependence (and therefore no
significant linear correlation) among the predictors, and it fails
if the predictors are highly correlated since the design matrix
becomes singular in that case. Regularized least squares do
not suffer from that problem. L2 regularizers tend to group the
correlated predictors by assigning them similar coefficients but
fail to produce a sparse solution as mentioned before. On the
other hand, L1 regularizers tend to randomly assign a nonzero
coefficient to one of the predictors out of a group of correlated
ones whereby assigning zero coefficients to others in that group.
The predictor selected may change with even a slight change
in the regularization parameter, which is generally tuned in
a heuristic manner. However, the Bayesian version of the L1
regularizer does not suffer from this inconsistency since there is
no hyperparameter to be tuned. Since the presence of correlated
climate variables is an important issue for our application,
we will discuss more on the implication of having correlated
covariates later when we will describe the data set.

Despite their importance, problems related to extremes were
rarely addressed by the knowledge discovery community. In
[42], a group elastic net method was described, which discovers
Granger causality between a set of time-series variables which
was used for climate change attribution. However, it is still a
method for analyzing dependence among Gaussian-distributed
variables. In [2], a latent variable model was used to obtain
dependence between a set of extremes time-series of a single
climate variable, but no covariates were considered.

1) Our Contribution: We propose a general Bayesian frame-
work to adapt the L1-regularized sparse regression (LASSO)
approach for dependence discovery for frequency of extremes.
We regarded the average rates of the extremes frequency as
latent variable and estimated their linear dependence on the
covariates using the Bayesian version of the L1-regularized
regression. We derived a fully Bayesian description of the
joint distribution of observed frequencies and all latent vari-
ables and developed an efficient variational approximation
algorithm to obtain the posterior distribution of the regres-
sion coefficients. This enabled us to discover the relevant
features along with an estimate of uncertainty. The proposed
framework can be applied as a statistical tool for dependence
analysis of extremes in many other fields where extremes are
important.

From the climate science perspective, to our knowledge, this
is the first attempt to use Bayesian sparse regression technique
for improved understanding of frequencies of rainfall extremes
by linking their variability with a large number of atmospheric
variables at different spatial scales as well as with large-scale
climate indices.

II. METHODS AND DATA

A. Basics of Extreme Value Modeling

The probabilities of extreme events are represented by the tail
of distributions. As mentioned earlier, the statistical properties

of extremes are described by EVT [41]. Extreme events are
generally characterized by their intensity, duration, and fre-
quency. The intensity of extremes may be described by either
generalized extreme value distribution or generalized Pareto
distribution depending on whether samples are obtained using
block maxima (e.g., annual maxima) or peaks-over-threshold
approach. On the other hand, the frequency and the interar-
rival time of extremes are modeled by Poisson point process
approach where the number of extremesN within a fixed period
is described by Poisson distribution [41], which is given by the
following pdf:

Pois(N |λ) = λNe−λ

N !
(1)

where λ is the average rate of occurrence of extremes within
the unit period of time. In this paper, we only considered the
frequency or number of occurrences of extremes, and modeling
intensity is left as a future work.

B. Problem Setup and the Bayesian Framework

Let us denote the observed numbers of occurrences (frequen-
cies or counts) of extremes in n distinct years by {Ni : i =
1, . . . , n} for a given location. We also have n observations
of p covariates that may or may not influence the frequency
of extremes. They are given by x1,x2, . . . ,xn, where xi is
a p-dimensional vector. Now, we assume that each of these
frequencies Ni is drawn from distinct Poisson distributions
with fixed but unknown average rates λ1, λ2, . . . , λn. Given the
aforementioned observations, our goal is to find a sparse subset
of covariates (we may use “feature variables” or “predictors”
alternately to mean covariates) that influence the frequencies
of extremes. In order to obtain a robust, interpretable, and
therefore more generalizable model, a natural choice is a sparse
linear model. However, directly modeling the relation between
observed frequencies and the feature variables using a linear
model may not be appropriate since the relation may well
be nonlinear. Instead, we use a GLM [43], where the aver-
age rate parameters of Poisson distributions are regarded as
latent variables that are more stable than the actual observed
frequencies and can be described reasonably well by a linear
model. Therefore, instead of modeling the actual observations,
we model the relationship between the latent variables and
the feature variables using a sparse linear regression model.
However, we model logλi instead of λi in order to enforce
positivity on λi (also, log λi is a natural parameter for Poisson
distribution). The final linear model is given by

log(λi) = βTxi + ε, subject to ‖β‖11 ≤ t (2)

where ε ∼ N (0, τ−1). Here, β = [β1β2, . . . , βp] is the vector
of regression coefficients corresponding to p different features.
The constraint ‖β‖11 ≤ t refers to the L1 regularization. In non-
Bayesian approach, that constraint term becomes the part of the
loss function L, which is given by L =

∑
i(logλi − βxi)

2 +
γ‖β‖11. Now, we denote ψi = logλi, and the joint distribution
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of the frequencies Ni and parameters ψi is given by

p(Ni, ψi|β, τ,X) =

n∏
i=1

p
(
Ni|eψi

)
p(ψi|β, τ,xi). (3)

The distribution p(Ni|eψi) can be modeled by a Poisson dis-
tribution, and p(ψi|β, τ,xi) can be modeled by the Gaussian
given by N (βTxi, τ

−1). In order to implement sparsity, we can
use a Laplace prior over β [38], [39]. The linear dependence
structure between the logarithm of average rates and the feature
variables is captured by the values of β. A zero value of any of
the βj means that the extremes frequencies have no dependence
on the corresponding feature, while a nonzero βj that is statisti-
cally significant means otherwise. We can find the parametersβ
by maximizing the log-marginal p({Ni}|β, τ ,X) with respect
to the parameters. However, directly optimizing the aforemen-
tioned log-marginal will not be feasible as it involves marginal-
ization of the joint distribution in (3) over the latent variables.
Instead, we propose to use a VB approximation algorithm [44]
to find an approximate posterior distribution over each of the
parameters which is described in the following section.

C. Variational Approximation for Bayesian Sparse Regression

We denote the sets {ψi} and {Ni} by vectors Ψ and N, re-
spectively. Let us also denote all of the unknown parameters by
Θ = {β, τ,α,γ} and regard them as latent variables as well. A
set of latent variables is therefore given by Z = {Ψ,Θ}. More-
over, from now on, we will ignore observed feature variables
X from the list of conditioning variables. From a Bayesian
view-point, the joint distribution p(N,Z) can be factorized in
conditionals by assuming priors over each of the parameters
in a hierarchical fashion. As mentioned earlier, sparsity over
β can be implemented by enforcing a Laplace prior on the
components of β. We use the following scale-mixture form of
Laplace prior [39] to make the inference tractable

p(β; τ,γ) =

p∏
j=1

√
γjτ

2
exp

(
−√

γjτ |βj |
)

=

p∏
j=1

∫
N
(
βj ; 0, τ

−1α−1
j

)
InvGa

(
αj ; 1,

γj
2

)
dαj

(4)

where τ is the precision parameter of the additive noise in
(2), αj is the latent precision parameter for the coefficient
βj , and InvGa(.) is the Inverse gamma distribution. Moreover,
gamma priors are imposed on τ and feature-specific individual
penalty parameters γj [38], [39] with parameters (a0, b0) and
(c0, d0), respectively. The priors are chosen for their conjugacy
property that ensures tractability of inference. We typically
assign a0 = b0 = c0 = d0 = 10−6, although other values of
these parameters will lead to the same estimate of β as β does

not depend on these parameters. The final joint distribution
p(N,Z) is given by

p(N,Z) =

n∏
i=1

Pois
(
Ni; e

ψi
)
N

(
ψi;β

Txi, τ
−1
)

× Ga(τ ; c0, d0)
p∏

j=1

N
(
βj ; 0, τ

−1α−1
j

)

× InvGa
(
αj ; 1,

γj
2

)
Ga(γj ; a0, b0). (5)

Computing the posterior p(Ψ,β, τ,α,γ|N) on all of the
latent variables is analytically intractable due to the variables
τ and α being coupled in the likelihood. Instead, we assume
a factorized form variational approximation for the posterior
distribution given by

p(Ψ,β, τ,α,γ|N) = q(Ψ,β, τ,α,γ)

= qΨ(Ψ)qβ(β)qτ (τ)qα(α)qγ(γ). (6)

We then solve for each component using a mean-field varia-
tional method [43]–[45]. Using Jensen’s inequality, it can be
shown that, given any arbitrary distribution q(Ψ,β, τ,α,γ),
the log-marginal log p(N) is lower bounded by the term

J=

∫
q(Ψ,β, τ,α,γ)log

p(N,Ψ,β, τ,α,γ)

q(Ψ,β, τ,α,γ)
dΨdβdαdγdτ.

(7)

Now, by maximizing J with respect to each component of
the variational distribution given in (6), we find the following
update equations for each of the components.

1) Distribution of Ψ:

qΨ(Ψ) =
n∏

i=1

qΨ(ψi) =
n∏

i=1

1

Zi
e

{
Ñiψi− 〈τ〉

2 ψ2
i−eψi

}
(8)

with Ñi = Ni + 〈τ〉xT
i 〈β〉.

Here, 〈f(u)〉 denotes expectation taken with respect to the
variational distribution of random variable u [i.e., 〈τ〉 denotes
expectation of τ taken with respect to qτ (τ)]. In order to
make the inference tractable, we used Laplace method to ap-
proximate qΨ(ψi) by a Gaussian whose mean is given by the
mode ψ̂i of qΨ(ψi), which is obtained by maximizing f(ψi) =

e{Ñiψi−(〈τ 〉/2)ψ2
i−eψi } with respect to ψi. Solving (df(ψi)/

dψi)|ψi=ψ̂i
=0, we get ψ̂i = Ñi/〈τ〉 −W(exp(Ñi/〈τ〉))/〈τ〉,

where W(.) is Lambert’s W-function. Now, making a second-
order Taylor expansion of lnf(ψi) around ψ̂i and then exponen-
tiating both sides, we get f(ψi)=f(ψ̂i) exp{−(A/2)(ψi−ψ̂i)

2},
where A = −(d2/dψ2

i )lnf(ψi)|ψi=ψ̂i
= (|〈τ〉 + eψi |ψi=ψ̂i

)−1.

Note that the first-order term vanishes since ψ̂i is a local
maximum of f(ψi) (and therefore of lnf(ψi)).

Therefore, the Gaussian approximation of qΨ(ψi) is given by

qΨ(ψi) ≈ N
(
ψi;mi, σ

2
i

)
(9)
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where

〈ψi〉 = mi = Ñi/〈τ〉 −W
(
exp

(
Ñi

〈τ〉

))
/〈τ〉

σi =
(
|〈τ〉 + ez|z=mi

)−1〈
ψ2
i

〉
= m2

i + σ2
i .

2) Distribution of β

qβ(β) = N (β;μ,Σ)

with Σ =
(
〈τ〉XTX+ 〈τ〉diag (〈α〉)

)−1

and μ = Σ
(
XT〈Ψ〉

)
〈τ〉. (10)

The moments are given by 〈β〉 = μ; 〈β2
j 〉 = Σjj + μ2

j , and

〈ββT 〉 = Σ+ μμT .
3) Distribution of α

qα(α) =

p∏
j=1

qα(αj) =

p∏
j=1

InvGaussian(αj ; gj , hj) (11)

with gj =
√
〈γj〉/〈τ〉〈β2

j 〉 and hj = 〈γj〉.
The relevant moments are 〈αj〉 = gj ; 〈α−1

j 〉 = g−1
j + h−1

j .
4) Distribution of γ

qγ(γ) =

p∏
j=1

qγ(γj) =

p∏
j=1

Ga(γj ; aj , bj) (12)

with aj = a0 + 1 and bj = b0 + (1/2)〈α−1
j 〉.

Relevant moment is 〈γj〉 = aj/bj .
5) Distribution of τ

qτ (τ) = Ga(τ ; c, d) (13)

with c = c0 + ((n+ p)/2) and d = d0 + (I/2) + (J/2)

where I =

n∑
i=1

(〈
ψ2
i

〉
− 2〈ψi〉xT

i 〈β〉+ xT
i

〈
βTβ

〉
xi

)

and J =

p∑
j=1

〈αj〉
〈
β2
j

〉
.

Relevant moment is 〈τ〉 = c/d.
The parameters of each of the distributions have a depen-

dence on the moments of one or more of the other variables. We
can only find an optimum solution via iterative updates starting
with the random initial values of the relevant moments since
no closed-form solution exists. This is equivalent to applying
a gradient ascent to maximize the lower bound J . We can
compute the variational lower bound J by replacing qΛ(Λ),
qβ(β), qα(α), qγ(γ), and qτ (τ) in (7). In each update iteration,
we compute the lower bound J and continue the process as long
as the bound keeps increasing. Note that, once the approximate
solution is reached, we can compute the marginal distributions
over coefficients βi which are Gaussian with mean μi and
variance Σii. We can thereby perform a t-test to determine
whether the corresponding covariate influences the extremes
frequencies.

D. Validation on Synthetic Data

In order to validate the performance of our algorithm in terms
of how accurately it recovers the true dependence structure, we
tested our algorithm on a number of different synthetic data
sets with varying complexity. In our first set of experiments, we
used ten different β values having decreasing sparsity varying
from 2 nonzero elements to 20 nonzero elements incremented
by 2 at a time, and noise variance was fixed at 0.1. The values
of nonzero βi in these experiments are kept fixed at 0.5. We
generated 200 samples of the features xi (dimensionality p
fixed at 40; i = 1, . . . , 200) from normal distributions N(0, 1)
and generated λi using (2), i.e., by exponentiating the linear
combination of features Xi in the right-hand side. We sampled
the frequencies Ni from Poisson distributions having average
parameters λi. We sampled more than 200 data-points, and in
the final data set, we kept only 200 data-points for which Ni is
less than 30 to simulate natural scenarios where extremes are
rare (the number of rainfall extremes in a year hardly exceeds
30). In the second set of experiments, we fixed the sparsity to
ten nonzero coefficients and varied noise variance σ2 = τ−1

[see (2)] from 0 to 3 incremented by 0.5. Experimental data sets
are then generated following the same procedure described for
the first set of experiments. We repeated both experiments ten
times and reported the averageF1-score along with the standard
deviation for each set of experiments. F1-score measures how
accurately our method recovers the zero/nonzero structure of
the coefficients. It is given by F1 = (2PR/(P +R)), where P
is the precision1 and R is the recall.2 Since the primary goal
of this paper is identifying the covariates correctly, we have
evaluated our method based on its ability to correctly identify
the relevant covariates and not their ability to predict correctly.
As mentioned before, we decided whether each βi is zero or not
based on a t-test that rejects the null hypothesis (βi 	= 0) at 1%
confidence level.

As a baseline, we reported the F1-score of non-Bayesian
sparse GLM which was implemented using standard soft-
ware package in MATLAB. The hyperparameter for the non-
Bayesian algorithm was tuned using a tenfold cross-validation.
The results of both sets of experiments are shown in Fig. 1(a)
and (b), respectively. We can see that the Bayesian method is
far superior in terms of accurately and precisely finding the
dependence structure. The reason for this large difference in
performance between two methods becomes clear when we plot
the coefficients estimated by both methods for a single exper-
iment along with the actual coefficients in Fig. 2(a) and (b).
Although in both cases initial estimates are highly inaccurate
in identifying irrelevant features (0 coefficients), non-Bayesian
sparse GLM does not provide any additional information to
correct the inaccuracies, while the Bayesian approach provides
a distribution over the coefficients. One may argue that a
thresholding scheme may be used to convert some of the small
coefficients obtained using the non-Bayesian approach to zero.
However, the problem with that approach is that there is no

1Defined by the ratio of correctly identified zero coefficients (true positives)
and total number of estimated zero coefficients (true positives+ false positives).

2Defined by the ratio of correctly identified zero coefficients (true positives)
and total number of actual zero coefficients (true positives + false negatives).
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Fig. 1. Comparison of accuracy (F1-score) of Bayesian sparse GLM (our
method) with that of non-Bayesian sparse GLM. The mean and standard
deviation of F1-scores from ten repetitions are plotted as functions of (a)
number of nonzero coefficients (sparsity) and (b) noise variance σ2.

statistically sound way of threshold selection that is not problem
specific, unlike t-test, which can only be used for a Bayesian
approach. A simple t-test at 1% significance level on the results
of the Bayesian approach produces almost a perfect result. In
Fig. 2(c), we show a sample result (10 nonzero coefficients
with a value of 0.5 and σ2 = 1.5) with different values of
a0, b0, c0, d0. We can see that the values of these parameters
do not affect the estimated values of the coefficients.

E. Data Sources and Preprocessing

We applied our algorithm to estimate the dependence of
the number of yearly occurrences of precipitation extremes on
a number of potential local, regional, and large-scale climate
variables for nine climatologically homogeneous regions over
continental U.S. shown in Fig. 3(a). We obtained the daily pre-
cipitation and minimum and maximum temperature station data
from 1218 stations across continental U.S. stored in the repos-
itory of the U.S. Historical Climatology Network (USHCN)
[46]. The distribution of stations is shown in Fig. 3(b).

As mentioned earlier, our target variable is the yearly fre-
quency of precipitation extremes over stations within a region.

Fig. 2. Sample results showing the actual coefficients and the estimated coef-
ficients by (a) Bayesian sparse GLM (our method) and (b) non-Bayesian sparse
GLM. (c) Sample results showing that changing the values of a0, b0, c0, d0
have no effect on the estimated values of the coefficients.

Extremes were defined as events exceeding a threshold set at
99 percentile of all precipitation events at a particular station,
and we counted the number of such events in each year. We
used a number of covariates for all regions and let our algorithm
find the covariates that influence the precipitation extremes fre-
quency. We aggregated all of the data-points for each year and
over all of the stations within a given climatologically homo-
geneous region and obtained one sparse model for each region
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Fig. 3. (a) Homogeneous regions for temperature and precipitation over continental U.S. (b) Distribution of stations for the USHCN.

using our method. For example, if a region has 100 stations and
each station has 40 years of data on average, then after aggre-
gation, we have 4000 data-points for that region to build our
model. The covariates that we used fall in one of the three
broad categories—local, regional, or climate indices (global).
Local covariates are included to explain the station-level spatial
and temporal variability of the extremes as our model does not
handle them explicitly. Regional variables are spatially aver-
aged local variables over the entire region under consideration
that are used to represent the regional-level climate dynamics
that influences extremes over all of the stations equally. Re-
gional variables do not change spatially over a region but are
different for different regions. Both station-level and regional-
level climate variables can be further categorized in mean
precipitation variables (annual and summer mean) and other
atmospheric variables [annual and seasonal mean temperatures,
sea-level pressure (SLP), and convective available potential
energy (CAPE)]. Additionally, the elevation of the station was
used as a local-level variable for which no regional average
is used. Finally, the climate indices are global variables that
represent large-scale variability in climate variables. Usually,
they are principal components (although they are called em-
pirical orthogonal function in climate literature) of the space-
time anomaly matrix of global climate variables like sea surface
temperature, SLP, etc. Anomalies in climate variables are com-
puted by subtracting the seasonal mean from the daily values.
Additionally, we have also used the global mean temperature
anomaly (GMT) as a global feature variable. A list of covariates
used from each category is given in Table I.

As mentioned earlier, stationwise daily time-series of tem-
perature and precipitation data were obtained from the USHCN
repository [46]. SLP and CAPE for each station were collected
from the closest grid-point of the gridded North American Re-
gional Reanalysis (NARR) data set [47]. However, the NARR
data set is available starting only from 1979. The station el-
evation was obtained from the high-resolution elevation data
set made available by U.S. Geological Survey [48]. Finally, the
climate indices were obtained from NOAA’s Climate Predic-
tion Center data repository [49], most of which are available
from 1950.

We used the covariates from 1979 to 2011 as this is the
common period for which all of the covariates are available. If
more than 50% of the daily observations out of a year are miss-

ing for any of the variables at a specific station, we discarded
all variables for that year and for that specific location. For
valid years, we took the annual average (or seasonal, wherever
applicable) of the daily atmospheric variables. On the other
hand, global climate indices are available monthly. We averaged
monthly indices over a year if at least two monthly values
are available. Otherwise, we discarded the corresponding year.
Only two valid monthly values (August and September) were
available for Pacific Transition (PT) pattern. For the remaining
ten months, the pattern is not a leading mode of variability.
On the other hand, for Tropical/Northern Hemisphere pattern,
only three monthly values are available every year for the same
reason. For all other indices, the maximum number of missing
months is 1. For all of the atmospheric variables, both local and
regional, we obtained the anomaly time-series by subtracting
the temporal mean of the time-series. Finally, we normalized
all of the potential covariates before applying our algorithm.

III. RESULTS AND DISCUSSION

A. Correlation Among Feature Variables

As mentioned earlier, unregularized regression algorithms
do not work in the presence of highly correlated features.
Although L1-regularized sparse regressions do not fail in such
cases, they tend to behave inconsistently in terms of selecting
correlated feature variables. If there is a group of variables
that are highly correlated within the candidate set of variables,
non-Bayesian L1-regularized regressions tend to randomly se-
lect one of the variables from this correlated set [26], [28],
which may change unpredictably owing to small changes in
the choice of the hyperparameter. Bayesian sparse models also
tend to pick one variable from a set of highly correlated ones,
but it selects the same variable consistently since there is no
hyperparameter involved. One alternative approach to handle
correlated variables is to first project the data set into a low-
dimensional subspace that minimizes the correlation among the
projected variables using principal component analysis and then
apply the sparse regression method. However, the covariates
chosen in this method will not be interpretable as they do not
correspond to the actual covariates. A number of other alter-
native methods like elastic net [28] or fused LASSO [50] use a
convex combination of two regularizers to achieve both sparsity
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TABLE I
LIST OF CANDIDATE COVARIATES FROM EACH CATEGORY OF VARIABLES USED IN THE STUDY

and grouping of correlated variables, thereby adding additional
hyperparameters to be tuned. Therefore, before we start to inter-
pret the relevant covariates discovered by our method, it is im-
portant to know the correlation structure among the covariates.
In Fig. 4(a) and (b), we show the correlation between each pair
of candidate covariates for northeast and northwest regions,
respectively. The correlation patterns in the other regions look
very similar. We can see that highly correlated variables are
mostly the station-level and region-level averages of the same
variable. This implies that these variables do not exhibit much
spatial variability over the particular region. Therefore, if one
of these variables is significant, it is hardly important which
one is actually selected. The same argument can be used for
other pairs (or groups) of variables that are highly correlated.
However, at the time of interpretation of the dependence results,
it will be important to keep these correlation structures in
perspective.

B. Significant Covariates

Now, we show the significant covariates discovered using our
method for each of the regions considered in Figs. 5 and 6.

In Fig. 5, we display the mean and variance of posterior
Gaussian distribution over each of the regression coefficients
for the northeast region. However, Fig. 6 shows the set of
covariates only which are statistically significant, where the
statistical significance is determined using a t-test based on the
estimated posterior distribution. Although only a few posterior
means are actually zero, the coefficients show different levels
of variance which indicates varying levels of uncertainty over
the coefficients of different covariates. We used the uncertainty
information to perform a t-test that rejects the null hypothesis
(H0) that the coefficient is zero at 1% significance level, which
forces many coefficients to be reduced to 0.

C. Spatial Correlation of Extreme Frequencies

In order to show that the spatial variability in the latent
average parameters, if any, is explained by the choice of covari-
ates, we show the plot of correlation as a function of distance
among time-series of extreme frequencies (N), logarithm of
latent average parameters (ψi), and residuals (ri = ψi − βTxi)
after fitting the sparse model in Fig. 7(a)–(c), respectively,
for the northeast region. These plots can be regarded as the
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Fig. 4. Correlation matrices between candidate covariates for the (a) northeast region and (b) northwest region.

Fig. 5. Mean and variance of the marginal posterior Gaussian distribution over regression coefficients corresponding to each of the covariates for the northeast region.
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Fig. 6. Nonzero coefficients surviving the t-test for the (a) northeast region, (b) southeast region, (c) southern region, (d) central region, (e) east north-central
region, (f) west north-central region, (g) northwest region, (h) southwest region, and (i) western region.

spatial version of correlograms, since correlations are plotted as
functions of spatial distance instead of the temporal delay. For
each of the variables (N,ψ, r), we computed the correlation
among all pairs of stations within the target region as well as
the distance between the pairs of stations. Then, the distances
were sorted, and corresponding correlations were arranged in
equidistance bins. We only considered correlations that are
statistically significant. The correlations in each bin are then
averaged and plotted as a function of equidistance bins.

Although the correlograms shown in Fig. 7 are plotted for
the northeast region only, same plots for other regions look very
similar. For all regions, the correlations among extreme counts
show a clear spatial variability but smaller in value due to the
inherent non-Gaussian nature of the extreme frequencies. The
correlation increases drastically, although the spatial pattern is
preserved, when we use logarithm of average rate parameter
(ψ), instead of the actual extremes count. This is expected since

ψ is a more stable variable than the actual frequencies and there-
fore amenable to a linear model. However, spatial correlation
almost vanishes, and the spatial pattern all but disappears when
residuals (r) are used to generate the same correlation plot. This
suggests that the spatial variability observed in the previous two
cases is well explained by the chosen features. This also shows
that the linear model is sufficient to model the latent average
parameters of the extreme frequencies.

D. Insights

A number of interesting observations can be made from
the plots of regression coefficients for various regions that
suggest dependence of extremes frequencies on corresponding
covariates. Most of the regions show existence of predictive
information in annual and/or summer mean rainfall values
(either station level or regional average) about rainfall extremes,
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Fig. 7. Spatial correlograms showing the average correlation between stations as a function of spatial distance for (a) extreme counts (Ni), (b) logarithm of latent
average parameters (ψi) estimated by our algorithm, and (c) residuals (ri = ψi − βxi) after linear fit.

and in the north-west (NW) region, it is particularly large.
Note that we excluded the extreme rainfall amounts (rainfall
events exceeding the threshold for the station) when com-
puting the mean rainfall at a station. A similar relationship
was found using various methods for Washington state [51],
Canada [52], Australia [53], and Denmark [23]. The mean
annual precipitation (MAP) was found to be a major predictor
of extreme percentiles of rainfall intensity by [54] over a large
region encompassing U.S., Europe and parts of Asia, northern
Africa, and south America. However, in our study, no such
predictive value of MAP for extreme frequencies was found in
the southern U.S. Moreover, in the southeastern, southwestern,
and western U.S., the regional average of MAP is found to be
predictive of extreme frequencies rather than the station-level
MAP. These results suggest that the regional-scale analysis
of rainfall may lead to insight that is not in agreement with
the global insight, and additional studies and methods may be
required to find regions around the globe where mean rainfall
has predictive information about extremes.

In the NW region, the regression coefficients of annual and
summer mean rainfalls have opposite signs. Although it might
seem counterintuitive at a first glance, a closer look at the
rainfall pattern of the region reveals that summer is drier than
winter in NW and summer average rainfall does not show any
significant correlation with annual average in that region [see
Fig. 4(b)]. Therefore, based on this result, one can claim that, if
this region gets a lower average rainfall in the summer, there is
a high probability that it might get more extremes in the winter
on average, which, to our knowledge, is a new insight.

Influence of temperature on both convective and large-scale
precipitation extremes has been documented in literature. The-
oretically, Clausius–Clapeyron relationship dictates that the
maximum amount of water vapor contained in an air-column
is determined by the temperature of the column. Increasing
global temperature is found to have influence on increasing
extreme rainfalls at a global level over a multidecadal time-
scale [55], [56], although the relation is not straightforward at a
regional level and over a smaller time-scale [57]. An indicator
for regional-level convective process, which leads to convective
rainfall, is CAPE that quantifies convective pull in an air-
column due to the temperature difference in the vertical layers
of the column. Dependence of rainfall extreme frequencies on
the CAPE therefore implies prevalence of convective rainfall in
that region. Our results show that the northeast, south, central,
east north-central, and west north-central regions have nonzero

coefficients for CAPE, which implies that a sizeable number
of extremes in these regions possibly occur due to the regional
convective processes. Moreover, in the central region, there is
no influence of climate indices, which may mean that majority
of extreme rainfalls in this region are caused by convection. On
the other hand, southeast or any of the regions in western U.S.
show dependence, which may imply that regional convection
contributes only a small number of extremes in these regions.

The effect of elevation on the occurrence of rainfall extremes
has been well documented for the northwest region. However,
we found a dependence of rainfall extremes on elevation in
the northeast and southern regions as well. We did not find
dependence on SLP in any of the regions.

It can also be seen that most of the regions show depen-
dence of rainfall extremes on one or more large-scale climate
indices except land-locked regions like the central and south-
west regions. Since most of the climate indices explain large-
scale variability of the ocean variables, dependence on these
variables also represents ocean influence on rainfall extremes.
As mentioned earlier, similar relations between extreme rain-
fall and large-scale indices have been studied for contiguous
U.S. [17], [20] and at more regional level [19], [58] using
both observed and model simulations. We can see that the
southeast region shows particularly a strong dependence on
multiple ocean variables. A plausible explanation can be that
the majority of the rainfall extremes in this region are caused
by tropical cyclones of various intensities [59], [60], which,
in turn, are generated over oceans due to the variability in
ocean variables. Past studies have established a link between
precipitation patterns in Florida with El Nino, PDO, and NAO
patterns [17], [61], [62]; our method have found links between
precipitation extremes frequency in the southeast region with
Tropical North and South Atlantic (TNA and TSA) patterns,
Nino indices, and PT patterns.

Southeast is the only region that shows dependence on global
mean temperature anomaly, albeit the dependence being nega-
tive. This suggests reduction of the extreme rainfall events in
this region with global warming, which contradicts the existing
knowledge about the relation between the two. Although the
trend in rainfall extreme frequencies in the southeastern U.S.
has not been previously linked to global temperature anomaly
before, weakly declining trend of heavy rainfall has been
reported along the coastal section of the region, which has
been linked to the fluctuation of the high-pressure region in the
subtropical Atlantic (Bermuda high) [63]. This is an example of
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an interesting insight that can be regarded as a new hypothesis
and needs to be validated using a hypothesis-guided approach
that involves understanding the physics behind it.

E. Discussions

Since we used a Bayesian approach to estimate the pos-
terior distribution over the regression coefficients, we get a
natural estimate of uncertainty bound around the estimated
mean coefficient which enables us to test the significance of
the coefficient in a statistically sound manner. The estimated
uncertainty bounds for the northeast region are shown in Fig. 5,
and only the significant coefficients determined from these
bounds are shown in Fig. 6. It can be seen that the southwest
region has only two significant covariates, which is significantly
smaller than the other regions. One possible reason is that this
region does not get too much rainfall, and therefore, many
years will experience no extremes at all. Therefore, many
data-points were not used to build the regression model. This
resulted in large uncertainty in posterior distribution of the
regression coefficients which were then subsequently proved
insignificant.

As mentioned earlier, the correlation among the potential co-
variates needs to be considered before inferring any dependence
relationship. As an example, the influence on Nino indices
has to be interpreted carefully since some of them highly
correlated among themselves and therefore contains redundant
information. In the north-west region, two Nino indices show
opposite effects on precipitation extremes. However, these two
covariates are highly correlated, and therefore, it is difficult
to infer from this result which variable has actual influence
on the rainfall extremes. In this case, their significance needs
to be tested individually using further statistical tests. We can
ensure selection of all correlated variables if at least one of
them is actually important by using a Gaussian prior on the
coefficients to encourage grouping in addition to the sparsity-
inducing Laplace prior currently being used. However, that
will introduce a tunable hyperparameter (to balance between
weights of two priors) and may cause inconsistent results due
to the small variation of the hyperparameter. Moreover, we will
still have to decide the covariates that actually influence the
rainfall extremes using further statistical tests. Improving our
Bayesian model to automatically handle the correlated features
remains to be a future work.

IV. CONCLUSION

In this paper, we have presented a statistically rigorous
framework for finding covariates that influence the extreme
frequencies. We have extended the Bayesian hierarchical de-
scription of sparse regression to accommodate GLM with
Poisson-distributed target variable and developed an efficient
VB inference algorithm to estimate the probability distribution
over the regression parameters. Our method shows a high level
of accuracy on synthetic data set and outperforms the non-
Bayesian alternative by a large margin. We have also shown
the value of using our method for finding the covariates that
influence precipitation extremes frequency out of a large pool
of candidate covariates of different spatial scale.

The insights that we have obtained using our methods can be
summarized in three categories from the perspective of climate
science. First, we have rediscovered some known relations
like the following: 1) predictive value of station-level and/or
regional-level mean annual and summer rainfalls about the rain-
fall extreme frequencies and 2) dependence of extreme rainfall
frequencies in the northwest region on elevation. Second, we
have obtained new insights that are fairly intuitive in nature
like the following: 1) dependence of rainfall extremes in the
central region on CAPE but not on climate indices that suggest
that majority of rainfall extremes are convective in that region,
whereas in the southeastern and western U.S., our method
suggests otherwise, and 2) rainfall extremes frequency depends
on elevation in the northeast. Finally, we have obtained a few
insights that are new and counterintuitive and therefore need
more focused statistical and physical validation. The inverse
relations between rainfall extremes frequency with summer
mean rainfall in the northwest U.S. and with global mean
temperature anomaly in the southeast U.S. are examples of
such insights. We have shown the importance of considering
covariates at different spatial scales in order to fully capture the
multiscale processes that lead to rainfall extremes. Moreover,
we have demonstrated that our method can be used as an
alternative to hypothesis-guided approaches for discovering
new insights related to precipitation extremes. However, one
important caveat is that these new insights have to be ultimately
corroborated by the climate physics.

The dependence analysis performed in this paper is mainly
exploratory in nature. We plan to extend the model to perform
predictive analysis in the future. We also plan to develop
a similar sparse model for dependence analysis of extremes
intensity which is significantly more challenging since it in-
volves distributions outside of the exponential family. Finally,
we plan to incorporate a spatiotemporal autoregressive model
within our probabilistic framework to leverage the spatiotem-
poral correlation inherent in climate and other spatiotemporal
data sets.
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