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Abstract Datasets with imbalanced class distribution are available in various
real-world applications. A great number of approaches has been proposed to
address the class imbalance challenge, but most of these models perform poorly
when datasets are characterized with high class imbalance, class overlap and
low data quality. In this study, we propose an effective meta-framework for
high imbalance overlapped classification, called DAPS (DynAmic self-Paced
sampling enSemble), which (1) leverages reasonable and effective sampling to
maximize the utilization of informative instances and to avoid serious infor-
mation loss and (2) assigns proper instance weights to address the issues of
noisy data. Furthermore, most of the existing canonical classifiers (e.g. De-
cision Tree, Random Forest) can be integrated in DAPS. The comprehensive
experimental results on both synthetic and three real-world datasets show that
the DAPS model could obtain considerable improvements in F1-score when
compared to a broad range of published models.

Keywords Dynamic self-paced sampling · Highly class imbalance · Class-
overlapped data

1 Introduction

Imbalanced classification is the problem of classifying datasets with skewed
class distributions and has gained increasing attention from researchers. The
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distribution of instances across classes may involve a slight class bias up to
a severe class imbalance in various real-world applications, such as fraud de-
tection [27], credit risk prediction [19] and rare disease prediction [29]. Im-
balanced classification poses a challenge to the existing predictive models
as most of them were designed under the assumption that classes are uni-
formly distributed. Besides an imbalanced class ratio [8,14,28], overlap be-
tween classes [21] and presence of noise are also crucial factors affecting the
predictive capability of classification models.

A plethora of approaches have been proposed for the imbalanced binary
classification problem and are focused on diminishing the effect of imbalanced
class ratio. For example, both data-level approaches [3,9,11,21] and ensemble-
based models [14,16,18] modify the class distribution by generating (or re-
moving) instances. However, they may be inapplicable to highly imbalanced
datasets, as they are prone to overfitting or suffer from enormous computa-
tional cost, or may even lead to losing useful information. Algorithm-level
methods [13,15] assign a heavier weight on all minority class instances that
are misclassified. While a straightforward solution is to determine the weight
value based on the imbalance ratio calculated from the available data, it might
not be representative of the true underlying class distribution.

Recently, a few studies have shown that the performance of classifiers is
affected more by the “amount” of class overlap rather than by the imbalanced
class ratio [21,22,23]. Such studies address the overlap problem by removing
negative instances from the overlap region without re-balancing the class dis-
tribution. This may cause a loss of informative instances from the majority
class, especially when the overlap region is large. Furthermore, in real-world
applications, datasets often contain noise or outliers, which affects a classifier’
performance. Therefore, many existing approaches are limited in their model-
ing capacity to handle data characterized by high class imbalance, class overlap
and a certain degree of noise.

In this work, we propose an effective meta-framework called DAPS (Dy-
nAmic self-Paced sampling enSemble) for the high imbalance overlapped bi-
nary classification problem. The framework contains two major steps, dynamic
self-paced sampling and instance weighting. The goal of dynamic self-paced
sampling is to address issues including information loss and high computa-
tional complexity caused by generating balanced datasets. The benefits of
this mechanism are twofold. First, it maximizes the utilization of informative
instances and prevents information loss by progressively transforming class
distributions from imbalanced to balanced, acting as a more effective alterna-
tive to previous sampling techniques for coping with class imbalance. Second,
a self-paced procedure is able to expand the model’s generalization capabil-
ity, by focusing initially on easy-to-learn instances and gradually incorporating
hard-to-classify instances. The goal of instance weighting is to exploit valuable
instances in the class overlap region in order to enhance the model’s predic-
tive capability while minimizing the effect of noisy data. The proposed instance
weighting mechanism does not require any prior knowledge, which allows for
integrating any standard classifier in the framework.
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The main contributions of this work are summarized as follows:
(1) We propose an effective framework, DAPS 1, for classification of highly-
imbalanced, class-overlapped and noisy data. Any canonical classifiers that
provide soft or probabilistic outcomes, such as Decision Tree, Random Forest
and GBDT [7], can be integrated into DAPS. Experimental results on both
synthetic and real-world datasets validate the effectiveness of DAPS. Com-
pared with the existing methods, DAPS is much more accurate and robust.
(2) We design a dynamic self-paced sampling mechanism to gradually trans-
form a class distribution from imbalanced to balanced and sample instances
based on their classification difficulty. This reduces the impact of the imbal-
ance ratio effectively.
(3) We selectively assign weights to instances to minimize the impact of noise
and leverage valuable instances lying near the decision boundary.

2 Related work

The existing approaches on imbalanced data classification can be categorized
into three groups: data-level, algorithm-level and ensemble-based.

Data-level: This type of approaches aims to obtain a balanced class dis-
tribution through a preprocessing step known as resampling. The basic tech-
niques include either removing instances from the majority class [21] or gen-
erating new instances for the minority class [3,11].

Algorithm-level: This method class modifies the objective functions of con-
ventional classifiers by incorporating users’ preferences [13,15]. Among this
group of methods, the most popular subgroup is cost-sensitive learning [13],
which assigns large and small costs to minority and majority classes, respec-
tively, to avoid bias.

Ensemble-based: This group of methods leverages data-level or algorithm-
level techniques into an ensemble scheme to build a strong classifier [14,16,18,
24]. Since it makes the class distribution balanced, any traditional classifiers
can be subsequently applied. Due to their outstanding performance, ensemble
methods became popular in real-world applications.

The existing approaches still have limitations on extremely imbalanced
and class-overlapped datasets. Under-sampling may lead to severe informa-
tion loss, as it only considers a small portion of instances from the majority
class. Furthermore, it cannot guarantee that the selected instances are infor-
mative. Over-sampling may increase the computational cost and may lead
to overfitting, as it replicates a large number of instances from the minority
class. The cost matrix in cost-sensitive learning is designed by domain experts
or learned by other approaches [13], thus the algorithm-level methods cannot
be generalized to other tasks.

Another line of research relevant to this work is self-paced learning. Self-
paced learning [10] is focused on finding informative instances and is not de-
signed for the imbalanced classification problem. The core idea is to learn

1 The code is available at https://github.com/ZhouF-ECNU/DAPS.

https://github.com/ZhouF-ECNU/DAPS
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Fig. 1: Dynamic Self-Paced Ensemble Process. Fig. 2: Overlap region
approximation.

easier aspects of a given task or easier subtasks first, and then gradually in-
crease the difficulty level. One recent work [14] adopted self-paced learning for
the imbalanced classification problem. However, since their model Self-paced
Ensemble (SPE) utilizes under-sampling, it still has limitations concerning
highly imbalanced and class-overlapped datasets.

In comparison, the proposed model DAPS combines dynamic sampling
with the idea of self-paced learning to choose informative instances. Utilizing
the concept of dynamic sampling helps prevent information loss. In addition,
DAPS selectively assigns weights to informative instances in the class overlap
region, which minimizes the effect of noisy data. This mechanism is different
from boosting methods [6,7], as they over-emphasize the misclassified data
points, making them sensitive to outliers and noisy data.

3 Method

In this section, we present the proposed framework DAPS (described in Sec-
tion 3.3). Fig. 1 shows the pipeline of the framework. DAPS is an ensem-
ble framework and contains two important steps dynamic self-paced sampling
and instance weighting (described in Sections 3.1 and 3.2, respectively). The
dynamic self-paced sampling step generates a sequence of datasets with dif-
ferent class distributions by sampling instances based on how well they were
predicted, rather than through a blind selection. The instance weighting dy-
namically assigns weights to the instances in the class overlap region (shown
in Fig. 2). The weights of instances in the non-overlap region are maintained
same in the process. Initially, DAPS chooses a large number of easy-to-learn
instances to build a skeleton and ensure that the labels of the majority of
instances can be correctly predicted. Then it puts more focus on the hard-to-
classify instances by selectively assigning larger weights to valuable instances
in the class overlap region and much smaller weights to noisy data.

zoran
Sticky Note
:
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We now introduce the notation used throughout the paper. Let D denote
the original training dataset and Dl denote the set of the selected instances in
the lth iteration of training. Each instance in D is represented as (x, y), where
y denotes the binary class label of an instance x. In general, people are more
interested in the minority class. We let the minority class be a positive class
P and the majority class be a negative class N , where P and N are often
defined as: P = {(x, y)|y = 1}; N = {(x, y)|y = 0}.

Let |P| and |N | be the number of instances in the positive class P and
negative class N , respectively. Here it is assumed that |P| � |N |. We define
the imbalanced ratio IR as the number of instances in N divided by the

number of instances in P, i.e. IR = |N |
|P| . The value of IR is much larger than

1 for highly imbalanced datasets.

3.1 Dynamic self-paced sampling

3.1.1 How many instances will be sampled in each iteration?

In order to address the challenges posed by over-sampling and under-sampling
methods, we generate a series of datasets with various class distributions, from
imbalanced to balanced.

The imbalanced ratio represents the skewness of a class distribution. Thus,
we can generate datasets with varied class distributions by adjusting this ratio,
from the original imbalanced ratio to a balanced ratio, through a scheduler
function SF [26]. The imbalanced ratio IR at the lth iteration is computed

as IR(l) = IRori
SF (l), where IRori represents the imbalanced ratio of the

original dataset and SF (l) is a function that returns a real value from 1 to 0,
monotonically decreasing with the input l. The scheduler function SF can be
defined in various ways [26]. For example, a convex function, which controls the
learning process speed from slow to fast, or, a concave function, which controls
the process speed from fast to slow. In this work, we consider a linear function
with a constant learning speed. Thus, SF (l) is defined as SF (l) = 1 − (l/L),
where L is the total number of iterations. At the beginning of the first iteration,
when l = 0, SF (0) = 1, and the model is trained on the original training
dataset (D0 = D). When the process reaches the final iteration, SF (L) is 0,
so IR(L) is equal to 1 and DL is a balanced dataset.

Considering that the positive instances are relatively limited, the number
of positive instances is not changed in each iteration. That is, |P l| = |P|. The
number of negative instances at the lth iteration is then determined by the
scheduler function SF as

|N l| = bIR(l)× |P|c = b|N |SF (l) × |P|(1−SF (l))c. (1)

3.1.2 Which instances will be sampled?

Inspired by the idea of self-paced learning [10], we design a sampling mech-
anism which initially focuses on the easy-to-learn instances and then pro-
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gressively includes more complex ones. The purpose is to adaptively adjust
the sampling strategy to improve the model’s generalization capability. For
a classification problem, if an instance has a high probability to be classified
correctly, it is regarded as an easy-to-learn instance. Suppose that we have a
trained classifier F . The hardness of an instance x is computed as the proba-
bility of misclassification:

H(x, y, F ) =

{
1− p, y = 1

p, y = 0,
(2)

where p ∈ [0, 1] is the estimated probability for the label y = 1. The value of
H(x, y, F ) ranges from 0 to 1. A higher value of H(x, y, F ) implies that the
instance x is more difficult to be classified correctly.

We first split positive instances into B bins of equal width according to
their hardness, where B is a hyper-parameter and each bin reflects a level of
hardness. Then, we repeat the same binning procedure for negative instances.
Let b+ and b− represent the bth bin of positive and negative instances, respec-
tively. Since the binning procedures are the same for positive and negative
instances, for simplicity, we use b instead of b+ and b−. Let Binlb denote the
bth bin at the lth iteration, αl be the range of misclassification probability
values for all instances from D0, calculated at the l-th iteration, and βl rep-
resents the minimum of those misclassification probability values. The range
αl is then split into B equal-width bins. If the hardness of an instance x is

within
[
αl∗(b−1)

B + βl, α
l∗b
B + βl

)
, then the instance falls into Binlb, that is,

Binlb =

{
(x, y)

∣∣∣∣αl ∗ (b− 1)

B
+ βl ≤ H(x, y, Fl) <

αl ∗ b
B

+ βl
}
, (3)

where αl = max(x,y)∈DH(x, y, Fl)−min(x,y)∈DH(x, y, Fl). The average hard-

ness of the bth bin at the lth iteration is calculated as

hlb =

∑
(xi,yi)∈Binl

b
H(xi, yi, Fl)

|Binlb|
, (4)

where |Binlb| is the number of instances in Binlb.
Up to this point, positive and negative instances are split separately into

two sets, each containing B bins. We do not simply sample the same number
of instances from each bin. Instead, we prefer to select instances with small
hardness values in the early iterations, and then progressively choose more
instances with large hardness values. The sampling procedure thus depends on
(1) the hardness values and (2) the current iteration l. A modified exponential

function qlb = eh
l
b(l/L−1) is designed to specify the portion of instances chosen

from the bth bin at the lth iteration. The range of qlb is (0, 1]. The counts of
positive and negative instances selected from their respective bth bins at the
l-th iteration are calculated as

|P lb| =

⌊
qlb+∑
b+
qlb+
× |P l|

⌋
; |N l

b | =

⌊
qlb−∑
b−
qlb−
× |N l|

⌋
. (5)
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(a) qlb (b) al (c) Instance weight

Fig. 3: (a) qlb as a function of hlb; (b) al as a function of the iteration number;
(c) vetoed instances’ weights as functions of hardness.

(a) l=0 (b) l = L/2 (c) l = L

Fig. 4: Number of instances that are selected from each bin based on their
average hardness at different iterations l. (|P| = 1, 000 and |N | = 10,000).

A graphic illustration is shown in Fig. 3(a). During the early iterations, more
instances from low-hardness bins are selected (dash-dotted green line in Fig. 3(a)).
As the process continues, the fraction of instances selected from the low-
hardness bins decreases. Finally, the same number of instances are selected
from all bins in the last iteration (dotted pink line in Fig. 3(a)). The number
of instances selected from each bin based on their average hardness, at the
beginning, halfway and the end of the training process, is shown in Fig. 4.

Once |P lb| and |N l
b | are determined, we randomly sample the required num-

ber of instances from the corresponding bins. Note that when |N l
b | > |Binlb− |

(or |P lb| > |Binlb+ |), some instances may be chosen multiple times so as to

achieve the desired number of instances. If Binlb is empty, then no instance is
selected from the bth bin.

3.2 Instance weighting

Once the training instances are sampled, they are assigned weights accordingly.
The goal is to improve the model’s predictive capability by amplifying (or
diminishing) the losses of non-trivial (or noisy) instances.

We divide the entire dataset into two groups: vetoed and non-vetoed in-
stances. A vetoed instance is one whose label is not in agreement with its k
nearest neighbors’ labels. A vetoed instance can be decided by two criteria:
either vetoed by one neighbor or vetoed by all neighbors. A vetoed-by-one
instance refers to an instance whose label differs from at least one of its k
nearest neighbors’ labels (see Eq. 6). A vetoed-by-all instance refers to an in-
stance whose label differs from all of its k nearest neighbors’ labels (see Eq. 7).
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A vetoed-by-one instance and a vetoed-by-all instance are illustrated in Fig. 2.

Dvetoed−by−one = {(xi, yi)|∃xj ∈ KNN(xi), yi 6= yj}, (6)

Dvetoed−by−all = {(xi, yi)|∀xj ∈ KNN(xi), yi 6= yj}, (7)

where KNN(xi) represents the set of an instance xi’s k nearest neighbors.
Both vetoed-by-one and vetoed-by-all instances are vetoed instances. The rest
are non-vetoed instances whose weights are set to 1 throughout the whole
procedure.

Vetoed instances are probably noisy or informative but difficult to classify,
typically located in the overlapped region of positive and negative data, as
they are not consistent with their k nearest neighbors’ labels. Thus, we design
a function that puts more emphasis on non-trivial instances while decreasing
the effect of noisy instances. The weight of a vetoed instance x selected from
the bth bin at the lth iteration is calculated as

SW (hlb, a
l) = e−(h

l
b+a

l), al =

{
−ln

(
2l
L

)
, l≤ L

2
1
2−

l
L ,

L
2 <l≤L.

(8)

SW (hlb, a
l) is an exponential function with inputs hlb and al, where al is

an adjusted parameter to control the range of SW (hlb, a
l) values. The function

al can be any arbitrary function if it is monotonically decreasing and passes
through (L2 , 0) and (L,−0.5). The value of al as a function of the iteration
l is plotted in Fig. 3(b) and the weights of vetoed instances as functions of
hardness are plotted in Fig. 3(c). The function SW (hlb, a

l) slowly increases
the weight of a vetoed instance from 0 to a higher value during the process.
The weights of vetoed instances decrease with the increased hardness values
in each iteration.

The instance weighting procedure is divided into two phases. Phase I: at
the beginning, al has a large value, so the weights of vetoed instances are close
to 0 (dash-dotted green line in Fig. 3(c)). At this time, the model is focused
more on the non-vetoed instances (recall that the weights of the non-vetoed
instances are 1). During the first half iterations, the value of al decreases
steadily until it reaches zero at iteration L

2 and the weights of vetoed instances
have a slight increase but are still below 1. When the process reaches iteration
L
2 , the weights of vetoed instances with zero hardness values are 1, and the
weights of the remaining vetoed instances decrease with an increase in the
hardness value (dashed orange line in Fig. 3(c)).

Phase II: in the second half iterations, the model focuses on the vetoed in-
stances with hardness values less than 0.5. The hypothesis is that these vetoed
instances are informative, as they are correctly predicted with a high proba-
bility. As the process continues, the value of al decreases slowly from 0 to -0.5,
then the weights of the correctly classified vetoed instances are subsequently
increased. At the last iteration, the weights of the vetoed instances with hard-
ness values less than 0.5 are much larger than 1. For the vetoed instances with
large hardness values, which are probably noisy data, the weights are still
below 1 (dotted pink line in Fig. 3(c)).
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3.3 DynAmic self-Paced sampling enSemble (DAPS)

We now formally describe the proposed model DAPS and its two variants
DAPSone and DAPSall. We first describe the procedure for the DAPS model
and then clarify the differences among the three variants.

The pseudocode is outlined in Algorithm 1. The model begins by identifying
the set of vetoed instances (Line 2). The weights of non-vetoed instances are
set to 1, and the weights of vetoed instances are set to 0. In each iteration, the
model first samples the required number of instances (Lines 8 - 13). This stage
consists of four steps: (1) Applying the current ensemble Fl to calculate the
hardness values of all instances in D (Line 8); (2) Splitting the original dataset
D to B bins according to their hardness values (Line 10); (3) Computing the
average hardness of each bin (Line 11); and (4) Randomly sampling instances
from each bin (Lines 12 - 13). Then the model assigns the weights to the
selected vetoed instances based on Eq. (8) and trains a base classifier fi using
the selected instances in Dl with weights (Line 15). This process is repeated
in a fixed number of iterations (Lines 7 - 15).

The procedure is the same for DAPS, DAPSone and DAPSall. The only
difference among the three variants is the set of the vetoed instances. In
DAPSone, the vetoed-by-one instances are taken as vetoed instances in both
positive and negative classes. Similarly, in the model DAPSall, for both pos-
itive and negative instances, the vetoed-by-all instances are taken as vetoed
instances. The size of the vetoed instance set in DAPSone is larger than that
in DAPSall. In some cases when the number of positive instances is limited,
the vetoed-by-one scheme may treat all positive objects as vetoed instances.
This will affect the model’s predictive capability. Therefore, the DAPS model
chooses the vetoed-by-one scheme for the negative instances, and the vetoed-
by-all scheme for the positive instances.

4 Experiments

4.1 Experimental setup

We compared the proposed model to various approaches, including data-
level sampling approaches, an algorithm-level method, the frequently used
ensemble-level approaches and the state-of-the-art methods. Here, we briefly
introduce these methods:

1) Data-level sampling methods:

– RUS (Random Under-Sampling) randomly removes |N | − |P| instances
from the majority class.

– ROS (Random Over-Sampling) involves supplementing the training data
with multiple copies of the minority class to balance the class distribution.

– SMOTE (Synthetic Minority Over-sampling TEchnique) [3] generates |N |−
|P| positive instances.
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Algorithm 1: DAPS: DynAmic self-Paced sampling enSemble
Input: Training set D, base classifier f , # of nearest neighbors k,
# of iterations L, # of bins B
Output: Ensemble model F (x)

1 Initialize: P ⇐ minority instances in D, N ⇐ majority instances in D;
2 Identify the vetoed instances;
3 Set the weights of vetoed instance to 0;
4 Set the weights of non-vetoed instances to 1;

5 Train f0 using D0 with instance weights;
6 for l = 1 to L do

7 Build an ensemble Fl(x) =
∑l−1

j=0 fj(x) ;

8 Calculate the hardness of all instances in D using Fl(x) based on Eq. (2);

9 Update |Pl|, |N l| according to Eq. (1) ;
10 Split P and N into B bins each, following Eq. (3) ;

11 Calculate the average hardness of each bin hlb ;

12 Select |Pl
b| positive instances from the bth+ bin and add them into Dl (b+

ranges from 1 to B) ;

13 Select |N l
b | negative instances from the bth− bin and add them into Dl (b−

ranges from 1 to B) ;

14 Assign weights to the vetoed instances in Dl (Eq. (8));

15 Train fl using Dl with instance weights ;

16 end

17 return F (x) = I
(∑L

l=0 fl(x) > bL/2c
)

;

2) Algorithm-level method:

– LRcs (Logistic Regressioncost sensitive) takes the cost matrix into considera-
tion during training.

3) Ensemble-level methods:

– AdaBoost [6](Adaptive Boosting) assigns larger weighs to instances that
were misclassified and adds new weak learners sequentially to focus on more
difficult instances.

– GBDT [7](Gradient Boosting Decision Tree) uses gradient descent to up-
date a boosting ensemble model.

– XGBoost [5](Extreme Gradient Boosting) uses the second order derivative
of the loss function as an approximation to update a boosting ensemble
model.

– Boostingsmote [4] applies the SMOTE method at each boosting iteration.

– Baggingsmote [25] applies SMOTE method in each iteration to get each
bag for bagging.

– Boostingrus [20] applies the RUS method at each boosting iteration.

– Baggingrus [25] uses RUS in each iteration as one bag in the bagging
process.

– Cascade (BalanceCascade) [12] utilizes RUS to train an AdaBoost model
at each iteration.

4) State-of-the-art methods:
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– NB-Based (Neighborhood-Based under-sampling) [21] removes some neg-
ative instances based on their k nearest neighbors.
– NB-Basic (Basic neighborhood search) removes negative instances that

have positive neighbors.
– NB-Tomek (Modified Tomek link search) removes negative instances if

the neighborhood between a negative instance and a positive instance is
established in both directions.

– NB-Comm (Common nearest neighbors search) removes the negative
instances that are common nearest neighbors of any two positive in-
stances.

– NB-Rec(Recursive search) is an extension of NB-Comm that removes
the negative instances that are common nearest neighbors of any two
removed instances in the output of NB-Comm.

– SPEnsemble (Self-Paced Ensemble) [14] generates an ensemble by self-
paced harmonizing data hardness via under-sampling.

– SwitchingNED (Class Switching according to Nearest Enemy Distance) [8]
flips the labels of negative instances based on the nearest enemy distance
and then trains a decision tree on the switched instances.

– LDAM-DRW [2] optimizes a label-distribution-aware loss function to en-
courage larger margins for minority classes.

To demonstrate the robustness and effectiveness of the approaches, we con-
sidered four base classifiers: DT (Decision Tree), RF (Random Forest), SVM
(Support Vector Machine), and GBDT (Gradient Boosting Decision Tree) to
train the models. We used the implementations of the above base classifiers
from the scikit-learn [17] package. The max depth of the tree-based classifiers
and the number of iterations in the ensemble methods were set to 10. The
rest of the hyper-parameters were set to their default values in scikit-learn.
The experimental settings for the other methods were the same as in their
corresponding papers. As for DAPS, we set the number of bins B to 10, the
number of iterations L to 10, and the number of nearest neighbors k was fine-
tuned between 1 and 5. We chose Euclidean distance as a measure for finding
the nearest neighbors of an instance. We used F1-score, precision and recall
as evaluation metrics2 to compare the models’ performances. All experiments
were conducted on a machine with Intel Xeon E5 2.1 GHz and 256 GB RAM.

4.2 Results on synthetic datasets

To better understand the proposed model, we generate a 2 × 4 checkerboard
dataset (as shown in Fig. 5(a)) so that some characteristics, such as the im-
balanced ratio, can be controlled (SPEnsemble [14] used a similar generation
process). The dataset contains instances from eight bivariate gaussian distri-
butions. The variance-covariance matrix of the instances in the negative class

2 Due to space limitation, we only report precision and recall results on real-world
datasets. AUPRC (i.e., the area under the precision-recall curve) does not properly reflect
the performance of our model, as DAPS chooses 0.5 as threshold to optimize predictions.



12 Zhou et al.

0 1

0
1

(a) σ2
p = 3, IR = 5

0 1

0
1

(b) σ2
p = 3, IR = 10

0 1

0
1

(c) σ2
p = 6, IR = 5

Fig. 5: Illustration of the synthetic datasets. The blue dots are from the neg-
ative class and the red dots are from the positive class.

is 3 · I2, while that of the instances in the positive class is σ2
p · I2, where I2 is

an 2× 2 identity matrix. We fix the number of positive instances |P|=500 in
all experiments, and determine the number of negative instances |N | by con-
trolling the imbalanced ratio (see Figs. 5(a) and 5(b)). Furthermore, we vary
the value of σ2

p to control the degree of class overlap (see Figs. 5(a) and 5(c)).
Using the aforedescribed data generation procedure, a training set and an in-
dependent test set were generated. The ratio of training-to-testing size was
4 : 1. Each model was run on the train/test set five times independently, and
the mean and standard deviation of the resulting F1-scores were reported.

4.2.1 Effectiveness of DAPS

We first compared the effectiveness of DAPS and its variants with baseline
models on a synthetic dataset where the covariance matrix of the instances in
the positive class was 3 ·I2 and the imbalanced ratio was 30. Table 1 shows the
mean and standard deviation of F1-scores obtained by all models (including
the one without applying any sampling technique) using 4 different base classi-
fiers. DAPS and its two variants outperformed all baseline models by a notable
margin. In general, when DT was the base classifier, DAPS produced 11.3%-
26.3% higher F1-scores when compared to the data-level sampling methods,
3%-22% higher F1-scores when compared to the ensemble-level methods, and
1%-30.2% higher F1-scores when compared to the state-of-the-art methods.
The performance is consistent when applying other base classifiers, thus veri-
fying the effectiveness of DAPS.

4.2.2 Effectiveness with respect to imbalanced ratio

To verify the effectiveness of the model with respect to imbalanced ratio (IR),
we changed the class distribution by varying IR between 10 and 90 in steps
of 40. Due to space limitation, we only show the results of all models that
applied DT as the base classifier in Table 2. Compared with all baseline mod-
els, DAPS and its two variants DAPSone and DAPSall produced higher F1-
scores. When the imbalanced ratio was 10, DAPS produced 0.5%-66.6% higher
average F1-scores than the other baseline models. As the imbalanced ratio in-
creased, almost all sampling methods deteriorated rapidly. For example, when
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Table 1: Mean and standard deviation of F1-scores obtained by the models
using different base classifiers. Note that LRcs and LDAM-DRW are left out
from this experiment as they do not support different base classifiers.

Methods
Classifiers

DT RF SVM GBDT

No sampling 0.664 ± 0.000 0.486 ± 0.000 0.397 ± 0.000 0.644 ± 0.000

RUS 0.411 ± 0.015 0.484 ± 0.011 0.373 ± 0.062 0.472 ± 0.014
ROS 0.561 ± 0.010 0.597 ± 0.023 0.505 ± 0.004 0.568 ± 0.020

SMOTE 0.544 ± 0.005 0.586 ± 0.004 0.532 ± 0.004 0.564 ± 0.010

AdaBoost 0.644 ± 0.020 /1 / /
GBDT 0.639 ± 0.004 / / /

XGBoost 0.594 ± 0.000 / / /
Boostingsmote 0.630 ± 0.018 0.664 ± 0.012 0.000 ± 0.000 0.656 ± 0.013
Baggingsmote 0.635 ± 0.011 0.643 ± 0.011 0.647 ± 0.017 0.649 ± 0.012
Boostingrus 0.454 ± 0.013 0.503 ± 0.012 0.307 ± 0.164 0.539 ± 0.009
Baggingrus 0.458 ± 0.009 0.462 ± 0.004 0.459 ± 0.012 0.460 ± 0.012

Cascade 0.523 ± 0.019 0.570 ± 0.018 0.506 ± 0.017 0.595 ± 0.017

SPEnsemble 0.627 ± 0.016 0.676 ± 0.015 0.641 ± 0.011 0.679 ± 0.006
SwitchingNED 0.372 ± 0.005 / / /

NB-Basic 0.621 ± 0.000 0.644 ± 0.000 0.453 ± 0.000 0.678 ± 0.000
NB-Tomek 0.416 ± 0.000 0.475 ± 0.000 0.451 ± 0.000 0.467 ± 0.000
NB-Comm 0.664 ± 0.000 0.616 ± 0.000 0.397 ± 0.000 0.539 ± 0.000

NB-Rec 0.664 ± 0.000 0.598 ± 0.000 0.397 ± 0.000 0.558 ± 0.000

DAPSone 0.660 ± 0.008 0.694 ± 0.007 0.448 ± 0.034 0.591 ± 0.015
DAPSall 0.659 ± 0.013 0.695 ± 0.004 0.463 ± 0.019 0.586 ± 0.011
DAPS 0.674 ± 0.008 0.698 ± 0.003 0.696 ± 0.001 0.698 ± 0.011

1 The original implementations of XGBoost, AdaBoost, GBDT and SwitchingNED have DT fixed
as their base classifier.

Table 2: Mean and standard deviation of F1-scores obtained by the models
with respect to imbalance ratio (IR).

Methods IR = 10 IR = 50 IR = 90

RUS 0.705 ± 0.020 0.344 ± 0.013 0.221 ± 0.037
ROS 0.742 ± 0.021 0.504 ± 0.025 0.312 ± 0.022

SMOTE 0.755 ± 0.004 0.432 ± 0.028 0.298 ± 0.029

LRcs 0.146 ± 0.000 0.037 ± 0.000 0.024 ± 0.000

AdaBoost 0.777 ± 0.013 0.627 ± 0.018 0.508 ± 0.009
GBDT 0.791 ± 0.003 0.578 ± 0.004 0.456 ± 0.016

XGBoost 0.807 ± 0.000 0.633 ± 0.000 0.368 ± 0.000
Boostingsmote 0.769 ± 0.010 0.624 ± 0.021 0.474 ± 0.023
Baggingsmote 0.797 ± 0.007 0.642 ± 0.022 0.498 ± 0.007
BoostingRUS 0.703 ± 0.017 0.366 ± 0.013 0.230 ± 0.008
BaggingRUS 0.706 ± 0.012 0.395 ± 0.006 0.236 ± 0.008

Cascade 0.742 ± 0.010 0.419 ± 0.016 0.258 ± 0.018

SPEnsemble 0.775 ± 0.023 0.638 ± 0.020 0.446 ± 0.019
SwitchingNED 0.613 ± 0.008 0.281 ± 0.003 0.176 ± 0.002

NB-Basic 0.596 ± 0.000 0.433 ± 0.000 0.243 ± 0.000
NB-Tomek 0.679 ± 0.000 0.337 ± 0.000 0.179 ± 0.000
NB-Comm 0.787 ± 0.000 0.643 ± 0.000 0.378 ± 0.000

NB-Rec 0.782 ± 0.000 0.643 ± 0.000 0.378 ± 0.000
LDAM-DRW 0.638 ± 0.092 0.416 ± 0.088 0.346 ± 0.035

DAPSone 0.809 ± 0.005 0.636 ± 0.007 0.526 ± 0.014
DAPSall 0.805 ± 0.005 0.648 ± 0.014 0.521 ± 0.025
DAPS 0.812 ± 0.005 0.705 ± 0.009 0.565 ± 0.011

the imbalanced ratio increased to 50, the average F1-score gap between the
baselines and DAPS increased to 23.1%. When the imbalanced ratio increased
to 90 (which implies that the dataset is highly imbalanced), the difference be-
tween DAPS and the alternatives is evident, 5.7%-54.1%. In particular, LRcs

obtained the worst result, that is 0.024.
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Compared with the boosting methods, when the dataset was relatively
imbalanced (IR = 10), DAPS obtained 0.5%-3.5% higher average F1-scores
(p-value ≤ 0.069). When IR increased to 90, DAPS achieved statistically
significantly better results (p-value ≤ 2e-05). The results demonstrate the
robustness of DAPS with respect to the imbalanced ratio.

4.2.3 Effectiveness with respect to class overlap

In order to evaluate the effectiveness of the model with respect to class distri-
bution overlap, we altered the value of σ2

p from 4 to 8. Table 3 shows the results
of all methods that applied DT as the base classifier. Compared with all base-
line models, DAPS and its two variants produced the highest F1-scores. When
the covariance factor in the covariance matrix of the positive class was set to
4·I2, the class distribution was less overlapped, thus making the data relatively
easy to classify. DAPS obtained 1.5% (p-value≤0.004) higher average F1-score
when compared to XGBoost, and 6.4%-63.1% higher average F1-scores among
the remaining approaches. With the increased σ2

p value, the positive instances
become more scattered and the overlapped region of the two classes becomes
larger (see Fig. 5(c)). The performances of the most approaches clearly dete-
riorated. For example, when the σ2

p value increased from 4 to 6, the average
F1-scores of the baselines (except GBDT, NB-Comm and NB-Rec) dropped
by around 7.03%, however, the performance of DAPS decreased only by 6.5%
and still produced 6.1%-8.5% higher F1-scores than GBDT, NB-Comm and
NB-Rec.

As the class distribution became more overlapped, for example when σ2
p

was set to 8, DAPS produced at least 18.7% higher average F1-scores than the
alternatives. These results imply the advantage of applying DAPS on datasets
with highly overlapped class distributions.

4.2.4 Comparison among the three variants of the model

We proceed by comparing the performance among the three variants of the
proposed model. The last three rows in Tables 1, 2 and 3 show the results
of the three approaches in various experimental settings. From the results, it
can be observed that DAPS performs better than DAPSone and DAPSall,
particularly on extremely imbalanced data.

Compared to DAPSone, DAPS always produces higher F1-scores. When
data becomes more imbalanced or the class distribution is more overlapped, the
advantage of DAPS is more obvious. In Table 2, with an increased imbalanced
ratio from 10 to 90, DAPS improved the average F1-scores by 0.3%-6.9%. A
similar trend can be observed in Table 3. When σ2

p increased from 4 to 8,
DAPS obtained an average lift of 3.1%. Since DAPSone chose the vetoed-by-
one criteria to determine the vetoed instances, compared with DAPS, more
positive instances will belong to the group of vetoed instances. For example,
when IR increases from 10 to 90, the fraction of positive instances identified by
DAPS as vetoed instances increased from 3.6% to 13.3%, whereas the fraction
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Table 3: Mean and standard deviation of F1-scores obtained by the models
with respect to class overlapping.

Methods σ2
p = 4 σ2

p = 6 σ2
p = 8

RUS 0.354 ± 0.026 0.288 ± 0.022 0.242 ± 0.004
ROS 0.482 ± 0.021 0.433 ± 0.018 0.352 ± 0.019

SMOTE 0.460 ± 0.011 0.408 ± 0.017 0.320 ± 0.017

LRcs 0.063 ± 0.000 0.060 ± 0.000 0.059 ± 0.000

AdaBoost 0.611 ± 0.011 0.525 ± 0.010 0.457 ± 0.006
GBDT 0.524 ± 0.000 0.568 ± 0.005 0.447 ± 0.000

XGBoost 0.679 ± 0.000 0.612 ± 0.000 0.464 ± 0.000
Boostingsmote 0.620 ± 0.031 0.510 ± 0.019 0.429 ± 0.002
Baggingsmote 0.630 ± 0.012 0.539 ± 0.023 0.449 ± 0.013
Boostingrus 0.381 ± 0.005 0.295 ± 0.015 0.259 ± 0.006
Baggingrus 0.397 ± 0.011 0.320 ± 0.008 0.276 ± 0.006

Cascade 0.462 ± 0.023 0.375 ± 0.027 0.321 ± 0.015

SPEnsemble 0.606 ± 0.022 0.501 ± 0.026 0.424 ± 0.011
SwitchingNED 0.328 ± 0.002 0.272 ± 0.005 0.241 ± 0.004

NB-Basic 0.347 ± 0.000 0.246 ± 0.000 0.224 ± 0.000
NB-Tomek 0.366 ± 0.000 0.277 ± 0.000 0.254 ± 0.000
NB-Comm 0.492 ± 0.000 0.544 ± 0.000 0.444 ± 0.000

NB-Rec 0.492 ± 0.000 0.544 ± 0.000 0.444 ± 0.000
LDAM-DRW 0.527 ± 0.046 0.437 ± 0.045 0.314 ± 0.046

DAPSone 0.677 ± 0.014 0.613 ± 0.014 0.464 ± 0.009
DAPSall 0.674 ± 0.005 0.603 ± 0.015 0.463 ± 0.014
DAPS 0.694 ± 0.008 0.629 ± 0.015 0.525 ± 0.016

increased from 15.6% to 44% when choosing DAPSone. Since the weights of
vetoed instances are set to be much smaller than 1 in the first few iterations,
which may lead to insufficient learning of positive instances.

Compared to DAPSall, DAPS always produces higher F1-scores. With an
increased imbalanced ratio, DAPS improved the average F1-scores by 0.7%-
5.7%. As the class distribution becomes more overlapped by altering σ2

p from
4 to 8, the average improvement made by DAPS was 10.8%. Since DAPSall
chose the vetoed-by-all criteria, only a small number of negative instances are
treated as vetoed, which may overemphasize the effect of some trivial or noisy
instances. For instance, when σ2

p changes from 4 to 8, the fraction of negative
instances identified by DAPS as vetoed instances increased from 4.55% to 7%,
however, the fraction dropped from 0.11% to 0.04% when choosing DAPSall.

4.2.5 Effect of dynamic sampling and instance weighting

We assessed the benefit of the dynamic sampling and instance weighting mech-
anisms w.r.t. classification accuracy by designing the following variants:

1) DAPS−dynamic: A variant of DAPS that utilizes under-sampling instead
of dynamic sampling.

2) DAPS−weight: A DAPS variant that omits the weight mechanism by
setting all instance weights to 1.

We applied DT as the base classifier and summarized the results in Table 4
and Table 5. In Table 4, we fixed σ2

p and altered the imbalanced ratio. When
σ2
p = 3 and IR = 10, DAPS produced ∼2.1% higher average F1-scores than

the two variants. With the increased IR value, the superiority of DAPS was
more clear. Specifically, when IR = 90, DAPS produced ∼8.75% higher F1-
score than the other two variants. Next, when we fixed the imbalanced ratio
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Table 4: Effect of dynamic sampling and instance weighting mechanisms with
respect to imbalanced ratio(IR).

Methods σ2
p = 3, IR = 10 σ2

p = 3, IR = 50 σ2
p = 3, IR = 90

DAPS−dynamic 0.807 ± 0.008 0.676 ± 0.007 0.509 ± 0.011
DAPS−weight 0.775 ± 0.015 0.613 ± 0.009 0.446 ± 0.033

DAPS 0.812 ± 0.005 0.705 ± 0.009 0.565 ± 0.011

Table 5: Effect of dynamic sampling and instance weighting mechanisms with
respect to class overlap.

Methods σ2
p = 4, IR = 30 σ2

p = 6, IR = 30 σ2
p = 8, IR = 30

DAPS−dynamic 0.671 ± 0.010 0.566 ± 0.005 0.489 ± 0.009
DAPS−weight 0.602 ± 0.030 0.595 ± 0.016 0.465 ± 0.006

DAPS 0.694 ± 0.008 0.629 ± 0.015 0.525 ± 0.016

and altered σ2
p to change the degree of class overlap in Table 5, the superiority

of DAPS still held. For example, when σ2
p = 4, DAPS achieved 2.3% higher

F1-score compared to the variant without the dynamic sampling mechanism
and 9.2% higher F1-score than the one that did not utilize instance weights.

4.2.6 Sensitivity of hyper-parameter L

To test the sensitivity of the iteration number L, we changed the value L
from 2 to 100 and conducted the experiment on a synthetic dataset (σ2

p = 8,
IR = 30). The average F1-scores of 5 independent runs of DAPS and the
ensemble methods are plotted in Fig. 6.

It is clear that DAPS obtained an F1-score of 0.508 when L was only
5 and maintained the highest accuracy with the increased L. Compared with
under-sampling based ensemble approach Boostingrus and over-sampling based
ensemble approach Boostingsmote, DAPS demonstrates competitive perfor-
mance. The boosting methods took more number of iterations to reach their
highest F1-scores. For example, the optimal number of iterations for XGBoost
and AdaBoost are 20 and 50, respectively, while GBDT needs more than
100 iterations. However, the highest F1-scores obtained by XGBoost and
AdaBoost were still smaller than the one produced by DAPS. In addition,
after Xgoost and AdaBoost reached their highest accuracy, a decrease in the
F1-score is observed for both methods, which indicates the overfitting of the
models. Furthermore, Cascade and SPEnsemble need more than 100 iterations
to obtain better results. The results demonstrate that DAPS is robust to the
different selection of L and can converge quickly.

4.3 Real-world public datasets

The effectiveness of DAPS was further assessed on three real-world public
datasets whose characteristics are listed in Table 6.

Credit contains European cardholders’ transactions from September 2013 [19].
Given a transaction, the goal is to predict whether it is fraudulent or not. The
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Fig. 6: F1-score as a function of the
number of iterations L.

Table 6: Basic characteristics of the
real-world datasets.

Datesets #Instances #Attributes IR
Credit 284,807 31 579.9
Yeast4 1,484 8 28.4
Yeast6 1,484 8 39.2
PPD 1,000,000 35 7.5

Table 7: Mean and standard deviation of F1-score, precision and recall values
obtained on real-world datasets.

Methods
Credit Yeast4 Yeast6 PPD

F1 precision recall F1 precision recall F1 precision recall F1 precision recall

RUS 0.03 ± 0.01 0.01 ± 0.01 0.89 ± 0.05 0.26 ± 0.03 0.15 ± 0.02 0.88 ± 0.08 0.16 ± 0.02 0.08 ± 0.01 0.80 ± 0.16 0.31 ± 0.01 0.21 ± 0.02 0.57 ± 0.01
ROS 0.28 ± 0.06 0.17 ± 0.05 0.79 ± 0.05 0.30 ± 0.10 0.25 ± 0.06 0.39 ± 0.19 0.47 ± 0.09 0.44 ± 0.32 0.57 ± 0.24 0.31 ± 0.00 0.21 ± 0.00 0.55 ± 0.01

SMOTE 0.17 ± 0.06 0.09 ± 0.03 0.81 ± 0.08 0.32 ± 0.06 0.23 ± 0.04 0.57 ± 0.23 0.29 ± 0.09 0.20 ± 0.05 0.51 ± 0.22 0.26 ± 0.01 0.27 ± 0.01 0.25 ± 0.01

LRcs 0.11 ± 0.04 0.06 ± 0.02 0.88 ± 0.03 0.29 ± 0.03 0.17 ± 0.03 0.83 ± 0.17 0.26 ± 0.06 0.15 ± 0.04 0.85 ± 0.17 0.29 ± 0.00 0.19 ± 0.00 0.58 ± 0.00

AdaBoost 0.73 ± 0.08 0.80 ± 0.11 0.67 ± 0.11 0.32 ± 0.13 0.41 ± 0.16 0.29 ± 0.16 0.45 ± 0.08 0.57 ± 0.11 0.37 ± 0.07 0.12 ± 0.01 0.35 ± 0.01 0.07 ± 0.01
GBDT 0.72 ± 0.06 0.79 ± 0.13 0.69 ± 0.13 0.13 ± 0.13 0.50 ± 0.50 0.07 ± 0.08 0.45 ± 0.05 0.60 ± 0.06 0.37 ± 0.07 0.02 ± 0.00 0.58 ± 0.01 0.01 ± 0.00

XGBoost 0.80 ± 0.07 0.86 ± 0.12 0.76 ± 0.10 0.28 ± 0.16 0.58 ± 0.34 0.19 ± 0.12 0.46 ± 0.09 0.55 ± 0.05 0.40 ± 0.12 0.09 ± 0.00 0.53 ± 0.00 0.05 ± 0.00
Boostingsmote 0.80 ± 0.05 0.86 ± 0.13 0.76 ± 0.08 0.29 ± 0.14 0.37 ± 0.21 0.27 ± 0.16 0.49 ± 0.13 0.48 ± 0.18 0.54 ± 0.18 0.12 ± 0.01 0.36 ± 0.02 0.07 ± 0.01
Baggingsmote 0.75 ± 0.08 0.87 ± 0.12 0.67 ± 0.12 0.18 ± 0.21 0.25 ± 0.24 0.16 ± 0.20 0.56 ± 0.11 0.65 ± 0.02 0.51 ± 0.16 0.12 ± 0.01 0.33 ± 0.01 0.07 ± 0.01
Boostingrus 0.05 ± 0.01 0.02 ± 0.01 0.91 ± 0.05 0.23 ± 0.04 0.13 ± 0.03 0.90 ± 0.15 0.19 ± 0.02 0.10 ± 0.01 0.85 ± 0.17 0.30 ± 0.01 0.21 ± 0.01 0.53 ± 0.01
Baggingrus 0.07 ± 0.01 0.03 ± 0.01 0.89 ± 0.05 0.24 ± 0.04 0.13 ± 0.02 0.82 ± 0.16 0.21 ± 0.02 0.12 ± 0.02 0.85 ± 0.17 0.27 ± 0.01 0.18 ± 0.01 0.52 ± 0.01

Cascade 0.35 ± 0.16 0.23 ± 0.12 0.96 ± 0.04 0.23 ± 0.04 0.13 ± 0.02 0.77 ± 0.19 0.22 ± 0.04 0.13 ± 0.03 0.82 ± 0.12 0.23 ± 0.04 0.15 ± 0.04 0.50 ± 0.11

SPEnsemble 0.44 ± 0.11 0.30 ± 0.10 0.85 ± 0.05 0.30 ± 0.04 0.20 ± 0.06 0.77 ± 0.18 0.27 ± 0.01 0.16 ± 0.01 0.77 ± 0.16 0.32 ± 0.01 0.26 ± 0.01 0.40 ± 0.02
SwitchingNED 0.06 ± 0.02 0.03 ± 0.01 0.91 ± 0.04 0.23 ± 0.03 0.13 ± 0.03 0.90 ± 0.15 0.19 ± 0.04 0.10 ± 0.02 0.85 ± 0.17 0.28 ± 0.01 0.19 ± 0.01 0.55 ± 0.01

NB-Basic 0.76 ± 0.08 0.72 ± 0.13 0.81 ± 0.07 0.28 ± 0.06 0.17 ± 0.04 0.76 ± 0.18 0.33 ± 0.09 0.20 ± 0.06 0.80 ± 0.16 0.20 ± 0.00 0.11 ± 0.00 1.00 ± 0.00
NB-Tomek 0.20 ± 0.03 0.11 ± 0.02 0.86 ± 0.05 0.24 ± 0.07 0.13 ± 0.04 0.84 ± 0.11 0.15 ± 0.04 0.08 ± 0.03 0.82 ± 0.18 0.29 ± 0.00 0.19 ± 0.00 0.60 ± 0.00
NB-Comm 0.73 ± 0.09 0.76 ± 0.19 0.72 ± 0.07 0.31 ± 0.15 0.30 ± 0.17 0.33 ± 0.17 0.33 ± 0.09 0.26 ± 0.08 0.42 ± 0.10 0.10 ± 0.00 0.43 ± 0.00 0.05 ± 0.00

NB-Rec 0.73 ± 0.09 0.76 ± 0.19 0.72 ± 0.07 0.26 ± 0.15 0.29 ± 0.21 0.25 ± 0.15 0.37 ± 0.06 0.29 ± 0.06 0.48 ± 0.07 0.10 ± 0.00 0.43 ± 0.00 0.05 ± 0.00
LDAM-DRW 0.82 ± 0.02 0.83 ± 0.02 0.81 ± 0.02 0.18 ± 0.25 0.21 ± 0.28 0.16 ± 0.23 0.33 ± 0.14 0.44 ± 0.19 0.29 ± 0.13 0.11 ± 0.02 0.54 ± 0.03 0.06 ± 0.01

DAPS 0.82 ± 0.06 0.84 ± 0.11 0.80 ± 0.08 0.39 ± 0.19 0.55 ± 0.31 0.35 ± 0.23 0.56 ± 0.13 0.66 ± 0.19 0.51 ± 0.16 0.32 ± 0.01 0.27 ± 0.01 0.38 ± 0.01

dataset contains 492 frauds out of 284,807 transactions. It is a highly im-
balanced dataset with an IR of 578.9 : 1. We used 5-fold cross-validation to
evaluate the performance of the models.

Yeast is used to predict the Cellular localization sites of proteins [1] and
contains 1,484 instances of multiple classes. We selected one of the classes to be
positive class and the remaining classes constituted the negative class. Yeast4
and Yeast6 denote the datasets with ME2 and EXC as the positive class,
respectively. Yeast4 includes 51 positive instances and its IR is 28.1:1, while
Yeast6 contains 35 positives with an IR of 39.2:1. Five-fold cross-validation
was used to assess the performance of the models.

PPD3 is the “Mirror cup” competition dataset, containing 1,000,000 re-
payment records. It provides relevant attribute information, such as basic in-
formation of borrowers, portrait labels and behavior logs. The task is to predict
whether a given user will repay on time or not. We used 35 features for the
problem, nine of which are basic information features, such as age, and the
others are derived features, e.g., total amount of the loan due 30 days before
repayment. We used the data from January 1, 2018 to December 31, 2018 for
training and the data from February 1, 2019 to March 31, 2019 for testing.
There were 700,000 loan records for training, out of which 616,057 instances
were good loans and 83,943 instances were default loans, resulting in an IR
of 7.3 : 1. The testing set contains 300,000 records, out of which 266,751 were
good and 33,249 were default loans, with the IR being 8 : 1.

3 https://ai.ppdai.com/
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(a) PPD (b) Yeast4

Fig. 7: Efficiencies of all models on the PPD and Yeast4 datasets.

4.3.1 Classification performance

Table 7 shows the F1-score, precision and recall values obtained by DAPS and
all baseline models on the three datasets. The base classifier used was DT.
From the results, it is evident that DAPS considerably outperformed its alter-
native approaches in terms of F1-score. On the Credit dataset, an extremely
imbalanced dataset, DAPS and LDAW-DRW produced compareable results.
However, DAPS obtained 53.9%-78.8% higher F1-scores compared with the
data-level and the algorithm-level approaches, and 28.6% higher F1-scores
compared with the rest baselines, on average. The approaches that utilize an
under-sampling scheme, such as RUS, Boostingrus and Baggingrus performed
quite poorly. The reason behind this most likely lies in the under-sampling
scheme which may cause considerable information loss on extremely imbal-
anced datasets. On the Yeast4 and Yeast6 datasets whose both imbalanced ra-
tios are moderate, DAPS achieved similar improvements. For instance, DAPS
produced 7.2%-40.6%, 10.5%-30.4%, 1.1%-37.8%, and 8.5%-41.5% higher F1-
scores compared to the data-level, algorithm-level, ensemble-level and state-
of-the-art methods, respectively. On the PPD dataset whose imbalanced ratio
is relatively small, DAPS still produced the best result. Namely, DAPS pro-
duced 0.4%-30% higher F1-scores (p-value ≤ 0.037) than all of the baselines,
thus showing considerable advantages over its competitors.

From Table 7 we observe that DAPS is capable of providing the best
trade-off between precision and recall, although it could not achieve the best
precision or recall alone. However, some alternatives obtained higher recall
values at the expense of precision, and vise versa.

4.3.2 Running time

We demonstrate the running time of all methods on different sizes of real
datasets in Fig. 7, and combine it with Table 7 to analyze the efficiency and
effectiveness of the models.

On the PPD dataset, a large-scale dataset, DAPS took 858 seconds to
finish the training process. The most time-consuming step is the identification

zoran
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of vetoed instances through the k-nearest neighbors technique, as it requires
calculating pairwise distances, which took 740 seconds. RUS was the fastest
approach (see Fig. 7(a)), but obtained 1.5% lower F-score (p-value = 5.8e-
09) than DAPS. AdaBoost and GBDT were ∼4.7 times faster than DAPS,
but obtained much worse results. For example, the F1-score of GBDT was
0.02. XGBoost took 16 seconds to finish the training process with a F1-score
of 0.095. Boostingrus, Baggingrus, Cascade and SPEnsemble, which utilize an
under-sampling scheme to remove a lot of majority instances, were more ef-
ficient than DAPS, but they obtained 0.4%-10.9% lower F1-scores (p-value
≤ 0.037). Compared with NB-based approaches, DAPS was approximately
10 times faster and achieved statistically significantly better results, ∼15.2%
higher F1-scores (p-values ≤ 7e-13). LDAM-DRW was 19 times faster than
DAPS but obtained a much lower F1-score. Thus, DAPS provides the best
trade-off between accuracy and efficiency on the large-scale datasets.

On the Yeast4 dataset, which is a medium size dataset, DAPS took similar
running time as most methods and took much less time than the ensemble-
level methods which utilize an over-sampling scheme (such as Boostingsmote,
see Fig. 7(b)). The superiority of DAPS in terms of effectiveness and efficiency
is evident on the medium-sized datasets.

5 Conclusions

In this paper, we proposed DAPS, a novel meta-framework for classification
of highly imbalanced, class overlapped and low-quality data. To effectively
prevent from vital information loss and noise disturbance, we designed two
mechanisms: (1) dynamic self-paced sampling to identify informative instances;
(2) assigning weights to vetoed instances to better handle both non-trivial and
noisy data in regions of class overlap. The comprehensive experimental results
verify the effectiveness and robustness of DAPS.
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