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SUMMARY 
 
This paper illustrates how Big Data may be used to predict lightning outages in the 
transmission system. A comprehensive database that contains the necessary information 
about the historical lightning related events is developed and utilized for training of the 
prediction algorithm.  A Mixture-of-Experts model incorporating multiple spatially aware 
logistic regression models is utilized to calculate highly accurate short-term predictions 1-3 
hours in advance. Lightning strikes to the transmission lines were considered in this study. 
Different durations of lightning related failures were taken into account, including both 
temporary and permanent faults. The predictions allow a smart decision-making approach 
to implementing the proposed mitigation techniques. The model was tested using real 
utility data. The results demonstrate the capability of the algorithm to predict lightning 
outage probability with high accuracy for a specific location. The prediction accuracy of the 
developed algorithm is 0.9370, with the Area Under the Curve being 0.7576. This suggests 
that the algorithm is good at both predicting high probability for cases with outages, and 
low probability for cases without outages. The outage probabilities are calculated in real 
time for every substation and transmission line in the network. Thus, this research provides 
a significant improvement over the existing studies that aggregate the lightning outage 
expectancy over a larger geographical area. 
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1. INTRODUCTION 
 
In recent years the occurrence of weather-related outages in electric power networks is on the rise. 
The main factors are changing environmental impacts, and aging infrastructure. Lightning related 
outages are the second most common weather related outage category, right after the outages 
caused by a combination of severe winds and vegetation impact.  

The Basic Lightning Impulse Insulation Level (BIL) is defined as a voltage at which insulator has 
10% probability of a flashover [1]. The BIL value is calculated for the standard atmospheric 
conditions. The impact of lightning on transmission insulators differs depending on the present 
atmospheric conditions [2]. Thus, it is important to analyze localized weather parameters to ensure 
a precise prediction of the lightning impact. 

It is not always easy to observe the changes in the insulator lightning performances. Overhead 
line insulators are exposed to a variety of environmental impacts [3]: lightning strikes, temperature 
and pressure variations, ultraviolet radiation and ozone, wind impact, rain, humidity, hail, snow, 
fog, and pollution. In addition, vegetation presence around the line lowers the probability of 
flashover in the network, a phenomenon called “shielding by trees” [4]. Also, lightning strikes are 
more likely to affect locations with higher altitude, thus the elevation data is of importance [5]. The 
tower grounding resistance also has an impact on overvoltage propagation on the line. This 
resistance is dependent on the type of soil at the tower location. In conclusion, the prediction of 
probability of lightning outages depends on a variety of factors. To accommodate this challenge, 
this research collects an extensive dataset including a variety of weather parameters, lightning 
parameters, and elevation data.  

Number of studies are analyzing the risk of the network exposure to lightning outages and 
available countermeasures [6-9] using different optimization techniques, such as unconstrained 
nonlinear optimization in [6], multi-objective optimization method based on genetic algorithm in 
[7], genetic algorithm [8] and linear regression [9] for optimal placement of LSA. For the purpose 
of estimating probability of a lightning strike, historical lightning data has been used in [10, 11]. All 
of the mentioned studies use limited amount of data, overlooking the variety of parameters. The 
studies provide estimation of lightning associated risk on a larger spatial scale by aggregating the 
impact over large geographical area or averaging it for the component of the same type. This study 
overpowers the existing solutions by providing precise localized prediction of lightning related risk 
in the network based on wide variety of data sources discussed next. 
 
2. DATA PRE-PROCESSING 
 
This study uses extensive data sources: 1) Geographical Information System (GIS) data about utility 
assets (locations of substations, transmission lines, transmission towers, and substation 
transformers), 2) utility historical outage records, 3) historical weather measurements coming from 
the land-based weather stations, 4) historical weather forecast data, and 5) elevation data.  

Historical data about lightning outages is collected from a utility in the northwest of the USA for 
a period of 20 years, starting with year 1999, up to the end of year 2018 [12]. A total of 10697 
lightning related outages was identified. For each lightning related outage the following 
parameters were collected from the utility event logs: 1) outage location, 2) outage time and date, 
3) operating voltage. The network geographical data is presented in Fig. 1. A total of 639 
substations and 686 transmission lines were selected for the study.  

The precise locations of lightning strikes and their parameters are collected from the National 
Lightning Detection Network [13]. Lightning dataset includes following parameters for each 
lightning strike: 1) location, 2) date and time, and 3) lightning peak current and polarity. The 
lightning data is spatiotemporally correlated with the historical outage data, where each outage is 
assigned the lightning event closest to it in time and space. For each location of interest, the 
number of historical lightning events was extracted in the 10 km radius area around the point. 
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Historical weather parameters were obtained from the historical land-based weather station 
data collected by the Automated Surface Observing Systems (ASOS) [14]. The map of locations of 
84 weather stations across the network area is presented in Fig. 1. Extracted weather parameters 
are listed in Table 1. If there was no recorded measurement of a parameter within 1 hour of the 
targeted time the value was declared missing. Table I lists the fractions of missing data. 

Weather forecast data was obtained from the National Digital Forecast Database (NDFD) [15]. 
The same weather parameters presented in Table 1 were extracted from the NDFD data. In this 
paper we focus on the short term prediction of lightning outage probability; therefore, the weather 
forecast for a time interval of 1-3 hours was used. An exception was the precipitation probability 
which is forecasted every 12 hours. The spatial resolution of forecast data is 5 km.  

Elevation data was extracted using Elevation API provided by the Google Maps Platform [16].  
 
3. SPATIOTEMPORAL CORRELATION OF DATA 
 
Prior to feeding the data as inputs to the prediction algorithm, all the data sets have to be 
spatiotemporally correlated. This includes the extraction of parameters from the ASOS, Outage, 
and Forecast tables individually as a first step. We create tree datasets, each containing detailed 
spatial and temporal reference: 1) historical weather 
data from ASOS, 2) historical outage data from utility, 
and 3) historical weather forecast from NDFD. The 
second stage of processing creates training and 
testing datasets by extracting the measured and 
forecasted weather parameters for each historical 
outage. More details about spatiotemporal 
correlation of data used for this research can be 
found in [21]. 
 
4. PREDICTION MODEL 
 
4.1. Problem Formulation 
Let 𝒟𝒟 = {(𝐱𝐱1 ,𝐬𝐬1, 𝑡𝑡1 ,𝑦𝑦1),… , (𝑥𝑥𝑁𝑁,𝐬𝐬𝑁𝑁 ,𝑡𝑡𝑁𝑁 ,𝑦𝑦𝑁𝑁)} be a 
training set of 𝑁𝑁 measurement-outcome pairs 
(𝐱𝐱𝑖𝑖 ,𝐬𝐬𝑖𝑖 ,𝑡𝑡𝑖𝑖 ,𝑦𝑦𝑖𝑖) referred to as labeled examples. Each 
example 𝐱𝐱𝑖𝑖 ∈ ℝ𝑑𝑑  denotes a measurement vector 

Table I. Missing weather data. 
Parameter Missing % 

Temperature [F] 0.15 
Dew Point [F] 0.15 

Relative Humidity [%] 0.15 
Wind Direction 

[degrees] 
0.15 

Wind Speed [knots] 0.14 
Precipitation 
[inch/hour] 

0.31 

Pressure [mb] 0.27 
Wind Gust [knots] 0.38 

Weather Code 0.34 
  

 
Figure 1. Locations of ASOS weather stations and network components. 
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containing various weather-related measurements and is associated with 1) a location 𝐬𝐬𝑖𝑖 ∈ ℝ3  
(consisted of the latitude, longitude, and elevation) at which the measurements were taken, 2) the 
measurement time 𝑡𝑡𝑖𝑖 ∈ ℝ, and 3) a label 𝑦𝑦𝑖𝑖 ∈ {0,1} representing an event that indicates whether or 
not a lightning-induced outage occurred. Note that since multiple measurements were taken at 
each substation, multiple 𝐱𝐱𝑖𝑖’s might be associated with the same location coordinates. 

The objective of this study is to predict the event 𝑦𝑦 (normal operation or a lightning-induced 
outage), given a vector of weather-related measurement 𝐱𝐱, location properties 𝐬𝐬, and 
measurement time 𝑡𝑡. 
 
4.2 Spatial Information Embedding 
The problem formulated in Section 4.1. boils down to a binary classification task. Therefore, one 
can simply train a Logistic Regression model to learn the relationship between the events 𝑦𝑦𝑖𝑖 and 
the substations’ measurements 𝐱𝐱𝑖𝑖. Nevertheless, Logistic Regression being a traditional 
classification model, assumes the measurements to be independent observations. Namely, it 
cannot capture the dependencies among the measurements such as the spatial correlations 
described by the spatial distances between their corresponding substations. Leveraging this 
information is important since a transmission line leaving a substation is likely to experience an 
outage in case an outage occurred on a transmission line leaving a nearby substation. To cope with 
this challenge, a spatial substation graph is constructed and representations of its nodes 
(substations) are learned based on the spatial distances between them. These representations are 
referred to as spatial embeddings.  

Spatial Graph Construction. The spatial graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is constructed by treating each of the 
𝑀𝑀 substations as a separate node 𝑣𝑣𝑚𝑚 (𝑚𝑚 = 1, …,𝑀𝑀) in 𝑉𝑉 and initially populating 𝐸𝐸 with edges 𝑒𝑒𝑚𝑚𝑚𝑚 
for each pair of nodes (𝑣𝑣𝑚𝑚,𝑣𝑣𝑚𝑚). A weight is assigned to each edge 𝑒𝑒𝑚𝑚𝑚𝑚 as the geospatial distance 
𝑑𝑑𝑚𝑚𝑚𝑚 between the 𝑚𝑚-th and the 𝑝𝑝-th substation. The edge weights of the resulting complete graph 
are binned and the value of the largest increase in bin frequency is detected and used as a threshold 
for edge removal. In other words, 𝐺𝐺 is sparsified by removing from 𝐸𝐸 the edges whose weights are 
smaller than a pre-specified threshold. 

Node Embedding. Conventional supervised learning models require a set of informative, 
discriminative, and independent features. Therefore, 𝐺𝐺 needs to be transformed into a set of 
feature vectors. This can be achieved by learning feature representations, or embeddings, for each 
node in 𝐺𝐺. For this purpose, we utilized node2vec algorithm [17]. Node2vec learns a mapping 
function 𝜙𝜙:𝑉𝑉 → ℝ𝑑𝑑′  from nodes to feature representations, where 𝑑𝑑′ is the number of dimensions 
of the node feature representation. The mapping 𝜙𝜙 is learned such that it maximizes the log-
probability of observing a graph neighborhood 𝑁𝑁𝐺𝐺(𝑣𝑣) for a node 𝑣𝑣 conditioned on its feature 
representation, i.e. 
 

max
𝜙𝜙

� log𝑃𝑃�𝑁𝑁𝐺𝐺(𝑣𝑣)�𝜙𝜙(𝑣𝑣)�
𝑣𝑣∈𝑉𝑉

= max
𝜙𝜙

� 𝑃𝑃�𝑛𝑛�𝜙𝜙(𝑣𝑣)�
𝑛𝑛∈𝑁𝑁𝐺𝐺(𝑣𝑣)

, 

 
where a softmax function is used to model the conditional likelihood for every source-
neighborhood node pair as: 
 

𝑃𝑃�𝑛𝑛�𝜙𝜙(𝑣𝑣)� =
exp�𝜙𝜙(𝑛𝑛) ∙ 𝜙𝜙(𝑣𝑣)�

∑ exp�𝜙𝜙(𝑢𝑢) ∙ 𝜙𝜙(𝑣𝑣)�𝑢𝑢∈𝑉𝑉
  . 

 
The partition function in the denominator is expensive to compute, and thus is approximated using 
negative sampling [18]. The parameters defining 𝜙𝜙 are obtained by optimizing the log-probability 
above using stochastic gradient ascent and 𝜙𝜙 is used to project each node 𝑣𝑣𝑚𝑚 ∈ 𝑉𝑉  to a feature 
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vector 𝐱𝐱𝑚𝑚𝑠𝑠 ∈ ℝ𝑑𝑑′, for each 𝑚𝑚 = 1, … ,𝑀𝑀. Finally, the obtained spatial embedding for the 𝑚𝑚-th 
substation is concatenated to the measurement vector 𝐱𝐱𝑖𝑖 if 𝐬𝐬𝑖𝑖 = 𝐬𝐬𝑚𝑚, for all 𝑖𝑖 = 1,… ,𝑁𝑁. 

Community (Region) Detection. Once a spatial embedding is learned for each node (substation), 
the original dataset 𝒟𝒟 is extended to 𝒟𝒟𝑠𝑠 = {([𝐱𝐱1 ,𝐱𝐱1𝑠𝑠 ], 𝐬𝐬1,𝑡𝑡1,𝑦𝑦1),…([𝐱𝐱𝑁𝑁 ,𝐱𝐱𝑁𝑁𝑠𝑠 ], 
𝐬𝐬𝑁𝑁 ,𝑡𝑡𝑁𝑁 ,𝑦𝑦𝑁𝑁)} in which a spatial embedding 𝐱𝐱𝑖𝑖𝑠𝑠  is concatenated to each original measurement vector 
𝐱𝐱𝑖𝑖. Note that for simplicity of notation, 𝐱𝐱𝑖𝑖 will be used to denote the extended feature vectors 
[𝐱𝐱𝑖𝑖 ,𝐱𝐱𝑖𝑖𝑠𝑠], 𝑖𝑖 = 1, … ,𝑁𝑁. That being done, the 𝑀𝑀 substations are partitioned into 𝐾𝐾 disjoint subsets using 
the 𝐾𝐾-Means clustering algorithm. Initially, the cluster centroids 𝝁𝝁1 ,… ,𝝁𝝁𝐾𝐾 are initialized randomly. 
Thereafter, each measurement vector 𝐱𝐱𝑖𝑖 is assigned to the cluster for which the distance between 
its substation and the substation corresponding to the cluster center is minimal, i.e. 
 

𝑐𝑐𝑚𝑚 = arg min
𝑘𝑘∈[1,𝐾𝐾]

‖𝐬𝐬𝑚𝑚− 𝝁𝝁𝑘𝑘‖22 ,   for each 𝑚𝑚 = 1, …,𝑀𝑀 ; 
 

𝝁𝝁𝑘𝑘 =
∑ 𝐼𝐼(𝑐𝑐𝑚𝑚 = 𝑘𝑘)𝐬𝐬𝑚𝑚𝑀𝑀
𝑚𝑚=1
∑ 𝐼𝐼(𝑐𝑐𝑚𝑚 = 𝑘𝑘)𝑀𝑀
𝑚𝑚=1

,   for each 𝑘𝑘 = 1, … ,𝐾𝐾 . 

 
The two steps above are repeated until convergence. It should be noted that another 
interpretation of the discovered clusters is to think of them as communities since using the distance 
between substations’ coordinates as a distance metric for the 𝐾𝐾-Means clustering imposes 
measurements taken at substations that are nearby (or in the same region) to fall in the same 
cluster (or community), thus performing an ‘implicit’, or indirect, community detection. 

The entire pipeline, from the spatial graph construction, through the spatial node embedding 

and up to the subgraph partitioning is illustrated in Figure 2. 
 
4.3 Spatially-Aware Mixture of Logistic Models 
Logistic Regression [19], being a probabilistic discriminative classifier, can be directly applied to the 
task of predicting lightning-induced outages. Given a vector of measurements 𝐱𝐱, a Logistic 
Regression model computes the probability of a lightning outage occurrence 𝑦𝑦 in the following 
manner: 
 

𝑃𝑃(𝑦𝑦𝑖𝑖 |𝐱𝐱;𝐰𝐰) =
1

1 + exp(−𝐰𝐰T𝐱𝐱)  , 

 
where 𝐰𝐰 are the model coefficients. Considering this outage probability formulation, a Logistic 
Regression model is trained by determining the optimal coefficients 𝐰𝐰 that minimize 
 

ℒ = �𝑦𝑦𝑖𝑖 log𝑃𝑃(𝑦𝑦𝑖𝑖|𝐱𝐱𝑖𝑖;𝐰𝐰) + (1−𝑦𝑦𝑖𝑖)log�1 −𝑃𝑃(𝑦𝑦𝑖𝑖|𝐱𝐱𝑖𝑖 ;𝐰𝐰)�
𝑁𝑁

𝑖𝑖=1

 . 

 
Figure 2. Spatial embedding of the nodes in the spatial graph, followed by an implicit 

community detection carried out by 𝑲𝑲-Means clustering of the learned node embeddings. 
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Starting from initial coefficient values (usually zeros), the ℒ is minimized using gradient-based 
methods due to its convexity. Upon obtaining the optimal 𝐰𝐰∗, given an unobserved measurement 
vector 𝐱𝐱, its corresponding lightning outage probability is predicted as 𝑃𝑃(𝑦𝑦 = 1|𝐱𝐱;𝐰𝐰∗). 

Although Logistic Regression can be directly applied to power outage prediction , when applied 
in a conventional manner, it does not utilize spatial information when predicting outages. On the 
other hand, a Logistic Regression model trained on spatial embeddings, concatenated to the 
original features, can utilize the spatial structure of the substations and therefore potentially 
enhance the model’s predictive accuracy. In place of the measurement vectors 𝐱𝐱𝑖𝑖 , one can use the 
extended feature vectors that contain the spatial embeddings generated using node2vec (Section 
4.2). This simple extension of the feature space implicitly incorporates spatial-awareness in the 
modeling capacity of Logistic Regression. 

A spatial-aware Logistic Regression model may still depend heavily on the overall graphical 
structure. Slight perturbations in the training data may lead to fluctuations in the model’s 
predictions. In order to capture relevant spatial substructures and reduce the variance, and 
therefore improve the stability of a single Logistic Regression model, multiple Logistic Regression 
models are employed by generating 𝐾𝐾 disjoint subsets of measurements 𝒟𝒟1 ,… ,𝒟𝒟𝐾𝐾 using the 
partitioning technique from the Community (Region) Detection part of Section 4.2. Then, each 𝒟𝒟𝑘𝑘  is 
used to train a single Logistic expert model 𝑓𝑓𝒟𝒟𝑘𝑘 , or simply 𝑓𝑓𝑘𝑘, described by a separate set of optimal 
weights 𝐰𝐰∗. Consequently, the mixture-of-experts architecture incorporates a so-called gating 
network that determines the expert, or blend of experts, whose output is most likely to accurately 
predict an outage indicator 𝑦𝑦. The gating outputs are a set of scalar coefficients 𝑔𝑔𝑘𝑘  that weight the 
contributions of the expert models by minimizing 
 

ℒ𝑀𝑀𝑀𝑀𝑀𝑀 = � log�𝑔𝑔𝑘𝑘𝑃𝑃(𝑦𝑦𝑖𝑖|𝐱𝐱𝑖𝑖 ;𝐰𝐰𝑘𝑘
∗)

𝐾𝐾

𝑘𝑘=1

𝑁𝑁

𝑖𝑖=1

 . 

 
Note that the experts’ importance coefficients 𝑔𝑔𝑘𝑘 ≥ 0 and ∑ 𝑔𝑔𝑘𝑘𝑘𝑘 = 1. Finally, given a measurement 
vector 𝐱𝐱, the probability of a lightning outage occurrence based on 𝐱𝐱 is calculated by taking the 
weighted combination of the probabilities estimated by the base models, i.e. 
 

𝒫𝒫(𝐱𝐱) = �𝑔𝑔𝑘𝑘𝑃𝑃(𝑦𝑦𝑖𝑖 |𝐱𝐱𝑖𝑖;𝐰𝐰𝑘𝑘
∗)

𝐾𝐾

𝑘𝑘=1

 . 

 
Finally, if 𝒫𝒫(𝐱𝐱) > 0.5, a lightning-induced outage is predicted. Otherwise, normal operation is 
assumed. 
 
 
5. RESULTS 
 
5.1. Experimental Setup 
The longitude, latitude and elevation of each substation were used to calculate the distances 
between them and thus construct the corresponding spatial distance graph. A 128- dimensional 
spatial embedding was learned for each node (substation) using node2vec. The obtained 
substations’ embeddings were concatenated to their corresponding measurement vectors, thus 
extending the total number of features to 209. The experiments were conducted using different 
cutoff years for prediction. All models were trained on data from all years prior to 2010, 2014, 
2018, and tested on each cutoff year. Upon training, the prediction performance of the Mixture-
of-Experts model (MEM) was assessed and compared to several baseline models. Those are listed 
as follows: 
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• Logistic Regression (LR): A classical logistic regression model that outputs the probability 
of a binary outcome. The application of logistic regression for outage probability 
estimation is discussed in [20]. 

• Spatially-Aware Logistic Regression (SALR) [21]: A logistic regression variant trained on 
the substations’ spatial embeddings in addition to the original measurements. 

• Subbagging [22]: A subsampling-based ensemble model which considers sampling at 
random without replacement to generate the training subsets its base models. Each base 
model in this case is a spatially-aware LR model. 

• Random Partitioning: A variant of subbagging that utilizes sampling without replacement 
to generate disjoint training subsets for the base SALR models. 

 
5.2. Prediction Performance 
Importance of Spatial Information for Event Prediction. The relevance of the spatial information 
to the task of predicting lightning outages was analyzed by assessing the prediction capability of a 
single LR model with, and without, using spatial information. The obtained results for the three 
cutoff years are summarized in Table 2. 

From Table 2, it can be observed that SALR outperforms LR at predicting lightning outages. This 
is consistent across all classification measures. Once spatial information is incorporated, SALR 
obtains an increase of ~2.3-5.3% in classification accuracy. The gap between the classification 
performance of SALR and LR increases as more recent cutoff years are used. The underlying reason 
is most likely related to the larger quantity of training data that becomes available for more recent 
cutoff years. Furthermore, SALR appear to increase recall by ~5.4-35.7% which is really beneficial, 
given that recall is of high importance for the task at hand since correctly detecting a certain 
lightning outage of interest is more important than detecting the majority of the events that do 
not relate to that outage. Although the largest performance lifts are obtained for precision i.e. the 
fraction of normal events that were not mispredicted as lightning outages, considerable lifts are 
also obtained for F1-Score (~3.4-22.2%). This strongly suggests that the spatial information reflected 
in the substations’ spatial embeddings is beneficial for prediction of lightning-induced outages. 

Leveraging Multiple Spatially-Aware LR models. Considering the observations from Table 2 
indicating that SALR consistently outperforms LR, SALR is further compared to the other 
alternatives that utilize multiple SALR models. Namely, the predictive performance of the MEM 
model and the other ensemble-based variants was compared under different parameter settings. 
For each cutoff year, 𝐾𝐾 = 1,… ,5 SALR base models were used to train MEM and the ensemble 
models. No more than 𝐾𝐾 = 5 base models were considered since it was observed that the models 
will not significantly benefit from partitioning the 639 substations into more than 5 regions. In the 
case of the ensemble variants, for each value of 𝐾𝐾 the base models’ subsets were generated using 
two different randomization strategies: subsampling and disjoint partitioning by sampling without 
replacement. Since MEM partitions the data into 𝐾𝐾 disjoint subsets, the subsampling fraction for 

Table 2. Prediction performance comparison of LR and SALR across different cutoff 
years. 

Cutoff year Model Acc. AUC Precision Recall F1-Score 
 

2010 LR 0.8445 0.9163 0.7258 0.9296 0.8100 
LR (spatial) 0.8642 0.9242 0.7652 0.9611 0.8373 

 

2014 LR 0.8289 0.8684 0.7341 0.9383 0.7956 
LR (spatial) 0.8731 0.8795 0.8347 0.9488 0.8565 

 

2018 LR 0.9085 0.6935 0.5785 0.9356 0.6308 
LR (spatial) 0.9370 0.7576 0.7848 0.9620 0.7709 
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both subsampling and disjoint partitioning was set to 1/𝐾𝐾 assuming uniform training subset sizes 
for fair comparison. The testing accuracies of all models are presented in Figure 3. 

From Figure 3, first it can be observed that MEM and in most cases the ensemble variants 
outperform a single SALR model for almost all of the parameter settings and gradually achieve 
greater performance as 𝐾𝐾 increases. The ensemble variants, and especially MEM, achieve greater 
accuracy when more recent cutoff years. This is most likely due to the fact that more data becomes 
available for training and thus more patterns become discernible from the data. For the 
subsampling-based ensembles, random partitioning appears to perform better than the classical 
subbagging. Nevertheless, MEM generally outperforms both the partitioning and subsampling-
based ensemble variants for most of the values of 𝐾𝐾. In the case when 2010 is used as a cutoff year, 
random partitioning seems to achieve the highest prediction accuracy until the number of base 
models reaches 3. Once the substations are partitioned into more than 3 regions, MEM starts to 
obtained higher accuracy than random partitioning and the other baselines. As for predicting 
lightning outages for 2014 and 2018, MEM consistently yields the highest prediction accuracy 
irrespective of the number of base SALRs used. This essentially supports the assumption that 
training the base models on certain spatial regions (or communities) is more relevant to the task at 
hand than training them on randomly sampled subsets. There also exists a parameter setting, in all 
three cases, for which MEM obtains the highest overall accuracy, that being: 0.8937 (𝐾𝐾 = 5), 
0.8997 (𝐾𝐾 = 5) and 0.9594 (𝐾𝐾 = 4) when 2010, 2014 and 2018 are used as cutoff years, respectively. 
 
5.3. Results Mapping 
The maps with predicted probabilities are presented in Fig. 4 for two cases: a) one hour period on 
05/01/2017 that did not have any lightning related outages in the network, and b) one hour period 
on 05/04/2017 that had multiple lightning caused outages in the network. We can observe from the 
Fig. 4 that the algorithm is capable of precisely isolating the network area that will be affected by 
lightning outages by identifying most of the outages with 80% probability or higher, while the rest 
of the network has lower outage probabilities. Fig. 5 demonstrates the closer look into the outages 
that occurred on 05/04/2017 and their predicted probabilities.  
 
6. CONCLUSIONS 
 
The contributions of this paper are summarized as follows: 

• We developed a precise localized prediction of lightning outage probability in the 
transmission network. 

• We used a mixture-of-experts model based on spatially aware logistic regression to provide 
fast and accurate prediction. 

• The results demonstrate accuracy over 80% with Area Under the Curve being larger than 
0.75 for all cases with prediction using spatial embedding.  

 
Figure 3. Overall testing accuracy of MEM and alternatives when run with different number of 
base models in case 2010 (left), 2014 (middle) and 2018 years (right) as cutoff years. 
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• Results demonstrate that the model is 
capable of isolating the area that will be 
affected by lightning with very high 
probability. 
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