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Abstract. A hospital readmission risk prediction model based on electronic health record (EHR) data 
can be an important tool for identifying high-risk patients in need of additional support. Performant 
readmission models based on deep learning approaches require large, high-quality training datasets to 
perform optimally. Utilizing EHR data from a source hospital system to enhance prediction on a target 
hospital using traditional approaches might bias the dataset if distributions of the source and target 
data are different. There is a lack of an end-to-end readmission model that can capture cross-domain 
knowledge. Herein, we propose an early readmission risk temporal deep adaptation network, ERR-
TDAN, for cross-domain spatial knowledge transfer. ERR-TDAN transforms source and target data 
to a common embedding space while capturing temporal dependencies of the sequential EHR data. 
Domain adaptation is then applied on a domain-specific fully connected linear layer. The model is 
optimized by a loss function that combines distribution discrepancy loss to match the mean embed-
dings of the two distributions and the task loss to optimize predicting readmission at the target hospi-
tal. In a use case of patients with diabetes, a model developed using target data of 37,091 patients 
from an urban academic hospital was enhanced by transferring knowledge from high-quality source 
data of 20,471 patients from a rural academic hospital. The proposed method yielded a 5% increase 
in F1-score compared to baselines. ERR-TDAN may be an effective way to increase a readmission 
risk model’s performance when data from multiple sites are available.  

Keywords: Transfer Learning, Readmission Prediction, Electronic Health Records data, 
Machine Learning, Deep Learning. 

1 Introduction 

Hospital readmission is an undesirable outcome and a driver of high financial costs. Ap-
proximately, 20% of Medicare discharges had readmission within 30-days, corresponding 
to $20+ billion in hospital costs. [1]. Identifying patients with higher risk of readmission 
would enable the targeting of interventions to those at greatest need, optimizing the cost-
benefit ratio. 



Previously, we published a risk deep learning (DL) model based on electronic health 
records (EHR) data collected from an urban academic hospital that predicts the risk of un-
planned, 30-day readmission among patients with diabetes. We used a sequential model, 
long short-term memory (LSTM). Performance was adequate (F-1 Score 0.80), and results 
showed that this LSTM model can capture temporal dependencies of the EHR data [2].  

Performant readmission models based on DL techniques require large, high-quality train-
ing data to perform optimally. Utilizing EHR data from a source hospital system to enhance 
prediction on a target hospital using traditional approaches enlarge dataset bias which might 
deteriorate performance due to distributional difference of the source and target datasets, 
resulting in statistically unbounded risk for the target tasks [3]. Traditional approaches are 
designed for a specific data type, and not capable of generalizing to other temporal data. 

Transfer learning approaches have been explored for hospital readmission with the ob-
jective to improve learning at the target population by exploiting information from a related 
source population. In [4, 5], classical transfer learning was employed to address data scar-
city using a relevant source dataset. In [6], classical transfer learning techniques were ex-
plored as to what extent can transfer learning benefit learning on target tasks by fine-tuning 
pre-trained models in the healthcare domain. However, there is still a need for an end-to-
end model to perform cross-domain spatial knowledge transfer and predictive learning in a 
unified learning framework while capturing temporal dependencies for hospital readmis-
sions.  

In this paper, we propose an early readmission risk temporal deep adaptation network, 
ERR-TDAN, to perform cross-domain spatial knowledge transfer from EHR data of differ-
ent sites and perform predictive learning. Deep Adaption Network (DAN) utilizes deep 
convolutional neural network (CNN) and generalizes it to the domain adaptation setting 
through learning transferable latent features between source and target domains for com-
puter vision tasks [3, 7]. Motivated by the success of DAN in numerous transfer learning 
tasks in computer vision, we employed the idea of learning transferable features of temporal 
data by matching the source and target domain distributions in the latent feature space. We 
tailored it for hospital readmission using EHR data and optimized for the target task.  

The aims of this study were as follows: 1) To develop a hospital readmission framework 
using EHR data that transfers knowledge between a rural academic hospital and an urban 
academic hospital to enhance predictions on the urban academic hospital.  2) To study the 
optimal amount of retrospective EHR data needed for future predictions. 3) To study the 
duration of optimal performance. Experiments conducted show that ERR-TDAN can en-
hance hospital readmission prediction.  

 



2 Deep Adaptation Network  

Domain adaptation is a form of transfer learning commonly used in computer vision to 
address the problem of learning using data from two related domains but under different 
distributions [3, 8]. Domain adaptation can help improve the performance of a model by 
learning transferable features to minimize the gap between the source and target domains 
in an isomorphic latent feature space. DAN generalizes deep CNN for computer vision ap-
plications to utilize domain adaptation techniques to learn transferable feature representa-
tion in the latent embedding space [7]. Motivated by the success of DAN in various com-
puter vision tasks [9-11], we utilized the idea of DAN for transferring cross-domain spatial 
knowledge tailored for predicting hospital readmission on EHR data and optimized to en-
hance predictions on the target, rather than generalizing on both domains. A direct compar-
ison to DAN is not applicable since DAN is modified for computer vision tasks using CNN. 
CNNs capture spatial correlations and are unable to capture temporal correlations of EHR 
data [3]. Thus, we employed the idea of DAN and tailored it for hospital readmission on 
EHR data to capture temporal dependencies using LSTM layers, establish cross-domain 
knowledge transfer, and optimized it for the target task using a customized loss function. 

3 The Proposed ERR-TDAN Framework 

An early readmission risk framework based on temporal deep adaptation network was de-
veloped to enhance prediction on the target data collected from Temple University Hospital 
System (TUHS) by establishing spatial knowledge transfer from a source data with higher 
quality features collected from Penn State University Hospital System (PSUHS). The model 
was developed using data as defined by the National Patient-Centered Clinical Research 
Network (PCORnet) Common Data Model (CDM) [12]. 

We applied a hospital readmission LSTM model that we previously published using EHR 
data collected from TUHS [2]. When trained on TUHS data and tested on the following 
year TUHS data this model F-1 score was 0.80. We trained and tested the same method on 
EHR data collected from PSUHS, where performance was better (F1-score 0.91). The 11% 
increase in F-1 score was achieved since EHR data from PSUHS contained fewer missing 
data, denser features, and less erroneous data. However, training and evaluating the same 
method on data from both domains affected the performance (F-1 score 0.79) since the 
model struggled to generalize and converge due to training data drawn from different dis-
tributions. To address this limitation, we employed the idea of DAN, tailored for hospital 
readmission on EHR data that captures temporal correlations and enhances target prediction 
through learning transferable features via domain-specific fully connected linear layers to 



explicitly reduce the domain discrepancy. DAN generalizes on both domains for computer 
vision tasks, whereas in our study we tailored this technique for hospital readmission using 
EHR data and optimized on the target task, instead of generalizing on both domains. To 
accomplish this, the hidden embeddings of the domain-specific layers are embedded to a 
reproducing kernel Hilbert space through maximum mean discrepancy (MMD), to match 
the mean embeddings of two domain distributions. The model was optimized via a custom-
ized loss function. 

Fig. 1 presents the proposed framework, ERR-TDAN which consists of the following 
main processes: 1) LSTM’s input was data from both source and target to learn hidden 
representation to map source and target data to a common embedding while capturing tem-
poral dependencies of the EHR data. 2) To match the embedding distributions of the source 
and target domains, deep adaptation network scenario is established through fully connected 
linear layers constructed to match the mean embeddings of different domain distributions. 
The hidden representation is embedded through a reproducing kernel Hilbert space to trans-
fer knowledge and bridge the gap between two distributions via MMD to reduce domain 
discrepancy. 3) The matched embeddings are then passed to a fully connected layer with a 
sigmoid function to classify if a patient is likely to be readmitted or not. In backpropagation, 
we optimize the model on the target domain using a customized loss function that combines 
the domain discrepancy loss and binary cross entropy loss. The following sections illustrate 
the framework in more detail. 

Fig. 1. The proposed method framework, ERR-TDAN. It comprises of three main processes. 1) 
LSTM layers learn hidden representation of the input of both source and target domains. 2) Deep 
adaption network structure with fully connected layers is constructed to match the mean embed-
dings of different domains drawn from different distributions. 3) The matched embeddings are 
then passed to a fully connected layer with sigmoid function for binary classifications. The model 
is optimized through a customized loss function that penalizes on domain discrepancy of both 
source and target, and task loss to optimize for the target task.  



3.1 Representation Learning of Temporal EHR Data with LSTM 

Initially, we utilized LSTM with two recurrent layers to form a stacked LSTM to learn 
hidden data representation embedded to a common latent feature space of the temporal EHR 
data of the source and target domains. LSTM, a sequential model capable of capturing tem-
poral correlations, is commonly used for sequential tasks and is proven to be effective for 
hospital readmission using EHR data [2, 13]. LSTM takes as an input a 3-dimensional ten-
sor of stacked source and target data. LSTM is structured based on basic neural network, 
but neurons of the same layer are connected, enabling a neuron to learn from adjacent layers, 
in addition to learning from outputs of the previous layers and the input data. Hence, neu-
rons include two sources of inputs, the recent past and the present. A dropout of 0.1 was 
applied between the first and second LSTM layers. To add nonlinearity, we utilized ReLU 
activation function on the output of LSTM (embeddings), formulated as follows: 

𝑏! = ReLU	(𝑏 +𝑊ℎ!"# +𝑈𝑥!) (1) 

3.2 Learning Transferable Features and Predictions 

The output 𝑏! is then fed to domain-specific fully connected linear layers with deep adap-
tation network setting. Domain discrepancy is reduced by matching the mean embeddings 
of the source and target distributions. Hidden representation of the linear layers embedded 
through a reproducing kernel Hilbert space to bridge the gap between two distributions and 
transfer knowledge via MMD. MMD measures the distance of the source and target distri-
butions in the embedding space. MMD distance measure was originally used to determine 
whether two samples are drawn from the same distribution and measures how distant the 
samples are [14]. In this study, we utilized MMD to learn transferable features between 
source and target domains to enhance prediction on the target. MMD was utilized as one of 
the two components of the loss function to minimize the domain discrepancy. The loss 
function is explained in more detail in the next section. MMD is defined as: 
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where 𝒟𝒮 and 𝒟𝒯denote source and target data respectively, 𝜙 denotes the Gaussian kernel 
function, ℋ denotes the Hilbert space, and 𝑛 and 𝑚 denote the number of observations of 
the source and target sets, respectively. The temporal embeddings of the LSTM are then fed 
into fully connected layers with MMD loss to measure the distance between two distribu-
tions and reduce domain discrepancy.  
Prediction. The matched embeddings are then fed into a linear layer with output of 1 with 

sigmoid activation function for predictions ŷ [2].  



3.3 Model Optimization via a Customized Loss Function 

We tailored the loss function for hospital readmission on the target domain by combining 
Binary Cross Entropy (BCE) loss to measure the error of reconstruction, applied on the 
target task only, and MMD loss applied on both source and target to reduce domain dis-
crepancy. Since the aim of this study is to enhance prediction on the target domain using 
higher-quality source data, we reduced the weight of the MMD loss via the penalty param-
eter 𝛾 and optimized the loss on the target domain. Loss function used in the proposed ERR-
TDAN model is defined as follows: 

𝐵𝐶𝐸$%&& = (𝑥, 𝑦) = 𝐿 = {𝑙#, … , 𝑙0}1, 𝑙)
= −𝑤)[𝑦) ⋅ log 𝑥) + (1 − 𝑦)) ⋅ log(1 − 𝑥))],	
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where 𝑥 and 𝑦	are the predictions and ground truth for a given batch respectively.	𝐿	denotes 
loss.	𝑁 is the batch size, 𝑤 is a rescaling weight given to the loss of each batch element, 𝛾 
is the penalty parameter of domain discrepancy. To optimize for the target task, we deter-
mined empirically that 0.5 value of 𝛾 is appropriate.   

4 Data 

We collected data from an urban academic hospital, TUHS, and a rural academic hospital, 
PSUHS, between July 1st, 2010, and December 31st, 2020. We extracted data on encounters, 
demographics, diagnosis, laboratory tests, medication orders, procedures, and vital signs. 
in the cohort of patients with diabetes was defined as previously described [2]. Data pre-
processing, handling of missingness of data, different number of recordings per encounter, 
learning embeddings to reduce dimensionality, address sparse feature vectors, and data rep-
resentation were performed as presented in [2]. Additional features were aggregated to as-
sist with learning temporal dependencies, including duration of stay in days, and number of 
days since the prior encounter. 

We obtained a total of 1,421,992 encounters corresponding to 20,471 patients for PSUHS, 
and a total of 3,023,267 encounters corresponding to 37,091 patients for TUHS. The class 
distributions were as follows. TUHS: 28,107 for the negative class (no readmission), and 
8,984 for the positive class (readmitted within 30-days); PSUHS: 18,775 for the negative 
class and 1,696 for the positive class.  

The characteristics of the samples from the two sites were different. For instance, 4.9% 
of patients were Hispanic at PSUHS, whereas TUHS contained large Hispanic population 
of 22%. Other differences included race and tobacco use. The numbers of unique ICD-9 
and ICD-10 codes, and vital recordings at PSUHS were larger than that at TUHS.  

Patient encounters were sequentially ordered by admission date and represented in a 3-
dimensional tensor for the LSTM model, where each patient’s data is represented as a 2-



dimensional matrix in which features of each encounter are represented in a 1-dimensional 
array while a second dimension represents different hospitalizations of that patient. The 
third dimension is used to encode hospitalization information of different patients. 

5 Experimental Setup and Results  

We hypothesize that it is feasible to enhance readmission predictions on target data of 
TUHS using a source data from a relevant domain under different distribution. In this sec-
tion, we conduct extensive experiments to evaluate the performance of the proposed model, 
ERR-TDAN and compare it to baselines.  F-1 score, precision, recall (sensitivity), specific-
ity, and accuracy were used to evaluate the model’s performance [15]. We randomly se-
lected different patients for training and testing. Experiments were iterated 10 times; results 
were presented based on the mean and two-sided 95% confidence interval (CI). Moreover, 
we address the following research questions to evaluate optimal performance of the model.  

5.1 Can we enhance readmission risk prediction for a target hospital by utilizing 
data from another hospital? 

We randomly split TUHS and PSUHS data to 70% training, 10% validation, and 20% test-
ing. Then, we concatenated training data of both domains, and fed to the ERR-TDAN. We 
tested the model on TUHS using 7,418 patients, of whom 1,557 had a readmission.  

Table 1 presents a comparative analysis to evaluate the proposed method, ERR-TDAN 
compared to alternative baselines. Table 1 shows that ERR-TDAN yielded a 5% increase 
in F1-score when compared to a model we previously published for hospital readmission 
on EHR data collected from TUHS, and 3% increase using a generalized version of ERR-
TDAN (G-ERR-TDAN) of the domain adaptation framework with MMD loss without op-
timizing on the target task. G-ERR-TDAN results provide evidence that optimizing on the 
target task enhances target’s predictions is superior to generalizing on both domains. 

Table 1. Performance of the proposed method, ERR-TDAN and three alternatives tested on the tar-
get domain (TUHS) enhanced by a related source data (PSUHS). The Average F1, Recall/Sensitiv-
ity, Specificity, and accuracy and their corresponding two-sides 95% confidence interval (CI) on 10 
experiments on training and testing patients’ data selected completely at random.  

Model Train F1-score Recall Specificity Accuracy 
[2] TUHS 0.80 ±0.003 0.81 ±0.002 0.94 ±0.010 0.81 ±0.002 

LSTM TUHS + PSUH 0.79 ±0.007 0.81 ±0.006 0.95 ±0.008 0.81 ±0.005 
G-ERR-TDAN TUHS + PSUH 0.82 ±0.001 0.81±0.001 0.92 ±0.002 0.81 ±0.001 
ERR-TDAN TUHS + PSUH 0.85 ±0.002 0.84 ±0.002 0.91 ±0.003 0.84 ±0.001 



5.2 What is the retrospective optimal amount of EHR data needed for future 
predictions? 

We conducted extensive experiments to find the optimal amounts of patient’s historical data 
needed for the model to perform optimally. Our objective was to determine a size of training 
data so that further enlargements do not improve predictions of hospitalization risk. The 
model was trained on varying 𝑡 and tested on 𝑡 + 𝑥, where 𝑡 denotes a period in the past 
and 𝑡 + 𝑥 denotes a period in the future. For a fair comparison, 𝑡 + 𝑥 was a fixed test dataset 
of 2020, and trained on varying training sets of 𝑡, including 6 months (July-December of 
2019), 1 year (2019), 2 years (2018-2019), 3 years (2017-2019), 4 years (2016-2019), and 
5 years (2015-2019) look-back time. For instance, training on 2019, and testing on 2020 (1 
year look-back) to test if learning on 1 year of historical EHR data from the past is sufficient 
to perform optimally.  

Fig. 2 (left) shows that 1 year of historical data are optimal to predict readmission since 
it yielded the highest F1-score with least amounts of data required.   

5.3 How often do we need to retrain the model to achieve optimal performance? 

Concept and covariate shifts are one of the major reasons model performances degrade 
overtime. Monitoring data drift helps avoid performance degradation. Thus, we conducted 
experiments to study the lifetime of the proposed model. Based on the optimal look-back 
time of question 2, we trained the model on EHR data collected in 2015 and tested it with 
1, 2, 3, 4, and 5 future gaps. For instance, training on data collected in 2015 and testing in 

Fig 2. (left) Presents the retrospective optimal amount of EHR data needed for future pre-
dictions. Results show that 1 year of historical data are sufficient to predict hospital readmis-
sion from the leading year. (right) Presents the lifetime of the model to maintain and achieve 
optimal performance. Three different models were developed on data collected from 2015, 
2016, and 2017 to predict future instances with 1 to 5 years gap. Results show that to maintain 
optimal performance, the proposed framework may benefit from retraining every three years. 



2020 to experiment if the model’s performance would degrade after 5 years. We iterated 
this over various models trained on 1 year of data collected in 2015, 2016, and 2017 and 
tested for readmissions on future instances.   

Fig. 2 (right) shows that F1-score decreased over time due to data drift. Performance was 
relatively stable when tested on 1 and 2 years in the future. There was a significant decrease 
in F1-score when used to predict readmissions with 3 years gap between training and test-
ing. On overage, F1-score degraded 0.6% when used 3 years later, 3.5% when used 4 years 
later, and 7% when used 5 years later. Therefore, to maintain optimal performance of hos-
pital readmission models on EHR data, retraining the model every 3 years may avoid model 
degradation and maintain optimal performance.  

6 Discussion and Conclusion 

We examined the hypothesis that it is feasible to enhance hospital readmission risk pre-
dictions on EHR data using data collected from a related source domain. ERR-TDAN model 
trained on joint TUHS, and PSUHS data yielded a 5% increase in F1-score when compared 
to an LSTM model trained on TUHS only, 6% increase in F1-score when compared to 
LSTM model trained on both TUHS and PUSH, and 3% increase when compared to a gen-
eralized version of ERR-TDAN (G-ERR-TDAN) aimed to generalize on both domains. 
Furthermore, conducted experiments showed that one year of historical data is sufficient to 
predict readmission. We studied the lifetime of the model to avoid performance degradation 
due to data drift over time. Experiments suggest that retraining the ERR-TDAN framework 
every three years avoids performance degradation. 

We propose a framework, ERR-TDAN that establishes spatial knowledge transfer based 
on a temporal deep adaptation network tailored for hospital readmission on EHR data and 
optimized for the target task. ERR-TDAN can enhance readmission predictions of the target 
task using higher quality data from a related source domain under different distributions by 
matching the mean embeddings to reduce domain discrepancy. This is the first end-to-end 
transfer learning framework based on domain adaptation for hospital readmission. A de-
ployment challenge for the proposed framework is that it requires training data from both 
source and target domains which might be difficult to obtain. In a planned follow up study 
we will evaluate applicability of the proposed method for prospective applications. In addi-
tion, we will compare the proposed hospital readmission method to alternatives aimed to 
learn from integrated data with explanatory variables of various quality.  
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