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A B S T R A C T   

Healthcare services planning and regulation involve finding patterns in hospitals admission to detect their needs 
in a timely manner. Admission patterns for certain diseases are more precise than a general pattern including all 
diseases. Towards the objective of clustering hospitals based on their monthly admission behavior for different 
diseases, this study investigates the similarity among multiple disease-specific hospital networks to guide a joint 
clustering of hospitals. In this paper, the disease super network is generated from health records data using graph 
matching instead of relying on biomedical literature that is used in the previous work. The health records-based 
disease network is constructed using more than 7 million discharge records that are extracted from the California 
State Inpatient Database between 2009 and 2011. Comparison of the disease network results obtained using 
health records of different years shows consistency in clustering structure despite temporal changes in admission 
data. We show that the joint clustering guided by the health records-based similarity improves clustering group 
homogeneity measures as compared to the clustering guided by literature-based similarity (average homogeneity 
53% vs 41%, respectively). The code used to conduct this work is available at https://github.com/Nouf-Barakati 
/JointCLusteringofHospitals.   

1. Introduction 

With the advancement of machine learning algorithms and the 
availability of Electronic Health Records (EHRs), healthcare organiza-
tions are investing in these products to extract insights and make 
informed decisions, utilize their resources effectively and efficiently, 
and enhance their services to meet the health needs of their population. 
For example, machine learning provides descriptive, predictive, and 
prescriptive analytics tools to understand and predict hospital admis-
sions to help alleviate the current shortage of hospital beds which was 
exacerbated by the COVID-19 pandemic [1]. Understanding hospital 
admission behavior is critical to improving healthcare quality, reducing 
healthcare costs, and improving the overall health of the population [2]. 
By leveraging the insights gained from using machine learning tools on 
hospital admission data, healthcare providers and policymakers can 
make informed decisions that improve patient outcomes and enhance 
the effectiveness of the healthcare system [3]. 

Identifying groups of hospitals with similar monthly admission pat-
terns would assist healthcare organizations in planning and regulating to 
improve their operational efficiencies and lower costs [4,5]. Clustering 

analysis has been applied to healthcare data to define groups of similar 
hospitals and detect different patterns in the hospital admissions [2,4,6]. 
Clustering is also utilized to identify factors associated with these pat-
terns [6,7]. These admission patterns vary by conditions diagnosed at 
the admission time [8–10]. One of these factors is the principal diagnosis 
considered in the admission process [10,11]. For example, two hospitals 
could have similar numbers of monthly admission, yet have differences 
in monthly admission for cardiovascular disease or monthly admission 
for respiratory diseases. It is also evident from several studies that some 
hospitals have different admission variations for various diseases 
[10–12]. Therefore, it is imperative to cluster hospitals for different 
diseases. 

To address this problem, we build a solution using layers of different 
methods to take advantage of each method’s unique strengths and ca-
pabilities and build a more robust and flexible solution that suits this 
problem. First, because many medical and health-related phenomena 
involve interdependent entities, we build hospital similarity networks 
for different diseases included in the study [13]. Each hospital similarity 
network represents the similarity among hospitals’ admission for a 
specific disease. In this representation, each similarity network is a 
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weighted graph where nodes represent hospitals admitting patients for a 
specific disease and edges represent the similarity among hospitals 
based on their monthly admission behavior for that specific disease. We 
use more than 7 million discharge records to extract monthly admission 
distributions for every disease in every hospital. These health records are 
obtained from the California State Inpatient Database between 2009 and 
2011, where the records capture medical and sociodemographic infor-
mation [14]. 

Then, instead of clustering individual networks separately, we jointly 
cluster all hospital networks considering the similarity among these 
networks to better reveal the underlying clustering structure. Clustering 
these hospital networks independently omits the global clustering 
structure shared among hospital networks [8]. Such an approach is 
motivated by an observation that joint clustering is often more efficient 
than independent clustering of individual networks [15]. This joint 
clustering takes advantage of the relationships and similarities between 
the networks, which can provide a more complete and accurate repre-
sentation of the data. By clustering the data from multiple networks 
simultaneously, the joint clustering approach can capture complex 
patterns and structures that may not be apparent when analyzing each 
network individually. This can lead to more robust and accurate clus-
tering results than independent clustering methods. In prior 
machine-learning studies, extensive experiments on synthetic and 
real-life data showed the effectiveness of joint clustering using various 
clustering performance measurements [16–18]. Joint clustering as-
sumes that some networks share a common clustering structure where 
complementary information on this common structure is provided [16, 
17]. It identifies clusters that are consistent across similar networks 
while still preserving the network structure within each individual 
network. 

Our previous work [8] utilized joint clustering to investigate the 
assumption that hospitals show similar behavior on their monthly 
admission distribution when similarity among disease symptoms is 
considered. The similarity among diseases was introduced from an 
external resource using a literature-based disease symptoms similarity 
network constructed using PubMed, an extensive medical bibliographic 
literature database [19]. Considering the similarity of the symptoms 
among diseases better revealed the underlying clustering structure for 
hospitals. Then, relying on the fact that health records provide oppor-
tunities to enhance and facilitate the clinical research [20,21], our 
follow-up study partially integrated the health record-based disease 
similarity network extracted from the external health records [9]. In this 

second study, a disease monthly-admission similarity was introduced to 
guide the joint clustering among hospital networks which improved the 
results [9]. However, the disease monthly-admission similarity didn’t 
consider hospitals’ different admission behavior among different dis-
eases. Both prior studies [8,9] show consistent behavior among hospital 
networks when similarity among diseases is introduced from external 
resources in the clustering process. 

These findings raised the question of what if we do not rely on 
external resources from PubMed or EHR to model the similarity among 
hospital networks. Would the clustering performance improve if disease 
similarity was calculated by analyzing the similarity among hospital 
networks and utilized to guide the joint clustering of hospital networks? 
Therefore, examining this question is the main contribution of this work. 
It extends our previous work to investigate the effect of disease simi-
larity extracted from the similarity among disease-specific hospital 
networks on the joint clustering of these hospital networks. Graph 
matching is utilized to model the similarity among hospital networks 
and generate a health records-based disease network (HRDN). Graph 
matching finds the similarity between different hospital networks. 

To carry out this study, data were represented as a Network of Net-
works (NoN) model. It is a multilayered network structure used to 
discover the hidden pattern in a heterogenous data [22]. This structure, 
illustrated in Fig. 1, is constructed of two layers of networks consisting of 
one super network and multiple sub-networks. The super network, dis-
ease network, at the top layer illustrates the similarity among different 
diseases, where each disease node represents a sub-network in the bot-
tom layer. It mainly models the interconnectivity between the 
disease-specific hospital networks, which is used to guide joint clus-
tering. Each subnetwork at the bottom layer is a disease-specific hospital 
network. Each disease-specific hospital network represents the similar-
ity among hospital admission distributions for a specific disease. A 
method used to handle clustering heterogeneous multi-domain networks 
with an NoN-structure is the Network of Networks Clustering (NoNClus) 
[16]. This method permits multiple underlying clustering structures 
across different networks by clustering the super network and using it to 
guide clustering the multiple sub-networks [16]. That is, it groups 
multiple disease-specific hospital networks considering the grouping 
obtained for the disease network. This data model helped investigate the 
effect of different disease similarity networks by integrating a disease 
network with multiple disease-specific hospital networks. 

In summary, the contributions of this paper are. 

Fig. 1. Disease Network of Hospital Networks data model.  
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I. Summarizing multiple disease-specific hospital networks to 
generate a health records-based disease network using graph 
matching concept;  

II. Comparing the literature-based disease network constructed from 
medical bibliographic literature and a health records-based dis-
ease network built from the health records;  

III. Investigating the effect of the two disease networks on the joint 
clustering of multiple disease-specific hospital networks using the 
NoNClus method. 

This paper is organized as follows: Section 2 provides an in-depth 
investigation of the related work, and Section 3 discusses the method-
ology and details the data model and algorithms used in carrying out this 
study. Section 4 illustrates the results, Section 5 interprets the results 
and discusses their significance, and Section 6 concludes this study. 

2. Related work 

Machine learning is increasingly being used in healthcare to improve 
the quality of care and increase operational efficiency. In particular, 
machine learning methods have been applied to cluster hospitals to 
better understand the relationships among healthcare facilities and 
identify improvement opportunities [4,5]. Clustering analysis has been 
applied to healthcare data to define groups of similar hospitals and 
detect different patterns in the hospital admissions [2,4,6]. Clustering is 
also utilized to identify factors associated with these different patterns 
[6,7]. Methods for clustering hospitals using multivariate data received 
attention in the 1970s and 1980s [5,6]. Another round of work studied 
clustering hospitals in the past 20 years by applying various clustering 
algorithms on patient-level or hospital-level data to identify subgroups 
of hospitals with similar characteristics [2,4,7,23,24]. Some of clus-
tering algorithms used in these studies include k-means clustering, hi-
erarchical clustering, and density-based clustering. k-means algorithm 
has been used to cluster hospital data [4,23], while multiple hierarchical 
algorithms [7,24] were used and compared in clustering hospitals. 

While social network analysis and graph theory provides a powerful 
framework to study patterns, we are aware of only one published work 
that utilized social network analysis for clustering hospitals [23]. In that 
paper, hospitals are represented as nodes in a network, and the con-
nections between nodes are used to capture the similarities between 
hospitals. However, the social network analysis of the hospital network 
was conducted after clustering hospitals using the k-means algorithm to 
understand mobility patterns in hospital clusters. Therefore, our current 
paper fills this gap of not utilizing the great potential in exploring re-
lationships and patterns by using graph networks in clustering hospitals. 
In our approach hospitals are represented as nodes in a network and the 
connections between nodes are used to represent the similarities be-
tween hospitals. 

However, most of the published work done in clustering hospitals 
was based on a single view of the hospitals’ data [2,4,7,23,24]. A single 
view of hospital data represents a single hospital similarity network and 
only describes hospitals from a single aspect that does not accurately 
grasp the comprehensive information of hospitals. This limitation is 
addressed in this study. Conversely, the assumption we hold in con-
ducting this work is that there are multi-views of hospital data with 
different similarities among hospitals for different diseases. To fulfill 
that assumption, joint clustering is used instead of using K-mean or 
DBSCAN algorithms. Using K-means and DBSCAN violate the assump-
tion that some hospital networks share a common clustering structure 
and cannot cluster these hospital networks simultaneously. However, 
joint clustering is the method that allows clustering hospitals that belong 
to multiple networks simultaneously, considering the similarity among 
these networks. 

Joint clustering algorithms are derived from spectral clustering and 
other graph-based methods [18,25–27]. Some methods consider joint 
clustering as multi-view clustering, where the constraint is to have the 

same number of nodes in all networks [25,26,28]. Other methods 
consider joint clustering as multi-domain clustering, where different 
networks have different sizes [16,17,29]. In this work, we consider 
multi-domain joint clustering algorithms to cluster multiple hospital 
networks assuming that different hospital networks have different 
numbers of hospitals. Moreover, not all joint clustering methods as-
sumes that some networks share a common clustering structure. To 
address the two mentioned assumptions, we use a solution proposed by 
Ni et al. [16], a Network of Networks Clustering (NoNClus) method that 
handles clustering heterogeneous multi-domain networks with different 
numbers of nodes in each network. Further, the connectivity among 
these networks is modeled using the Network of Networks data structure 
to regularize the clustering structures in different networks. The NoN-
Clus method permits multiple underlying clustering structures across 
different networks by clustering the super network and using it to guide 
clustering the multiple sub-networks. That is, it groups multiple 
sub-networks considering the grouping obtained for the super-network. 

A Network of Networks (NoN) is a multilayered network structure 
used to discover the hidden pattern in heterogenous data [22]. This 
structure is constructed of a top-layer super network and multiple 
bottom-layer sub-networks. The super network in this structure models 
the interconnectivity between the sub-networks. Studies show that the 
top-layer super-network in the NoN structure represents critical infor-
mation concerning shared clustering structure across all sub-networks 
[6,7,16]. Our previous work [8,9] utilized literature-based and health 
record-based super networks from external resources to guide the joint 
clustering of hospitals in the disease-specific hospital networks. 

Besides the objective of clustering hospitals for different diseases 
using graph networks, the main contribution of this work is to investi-
gate the joint clustering of hospitals guided by the health record-based 
super network extracted from the bottom-layer disease-specific hospi-
tal networks to calculate the similarities among these networks using the 
graph matching concept. Graph matching is the problem of finding a 
similarity between graphs. It has numerous applications in diverse 
fields, and therefore many algorithms and similarity measures were 
proposed to handle this problem [30]. Many studies were devoted to 
investigate exact and inexact graph matching by considering nodes, 
edges, and their attributes to analyze their similarities [31]. Theoreti-
cally, the graph-matching problem can be solved by comprehensively 
searching the entire solution space. However, this approach is practi-
cally unfeasible because the solution space expands exponentially as the 
size of input data increases. Therefore, prior studies use various 
approximation techniques to solve the problem [30,31]. In this study, 
the graph-matching problem is simplified by decomposing networks to a 
lower-rank approximation of a symmetric nonnegative matrix and then 
calculating the distance between these approximations because we are 
interested in examining the similarity of the underlying clustering 
structure of these networks. 

3. Methodology 

The main objective of this study is to jointly cluster hospitals based 
on their monthly admission behavior for different diseases considering 
the similarity among these diseases. To address this objective, we pro-
posed a framework that is built using layers of different methods that 
leverages the strength of these methods. This section explains this pro-
posed multi-layer framework. First, we built disease-specific hospital 
similarity networks. Then, we define the similarity among these 
different hospital networks using a health records-based disease 
network (HRDN) extracted from these hospital networks using a graph- 
matching algorithm. Also, we use a literature-based disease network 
(LDN) extracted from the human symptoms disease network to compare 
the results. Then, we leveraged the Network of Networks Data Model to 
jointly cluster these hospital networks using the NONClus method. 
Finally, we use the clustering homogeneity measure to measure the 
goodness of the clustering result. 
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3.1. Disease-specific hospital networks 

The first layer in the proposed framework is using social network 
graphs to build hospital similarity networks. Data used to build these 
networks are extracted from the California State Inpatient Database 
(SID) as part of the Healthcare Cost and Utilization Project (HCUP) 
provided by the Agency for Healthcare Research and Quality (AHRQ) 
[14]. Over 7 million single-patient discharge records from the emer-
gency department between 2008 and 2011 were used, including medical 
and sociodemographic information. There are 145 diseases included in 
this study. Hospitals’ monthly admission distributions for each disease 
are aggregated for the principal diagnosis. The total number of hospitals 
used in this study was 152 out of 500 California hospitals, where hos-
pitals with insufficient admission records for some diseases over the 
study period were excluded. A hospital was excluded from the study 

when it was represented in less than 50% of disease-specific hospital 
networks. This decision was made to ensure that there is enough data to 
measure the homogeneity among different networks. 

Since hospitals have different admission distributions for different 
diseases,145 disease-specific hospital networks were built. Every 
disease-specific network has nodes representing hospitals with admis-
sion for the corresponding diseases considered in this study. Edges be-
tween these nodes represent similarities between hospitals’ monthly 
admissions for the specific disease. Kullback-Leibler divergence was 
used to measure how one hospital’s monthly admission distribution 
diverges from a second hospital’s monthly admission distribution for 
every year separately. 

3.2. HRDN: health records-based disease network using graph matching 

The second layer of this framework defines the similarity among 
disease-specific hospital networks. To do so, we extract a disease 
network directly from the health records used to build disease-specific 
hospital networks using graph matching. Graph matching algorithms 
work by comparing the adjacency matrices or node adjacency lists of the 

two graphs/networks and finding the best match between nodes in the 
two graphs based on some criteria, such as minimizing the number of 
edges that need to be added or removed to make the two graphs 
isomorphic. A limitation of a graph matching-based analysis is poten-
tially exponential complexity concerning the number of nodes in the 
graph. In our study, the similarity analysis of the underlying clustering 
structures is simplified by decomposing networks to a lower-rank 
approximation of a symmetric nonnegative matrix and then calcu-
lating the distance between these approximations. Then, we use the 
similarity matrix produced by the factorized graph matching method to 
examine its effect on clustering multi-domain disease-specific hospital 
networks. These steps of the second layer are summarized in Algorithm 1 
and explained in more detail below.   

Step 1: Symmetric Nonnegative matrix factorization (SNMF) is 
used for the graph clustering [25]. It provides a lower-rank 
approximation of a nonnegative matrix. It has been successfully 
used as a graph clustering method that takes an adjacency matrix as 
an input and produces clustering factors. It enforces nonnegativity on 
the clustering assignment matrix. We used SNMF to obtain a 
lower-rank approximation matrix for disease-specific hospital net-
works separately. For every disease-specific hospital network Ai, we 
acquire the lower-rank approximation Hi of SNMF using the objec-
tive function: 

min
H≥0

⃦
⃦Ai − HiHT

i

⃦
⃦2

F  

where Ai is the adjacency matrix for the i-th disease-specific hospital 
network, and Hi (n×k) is the lower-rank approximation (factor) of that 
network. Each row in Hi represents a hospital in the i-th disease-specific 
hospital network, and each column specifies the probability of a hospital 
belonging to a cluster. 
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Step 2: Factorized Graph Matching algorithm determines the de-
gree of similarity between two graphs. Similarity score takes values 
in [0,1], where 0 means the two graphs are completely dissimilar, 
while 1 means they are identical. There are many studies to inves-
tigate exact and inexact graph matching by studying nodes, edges, 
and their attributes to analyze their similarities [31]. Our study is 
focused on the similarity of the underlying clustering structure 
among different networks where the similarity of the underlying 
clustering structure for two networks is measured by a set of nodes 
that belongs to the same cluster in both networks. 

After obtaining a lower-rank approximation Hi in the first step, we 
measure the distance among every cluster of different networks to find 
the similarity in clustering structure among different networks. The 
lower-rank approximation can be easily interpreted in the context of 
clustering, where the largest entry hij indicates that node (hospital) i 
belongs to cluster j. So, each column in H represents different proba-
bilities of different nodes belonging to that cluster. 

Considering the way SNMF is calculated, it is necessary to calculate 
the distance between two networks for different permutations and find 
the minimum distance in these different permutations. For example, as 
an illustration assume that there are three clusters of hospitals in 
network 1 and network 2. The same set of hospitals may be in cluster 1 at 
network 1 and in cluster 1 in network 2, cluster 2 in network 2, or cluster 
3 in network 2. Therefore, for 3 clusters (k = 3: (1,2,3)) in the first 
network, there are 6 permutations (p = 6: (1,2,3), (1,3,2), (2,1,3), 
(2,3,1), (3,1,2),(3,2,1)) of possible clusters in the second network to 
which measure the distance against. 

Given the same clusters on different networks, s and t, and their 
corresponding vectors hs and ht in H, we say those two networks have 
identical underlying clustering structures if the minimum Euclidean 
distance between nodes probabilities of one network and permutation of 
probabilities of nodes in the other network equals zero. The distance can 
be written as: 

d(s, t)=min
∑k

i=1

∑p

j=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
hsi − htj

)22
√

This distance is in the range of [0,∞). To convert this distance to a 
[0,1] similarity score, we normalized all distance scores using min-max 
normalization and converted the distance (d) to similarity (s) using the 
formula s = 1- d. 

3.3. LDN: literature-based disease network 

Considering the promising results obtained at our previous work [8, 
9] using the literature-based disease network (LDN), we compared the 
disease network obtained from the health records (HRDN) using our 
proposed summarizing method with one obtained from the medical 
bibliographic literature databases. 

The literature-based disease network (LDN) is extracted from the 
human symptoms disease network. It is used as a weighted undirected 
disease network to model the interconnectivity among the bottom layer 
disease-specific hospital networks. The reason behind using a literature- 
based disease network was influenced by the fact that disease symptoms 
are one of the critical factors for admission decisions. It is used in this 
study for a comparison reason. 

LDN is constructed by Zhou et al. [19] using the PubMed database 
and MeSH terminology. MeSH terminology indexed all articles in 
PubMed for over four thousand disease terms and over three hundred 
symptom terms. Then, the association between diseases and symptoms 
was identified, where a vector of related symptoms described every 
disease. The similarity between vectors of diseases was calculated as 
cosine ranging from 0 with no shared symptoms to 1, which means both 
diseases shared identical symptoms. Finally, it is important to mention 
that no patient records are utilized in generating LDN [19]. 

Clinical Classifications Software (CCS) code is used to categorize 
diseases because the disease-specific hospital networks are constructed 
using the California State Inpatient Database. Therefore, only 145 dis-
ease nodes are extracted from 1596 distinct diseases represented in the 
human symptoms network. The matching between the CCS codes and 
the MeSH terminology was done manually, and the average of similar-
ities in some cases where the matching was not one-to-one was calcu-
lated [32]. 

3.4. NoNClus: Network of Networks Clustering 

The third layer of the proposed framework is aimed to leverage the 
Network of Network data model and NoNClus clustering method to 
model the clustering structure in the disease-specific hospital networks. 
The clustering structure of the disease network is used to guide the 
clustering of different disease-specific hospital networks at the bottom 
layer. Fig. 2 shows the disease network of hospital networks data model 
where the NoNClus is used to cluster the disease network and all hospital 
networks into three clusters. The clustering of the disease network 
guides the clustering of disease-specific hospital networks. 

The predefined number of main clusters or disease clusters (DC) for 
the top-layer network is k = 3. This simple number has been tested and 
given meaningful results. It implies that the underlying clustering 
structure among different disease-specific hospital networks is different. 
However, some networks may share the same underlying clustering 
structure if these networks belong to same group. For example, in Fig. 2, 
disease-specific hospital networks that represent diseases number 2 and 
5, i.e., belong to the same top disease cluster, may share the same un-
derlying clustering structure. Although the NoNClus method allows 
specifying different numbers of clusters among disease-specific hospital 
networks, our experiments were unified, and the number of hospital 
clusters was predefined as t = 3. This predefined cluster number has 
been chosen to keep this setting as simple as possible. 

We built a NoN-data model using HRDN disease network as a top- 
layer network and 145 disease-specific hospital networks at the bot-
tom layer. Another NoN-data model using LDN disease network and the 
same 145 disease-specific hospital networks at the bottom layers. Then 
we used NoNClus method for the joint clustering of these two NoN data 
models and compared the results. 

The NoNClus [16] works in two stages. In the first stage, the NoNClus 
method clusters the top-layer disease network using a symmetric 
nonnegative matrix factorization by minimizing the objective function 
J: 

min J =
⃦
⃦G − HHT

⃦
⃦2

F  

where G is the adjacency matrix of the disease network. This network 
has g diseases/nodes, while H is the non-negative low-dimensional 
factor matrix of G with k clusters for g diseases. These factors define each 
disease node’s probability to belong to one of the k main clusters. 

In the second stage, the non-negative low-dimensional factor matrix 
of the disease network, H, is used as a regularization to guide the cluster 
of all disease-specific hospital networks and get a factor matrix of each 
disease-specific hospital network. The objective function for that second 
stage is: 

min
U(i)≥0 (i=1,…,g)
V(j)≥0 (j=1,…,k)

J =
∑g

i=1

⃦
⃦Ai − Ui( Ui)′⃦

⃦
2

F + a
∑g

i=1

∑k

j=1
hij
⃦
⃦Ui − Vj

⃦
⃦2

F  

where Ai represents the similarity in hospital admission for the ith dis-
ease, i.e., the adjacency matrix of every disease-specific hospital 
network, Ui is the factor matrix of ith disease-specific hospital networks 
and V(j) are introduced as k hidden clusters to represent the underlying 
structure of disease-specific hospital networks in the main cluster. 

In this objective function, the first part deals with individually 
clustering the disease-specific hospital networks based on a similarity 
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matrix of hospital admission for each disease. The second part regular-
izes the factor matrix of each disease-specific hospital network, using the 
main clustering structure defined in the factor matrix of the main disease 
network, H, and the underlying clustering structure of domain-specific 
networks of the main cluster, V [16]. 

3.5. Clustering homogeneity measurement 

Clustering is an unsupervised machine learning method that does not 
have a direct way to measure the goodness of the output. However, in 
this work, we evaluate the validity of clustering results using the clus-
tering homogeneity measure. The NoNClus method performs clustering 
in two stages, clustering disease networks in the first stage and clus-
tering hospitals in the second stage. Therefore, the group homogeneity 
measure is used to compare two disease networks clustered in the first 
stage and to compare hospital networks clustered in the second stage. 

To compare the literature-based disease network (LDN) and health 
records-based disease network (HRDN), group homogeneity is defined 
as the percentage of the largest group of disease nodes belonging to the 

same cluster across different disease networks. Among different hospital 
networks, group homogeneity is the percentage of the largest hospital 
group that belongs to the same cluster across different networks. 

The following is a hypothetical example of two disease networks 
with four disease nodes in each of them to explain the group homoge-
neity measure. Fig. 3 shows a visualization of this example where there 
are four disease nodes (A, B, C, and D) in both the literature-based dis-
ease network (LDN) and health records-based disease network (HRDN). 
In the LDN network, disease nodes A, B, and D belong to disease cluster 
DC1 while C belongs to disease cluster DC2. In the HRDN network, 
disease nodes A and C belong to disease cluster DC1, while B and D 
belong to disease cluster DC2. The group homogeneity value between 
LDN and HRDN networks is the maximum number of disease nodes that 
belong to the same disease clusters across both networks. In this 
example, there are three sets of disease nodes that belong to the same 
disease clusters across networks. In the first set, node C belongs to DC2 
in the LDN network and to DC1 in the HRDN network. In the second set, 
node A belongs to DC1 in both networks, and in the third set, nodes B 
and D belong to DC1 in the LDN network and to DC2 in the HRDN 
network. To find the percentage, the maximum number of disease nodes 
that belongs to the same clusters across different networks is divided by 
the total number of disease nodes in both networks, which are nodes A, 
B, C, and D. That is, group homogeneity between these two networks is 
computed as the maximum of a different set of disease nodes grouped 
together in both networks divided by the total number of hospitals in 
both networks. For the previous example, group homogeneity between 
LDN and HRDN networks is max (1,1, 2)/4 = 2/4 or 50%. 

4. Results and discussion 

Towards the objective of clustering hospitals based on their monthly 
admission behavior for different diseases, we investigated the similarity 
among multiple disease-specific hospital networks to guide a joint 

Fig. 2. Joint clustering of disease network of hospital networks.  

Fig. 3. Hypothetical example to explain clustering homogeneity visualizing 
two disease networks that have four disease nodes and two clusters. 
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clustering of hospitals. We conducted two experiments using two 
different NoN data models. In the first experiment, the NoN data model 
has the HRDN disease network that was generated using the summari-
zing method we proposed as a super network to guide the joint clus-
tering of the disease-specific hospital networks in the bottom layer. In 
the second experiment, the NoN data model has the LDN disease 
network as a super network to guide the joint clustering of the same set 
of disease-specific hospital networks in the bottom layer. As explained 
before, the joint clustering algorithm, NoNClus, clusters the disease 
super network (HRDN or LDN) to guide the clustering of disease-specific 
hospital sub-networks. Then, it uses disease clusters to guide the joint 
cluster of different disease-specific hospital networks. Therefore, this 
section presents the results of the clustering of two different disease 
networks used in these experiments and then the results of the joint 
clustering of hospital networks guided by HRDN and LDN disease 
networks. 

4.1. Clustering of disease networks 

A disease super network is used to guide the joint clustering of 
different disease-specific hospital sub-networks. Therefore, this subsec-
tion describes the clustering result of the two different disease networks, 
the Literature-based Disease Network (LDN) and the Health Record- 
based Disease Network (HRDN). In previous studies [8,9], the LDN 
disease network was introduced from an external resource to represent 
the similarity among disease-specific hospital networks. It is used in one 
experiment to compare its results with the second experiment’s results. 
The HRDN disease similarity network is extracted from the 
disease-specific hospital networks using the graph-matching concept to 
characterize the effect of the learned similarity on the joint clustering of 
hospital networks. In the following subsections, we present, discuss, and 
compare the results of clustering HRDN with LDN done in the first step 
in the NoNClus method. 

4.1.1. Clustering of literature-based disease network (LDN) 
The literature-based disease network (LDN), used as a super network 

in one experiment, was extracted from the human symptoms network 
[19]. It is a super-network of 145 nodes where each node represents a 
disease. This weighted undirected disease network represents the simi-
larity among diseases based on the similarity of the symptoms extracted 
from the medical bibliographic literature. Using NoNClus, 145 diseases 
are grouped into three main clusters in the first stage. One cluster has 34 

diseases, the second cluster has 57 and the third cluster has 54 diseases. 
The top five diseases that have the highest probability to belong to each 
of the three clusters are listed in Table 1. The results show that the three 
clusters have a disease that shares similar symptoms. The first cluster 
comprises diseases that are related to pregnancy and childbirth com-
plications. In the second cluster, the top diseases are related to respi-
ratory and diseases of white blood cells. In the last cluster, top diseases 
vary more but have generally similar symptoms such as neurologic, 
nonspecific chest pain, and orthopedic conditions which may have 
occurred from a fall from the aforementioned neurologic conditions. 

4.1.2. Clustering of health record-based disease network (HRDN) 
A health records-based disease network (HRDN), used as a super 

network in the second experiment, is obtained by summarizing multiple 
disease-based hospital networks into nodes according to the similarity 
among their underlying clustering structure. Four different HRDNs are 
generated for different years, from 2008 to 2011. As explained in Al-
gorithm 1 in section 3.2, we proposed a method that calculates the 
similarity of the underlying clustering patterns among all disease- 
specific hospital sub-networks at the bottom layer to build a disease 
super-network. This disease network is used to guide clustering in 
different disease-specific hospital sub-networks using the NoNClus 
method. Table 2 lists the top five diseases that have the highest proba-
bility to belong to each of the three clusters in 2008, and to which 
clusters (with corresponding probabilities) these diseases belong in the 
following three years, 2009, 2010, and 2011. This table shows a sig-
nificant consistency in the clustering results of the super network nodes 
among different years, as opposed to our previous work that generated a 
disease network from aggregated monthly admission for separate dis-
eases over all hospitals and fused it into a single disease distribution 
network for every year. Cluster 1 is again pregnancy and its complica-
tion, while cluster 2 is now respiratory failure, esophageal disorders, 
secondary malignancies, and hip fractures; and Cluster 3 are infections, 
disorders of the breast including cancers, rheumatologic disorders, 
cancers of the kidney, and infections. Clustering results in the previous 
work were inconsistent over years. This observation shows that the 
summarizing method we proposed in this study generates a more robust 
disease network over years. 

4.1.3. Comparison of LDN and HRDN-based clustering patterns 
Clustering the two disease networks in stage 1 of the NoNClus 

method revealed some similarities and differences between LDN and 
HRDN. Table 3 shows the distribution of disease nodes in the three 
clusters for the two different disease networks obtained in the two ex-
periments. Using NoNClus, 145 diseases in both the LDN and HRDN 
disease networks are grouped into three clusters. For the LDN disease 
network, one cluster has 34 diseases, the second cluster has 57 and the 
third cluster has 54 diseases. For the HRDN disease network, results 
show more consistency in the distribution of HRDN over the 4 years 
calculated. The numbers of nodes are between 19 and 25 in the first 
cluster over the four years, between 65 and 74 in the second cluster, and 
between 46 and 58 in the third cluster. 

To investigate the clustering results among these networks, group 
homogeneity is calculated. Among LDN and HRDN networks, clustering 
homogeneity is defined as the percentage of the largest group of disease 
nodes belonging to the same cluster across both LDN and HRDN disease 
networks. Table 4 shows the group homogeneity measures among LDN 
and HRDN networks. The percentage of the different sets of disease 
nodes grouped together in both LDN disease network, and the four years 
of HRDN disease networks range between 39% and 45%. There was 
greater group homogeneity among the HRDN-based clustering, ranging 
between 78% and 86%, over the four years (2008, 2009, 2010, and 
2011). This shows the consistency in the hospital admission pattern by 
disease over years and the differences in the clustering homogeneity 
among the clustering of LDN and clustering four years of HRDN. 

However, Table 5 shows that the similarity between the top five 

Table 1 
Membership probability for the top five diseases in each of the three clusters of 
the LDN disease network.  

CCS 
code 

Disease name LDN 
cluster 

Probability 

183 Hypertension complicating pregnancy, 
childbirth, and the puerperium 

1 1.00 

186 Diabetes or abnormal glucose tolerance 
complicating pregnancy; childbirth; or the 
puerperium 

1 1.00 

189 Previous C-section 1 0.95 
190 Fetal distress and abnormal forces of labor 1 0.95 
192 Umbilical cord complication 1 0.95 
63 Diseases of white blood cells 2 1.00 
125 Acute bronchitis 2 1.00 
126 Other upper respiratory infections 2 1.00 
133 Other lower respiratory disease 2 1.00 
134 Other upper respiratory disease 2 1.00 
79 Parkinson’s disease 3 1.00 
81 Other hereditary and degenerative nervous 

system conditions 
3 1.00 

82 Paralysis 3 1.00 
102 Nonspecific chest pain 3 1.00 
225 Joint disorders and dislocations; trauma 

related 
3 1.00  
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diseases in each of the three clusters of the literature-based disease 
network falls into the same cluster in the HRDN for 2008. 

4.2. Clustering of disease-specific hospital networks 

The LDN and HRDN were used in two different experiments to guide 
the joint clustering of different disease-specific hospital sub-networks. In 
the first experiment, the NoN data model is used with LDN as a super 
network at the top layer and disease-specific hospital networks at the 
bottom layer. In the second experiment, another NoN data model is used 
with HRDN as a super network at the top layer and disease-specific 
hospital networks at the bottom layer. Then, we jointly clustered hos-
pitals using NoNClust method. The clustering results of disease-specific 
hospital networks in these two experiments and the comparison between 
them are listed in the following subsections. 

4.2.1. Hospital joint clustering guided by the LDN 
Clustering hospitals vary among multiple disease-specific hospital 

networks. Previous studies [6,7] showed that the underlying clustering 
structure is similar for hospital networks that are represented by disease 
nodes belonging to the same disease cluster at the disease super network 
in NoN data model. Hospital clustering analysis using a LDN disease 

network to guide the clustering in the NoNClus algorithm is shown in 
Table 6. The results are for the top five diseases that have a high prob-
ability to belong to each of the three clusters at the LDN disease network 
layer. 

Row-wise, the table is organized into three main sections. The first 
five rows present data for the top five disease-specific hospital networks 
that represent the top five disease nodes belonging to the first LDN 
cluster. The next five rows are the results of the top five disease-specific 
hospital networks that represent the top five disease nodes belonging to 
the second LDN cluster. The third set of five rows of results is for the top 
five disease-specific hospital networks that represent the top five disease 
nodes belonging to the third main cluster of the literature-based disease 
network. 

Table 2 
Membership probability for the top five diseases in each of the three clusters of the HRDN disease network. The stability of the cluster assignment by the HRDN and the 
assignment probabilities are compared over four years (2008–2011).  

CCS 
code 

Disease name 2008 HRDN 
Clust 

2008 
Prob 

2009 HRDN 
Clust 

2009 
Prob 

2010 HRDN 
Clust 

2010 
Prob 

2011 HRDN 
Clust 

2011 
Prob 

185 Prolonged pregnancy 1 1.00 1 1.00 1 1.00 1 1.00 
189 Previous C-section 1 1.00 1 1.00 1 0.99 1 1.00 
190 Fetal distress and abnormal forces of labor 1 1.00 1 1.00 1 1.00 1 1.00 
191 Polyhydramnios, other problems of amniotic 

cavity 
1 1.00 1 1.00 1 0.89 1 1.00 

192 Umbilical cord complication 1 1.00 1 1.00 1 1.00 1 1.00 
42 Secondary malignancies 2 1.00 2 1.00 2 0.71 2 1.00 
131 Respiratory failure; insufficiency; arrest 2 1.00 1 0.38 2 0.62 2 0.71 
138 Esophageal disorders 2 1.00 2 0.93 2 0.88 2 0.70 
143 Abdominal hernia 2 1.00 2 0.60 2 0.81 2 1.00 
226 Fracture of neck of femur (hip) 2 1.00 2 0.77 2 0.92 2 0.87 
8 Other infections; including parasitic 3 0.83 3 0.63 3 0.72 1 0.74 
24 Cancer of breast 3 0.75 3 0.69 1 0.55 3 0.71 
210 Systemic lupus erythematosus and connective 

tissue disorders 
3 0.73 3 0.75 3 0.89 3 0.75 

33 Cancer of kidney and renal pelvis 3 0.72 3 0.83 3 0.64 3 0.98 
167 Nonmalignant breast conditions 3 0.70 1 1.00 3 0.64 3 0.59  

Table 3 
The number of disease nodes (percentage) in clusters found by the LDN and the 
HRDN.   

LDN HRDN 
2008 

HRDN 
2009 

HRDN 
2010 

HRDN 
2011 

Cluster 
1 

34 
(23.45%) 

19 
(13.10%) 

22 
(15.17%) 

25 
(17.24%) 

21 
(14.48%) 

Cluster 
2 

57 
(39.31%) 

74 
(51.03%) 

65 
(44.83%) 

74 
(51.03%) 

69 
(47.59%) 

Cluster 
3 

54 
(37.24%) 

52 
(35.86%) 

58 
(40.00%) 

46 
(31.72%) 

55 
(37.93%)  

Table 4 
Group Homogeneity of the LDN-based and the HRDN-based disease networks.   

LDN HRDN 2008 HRDN 2009 HRDN 2010 HRDN 2011 

LDN 1.00 0.41 0.39 0.45 0.41 
HRDN 2008 0.41 1.00 0.85 0.83 0.86 
HRDN 2009 0.39 0.85 1.00 0.78 0.82 
HRDN 2010 0.45 0.83 0.78 1.00 0.81 
HRDN 2011 0.41 0.86 0.82 0.81 1.00  

Table 5 
Comparison of clustering results of the LDN and the HRDN. The numbers show 
the probability of the disease belonging to clusters (C1, C2, C3).  

CCS 
code 

Disease name LDN HRDN 
2008 

185 Prolonged pregnancy 0.95 
(C1) 

1.00 (C1) 

189 Previous C-section 0.95 
(C1) 

1.00 (C1) 

190 Fetal distress and abnormal forces of labor 0.95 
(C1) 

1.00 (C1) 

191 Polyhydramnios and other problems of amniotic 
cavity 

0.95 
(C1) 

1.00 (C1) 

192 Umbilical cord complication 0.95 
(C1) 

1.00 (C1) 

126 Other upper respiratory infections 1.00 
(C2) 

0.66 (C2) 

133 Other lower respiratory disease 1.00 
(C2) 

0.81 (C2) 

139 Gastroduodenal ulcer (except hemorrhage) 1.00 
(C2) 

0.73 (C2) 

140 Gastritis and duodenitis 1.00 
(C2) 

0.92 (C2) 

154 Noninfectious gastroenteritis 1.00 
(C2) 

0.57 (C2) 

81 Other hereditary and degenerative nervous 
system conditions 

1.00 
(C3) 

0.56 (C3) 

90 Inflammation: infection of eye (except that caused 
by tuberculosis or sexually transmitted disease) 

0.97 
(C3) 

0.63 (C3) 

167 Nonmalignant breast conditions 0.94 
(C3) 

0.70 (C3) 

204 Other non-traumatic joint disorders 0.96 
(C3) 

0.53 (C3) 

225 Joint disorders and dislocations; trauma-related 1.00 
(C3) 

1.60 (C3)  
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Column-wise, this table lists the information about each disease- 
specific hospital network and then details about hospitals in the 
network. For each disease-specific hospital network, CCS code and the 
name of the disease for that network are listed first. then, the LDN cluster 
to which this disease belongs in the LDN disease network at the top layer 
of NoN data model and the probability to belong to that cluster are 
listed. After explaining the network, the rest of the columns present the 
results of hospitals clustering inside the network. First, the number of 
hospitals in the network is listed with a percentage of the hospitals in the 
network out of 152 total hospitals used in the study. Then the number of 
hospitals in each cluster is listed with the percentage of these hospitals 
out of the number of hospitals in the network. 

Table 6 shows similar clustering patterns among the disease-specific 
hospital networks that belong to the same LDN disease cluster. The 
distribution of hospitals in the three clusters is similar among the set of 
disease-specific hospital networks that belongs to the first cluster in the 
LDN disease network. Also, this consistency in the distribution among 
different hospital clusters is extended to the next two sets of disease- 
specific hospital networks that belong to the second and third LDN 
clusters. 

As shown in Table 6, the first set of disease-specific hospital networks 
that represent the top five diseases belonging to LDN cluster 1 has a low 
number of hospitals that range between 29% and 38% of hospitals out of 
152 hospitals in each of the five networks. The distribution of these 

hospitals in each cluster is consistent among the first set of networks. On 
average, 30% of hospitals are in the first cluster, 40% of hospitals in the 
second cluster, and 30% of hospitals are grouped in the third cluster. For 
example, for the diagnosis of previous C-section (189), there are 55 
hospitals that treated patients with that disease, 16 (29%) hospitals 
(Cluster 1) have different admission patterns for this diagnosis 
compared to the 24 (44%) hospitals in cluster 2, and 15 (27%) hospitals 
in cluster 3. The differences in admission patterns in these hospital 
clusters can be used to inform the staffing of nurses and other maternity 
resources. Considering the low representation of these hospitals in this 
set, it is important to mention that the total number of hospitals used in 
this study is 152 hospitals out of 500 California hospitals as there some 
hospitals had no admission records for some diseases included in this 
study over the study period. Also, hospitals were eliminated from the 
study if they are not represented in more than 50% of disease-specific 
hospital networks reflecting that not all hospitals have maternity 
services. 

The second set of networks, that represent the top five diseases that 
belong to LDN cluster 2, has the highest number of hospitals in each 
network; The percentage of hospitals in these networks are between 
93% and 99% of 152 hospitals. Also, the distribution of these hospitals 
in each cluster is considerably consistent. The average percentage of 
hospitals grouped in the first hospitals cluster in every network is 38%. 
In average, 29% of hospitals are grouped in the second cluster, and 34% 

Table 6 
Hospital clustering analysis using the LDN-based disease network. The number of hospitals (the percentage of the hospitals).  

CCS 
code 

Disease-specific hospital network LDN 
Clust. 

Prob. LDN 
Clust. 

No. Hosp. in network 
(% out of 152) 

No. of Hosp. in 
Clus.1 (%) 

No. of Hosp. in 
Clus.2 (%) 

No. of Hosp. in 
Clus.3 (%) 

183 Hypertension complicating pregnancy, childbirth, and 
the puerperium 

1 1.00 97 (0.64) 32 (0.33) 35 (0.36) 30 (0.31) 

186 Diabetes or abnormal glucose tolerance complicating 
pregnancy; childbirth; or the puerperium 

1 1.00 65 (0.43) 18 (0.28) 25 (0.38) 22 (0.34) 

189 Previous C-section 1 0.95 55 (0.36) 16 (0.29) 24 (0.44) 15 (0.27) 
190 Fetal distress and abnormal forces of labor 1 0.95 52 (0.34) 14 (0.27) 22 (0.42) 16 (0.31) 
192 Umbilical cord complication 1 0.95 47 (0.31) 15 (0.32) 18 (0.38) 14 (0.30) 
63 Diseases of white blood cells 2 1.00 141 (0.93) 52 (0.37) 41 (0.29) 48 (0.34) 
125 Acute bronchitis 2 1.00 149 (0.98) 52 (0.35) 44 (0.30) 53 (0.36) 
126 Other upper respiratory infections 2 1.00 144 (0.95) 63 (0.44) 35 (0.24) 46 (0.32) 
133 Other lower respiratory disease 2 1.00 151 (0.99) 61 (0.40) 43 (0.28) 47 (0.31) 
134 Other upper respiratory disease 2 1.00 139 (0.91) 50 (0.36) 41 (0.29) 48 (0.35) 
79 Parkinson’s disease 3 1.00 108 (0.71) 33 (0.31) 31 (0.29) 44 (0.41) 
81 Other hereditary and degenerative nervous system 

conditions 
3 1.00 135 (0.89) 44 (0.33) 41 (0.30) 50 (0.37) 

82 Paralysis 3 1.00 83 (0.55) 22 (0.27) 27 (0.33) 34 (0.41) 
102 Nonspecific chest pain 3 1.00 152 (1.00) 53 (0.35) 50 (0.33) 49 (0.32) 
225 Joint disorders and dislocations; trauma related 3 1.00 123 (0.81) 39 (0.32) 39 (0.32) 45 (0.37)  

Table 7 
Hospital clustering analysis using the HRDN. The number of hospitals (the percentage of the hospitals).  

CCS 
code 

Disease-specific hospital network HRDN 
Clust. 

Prob. HRDN 
Clust. 

No. Hosp. in network (% 
out of 152) 

No. of Hosp. in 
Clus.1 (%) 

No. of Hosp. in 
Clus.2 (%) 

No. of Hosp. in 
Clus.3 (%) 

185 Prolonged pregnancy 1 1.00 44 (0.29) 16 (0.36) 13 (0.30) 15 (0.34) 
189 Previous C-section 1 1.00 55 (0.36) 25 (0.45) 14 (0.25) 16 (0.29) 
190 Fetal distress and abnormal forces of labor 1 1.00 52 (0.34) 21 (0.40) 16 (0.31) 15 (0.29) 
191 Polyhydramnios and other problems of 

amniotic cavity 
1 1.00 57 (0.38) 23 (0.40) 17 (0.30) 17 (0.30) 

192 Umbilical cord complication 1 1.00 47 (0.31) 20 (0.43) 16 (0.34) 11 (0.23) 
42 Secondary malignancies 2 1.00 147 (0.97) 48 (0.33) 50 (0.34) 49 (0.33) 
131 Respiratory failure; insufficiency; arrest 

(adult) 
2 1.00 152 (1.00) 48 (0.32) 50 (0.33) 54 (0.36) 

138 Esophageal disorders 2 1.00 149 (0.98) 47 (0.32) 44 (0.30) 58 (0.39) 
143 Abdominal hernia 2 1.00 151 (0.99) 48 (0.32) 49 (0.32) 54 (0.36) 
226 Fracture of neck of femur (hip) 2 1.00 147 (0.97) 48 (0.33) 42 (0.29) 57 (0.39) 
8 Other infections; including parasitic 3 0.830 101 (0.66) 30 (0.30) 38 (0.38) 33 (0.33) 
24 Cancer of breast 3 0.748 91 (0.60) 26 (0.29) 37 (0.41) 28 (0.31) 
210 Systemic lupus erythematosus and 

connective tissue disorders 
3 0.732 109 (0.72) 31 (0.28) 41 (0.38) 37 (0.34) 

33 Cancer of kidney and renal pelvis 3 0.724 101 (0.66) 29 (0.29) 37 (0.37) 35 (0.35) 
167 Nonmalignant breast conditions 3 0.704 103 (0.68) 27 (0.26) 38 (0.37) 38 (0.37)  
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of hospitals are grouped in the third cluster. 
The third set of disease-specific hospital networks, that represent the 

top five diseases that belong to LDN cluster 3, has a hospital number that 
ranges between 55% and 100% of 152 hospitals. Also, the distribution of 
these hospitals in each cluster is considerably consistent. The average 
percentage of hospitals grouped in every network is 31% in the first 
cluster, 31% in the second cluster, and 38% in the third cluster. 

4.2.2. Hospital joint clustering guided by the HRDN 
The result of hospital clustering analysis using the HRDN to guide the 

clustering process is shown in Table 7. This hospital clustering is regu-
larized by clusters of the summarized disease network calculated from 
the similarity of the clustering structures among different disease- 
specific hospital sub-networks at the bottom layer using the proposed 
summarizing algorithm to build the HRDN disease super-network. This 
table lists the results of joint clustering disease-specific hospital net-
works for the top five diseases that have a high probability to belong to 
each of the three HRDN clusters at the disease network layer. 

Row-wise, the table is organized into three main sections. The first 
five rows present data for the top five disease-specific hospital networks 
that represent the top five disease nodes belonging to the first HRDN 
cluster of the HRDN network. The next five rows are the results of the top 
five disease-specific hospital networks that represent the top five disease 
nodes belonging to the second HRDN cluster. The third set of five rows of 
results is for the top five disease-specific hospital networks that repre-
sent the top five disease nodes belonging to the third HRDN cluster. 

Column-wise, this table also lists the information about each disease- 
specific hospital network and then details about hospitals in the 
network. For each disease-specific hospital network, the CCS code and 
the name of the disease for that network are listed first. Then, the HRDN 
cluster to which this disease belongs in the disease network at the top 
layer of NoN data model and the probability to belong to that cluster are 
listed. After explaining the network, the rest of the columns present the 
results of hospitals inside the network. First, the number of hospitals in 
the network is listed with a percentage of the hospitals in the network 
out of 152 total hospitals used in the experiments. Then, the rest of the 
columns show the number of hospitals in each cluster with the per-
centage of these hospitals out of the number of hospitals in the network. 

As shown in Table 7, the first set of disease-specific hospital networks 
that represent the top five diseases belonging to the first HRDN cluster 
has a low number of hospitals that ranges between 29% and 38% of 
hospitals out of 152 hospitals in each of the five networks. The distri-
bution of these hospitals in each cluster is consistent among the first set 
of networks. On average, 40% of hospitals are grouped in the first 
cluster, and 30% in the second and third clusters, respectively. 

The second set of networks, which represents the top five diseases 
that belong to HRDN cluster 2, has the highest number of hospitals in 
each network; The percentages of hospitals in these networks are be-
tween 97% and 100% of 152 hospitals. Also, the distribution of these 
hospitals in each cluster is considerably consistent. The average per-
centage of hospitals grouped in every network is 32% in the first cluster, 
32% in the second cluster, and 35% in the third cluster. 

The third set of disease-specific hospital networks, which represents 
the top five diseases that belong to HRDN cluster 3, has a hospital 
number between 60% and 72% of 152 hospitals. Also, the distribution of 
these hospitals in each hospital cluster is considerably consistent. The 

average percentage of hospitals grouped in every network is 28% in the 
first cluster, 38% in the second cluster, and 34% in the third cluster. 

4.2.3. Comparing hospital clustering homogeneity when using LDN versus 
using HRDN 

As mentioned in section 3.5, we compared the clustering results of 
the two NoN data models by evaluating the sense of belongingness using 
the clustering homogeneity measure. Among different hospital net-
works, group homogeneity is the percentage of the largest hospital 
group that belongs to the same cluster across different networks. 

Table 8 shows three sets of group homogeneity measures among five 
disease-specific hospital networks that represent the top five diseases 
belonging to each cluster of the LDN disease network. In other words, 
the left table in Table 8 shows the group homogeneity measures for 
disease-specific hospital networks that belong to the top five diseases 
belonging to the first LDN cluster, the second table for the diseases 
belonging to the second LDN cluster, and the third table for the third 
LDN cluster. In the first table, group homogeneity measures among these 
networks range between 38% and 47%, meaning that between 38% and 
47% of hospitals in these networks belong to the same cluster over these 
networks. The second set of disease-specific hospitals has group homo-
geneity measures between 36% and 42% while the third set has group 
homogeneity measures that range between 35% and 47%. For example, 
in Table 8 hospital admissions for diagnosis 189 Previous C-sections 
occurs with a diagnosis 192 umbilical cord complication 38% of the 
time. 

Comparing the two models, Table 9 shows three sets of group ho-
mogeneity measures among five disease-specific hospital networks that 
represent the top five diseases belonging to each cluster of the HRDN 
disease network. Group homogametic measures in this table show a 
slight improvement in using the HRDN overusing a LDN disease 
network. In the first left table inside Table 9, the group homogeneity 
measures for disease-specific hospital networks that belong to the top 
five diseases belonging to the first HRDN cluster range between 43% and 
61% which means that between 43% and 61% of hospitals in these 
networks belong to the same cluster over these networks. The second set 
of disease-specific hospitals that belongs to the top five diseases 
belonging to the second HRDN cluster has group homogeneity measures 
between 38% and 58% while the third set has group homogeneity 
measures that range between 41% and 59%. Some notable association 
from cluster 1 of the HRDN is that 185 Prolonged labor is associated with 
the diagnosis of 190 fetal distress suggesting potential fetal complica-
tions of prolonged labor. In cluster 2, diagnosis 131 Respiratory failure 
occurs 48% of the time with an abdominal hernia which could indicate a 
potential surgical complication after hernia repair. For cluster 3, the 
diagnosis of 8 other infections occurs with 210 Systemic Lupus 
Erythematous (SLE) 59% of the time, signaling that SLE patients may 
frequently suffer from infections related to immunosuppressive 
therapies. 

Studying group homogeneity of all disease-specific hospital net-
works, group homogeneity measures ranging between 35% and 47% 
with average measures close to 41% for the clustering guided using a 
LDN disease network. Group homogeneity measures ranged between 
39% and 61% with average measures close to 53% for the clustering 
guided using the HRDN. These numbers provide evidence that the HDRN 
model slightly outperformed the LDN model. Therefore, a joint cluster of 

Table 8 
Homogeneity of three clusters found using the LDN.   

183 186 189 190 192  63 125 126 133 134  79 81 82 102 225 

183 1.00 0.42 0.44 0.39 0.47 63 1.00 0.42 0.39 0.39 0.36 79 1.00 0.39 0.47 0.36 0.39 
186 0.42 1.00 0.43 0.41 0.44 125 0.42 1.00 0.37 0.41 0.36 81 0.39 1.00 0.44 0.36 0.39 
189 0.44 0.43 1.00 0.45 0.38 126 0.39 0.37 1.00 0.42 0.42 82 0.47 0.44 1.00 0.42 0.46 
190 0.39 0.41 0.45 1.00 0.41 133 0.39 0.41 0.42 1.00 0.39 102 0.36 0.36 0.42 1.00 0.35 
192 0.47 0.44 0.38 0.41 1.00 134 0.36 0.36 0.42 0.39 1.00 225 0.39 0.39 0.46 0.35 1.00  
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hospitals guided by the HRDN can replace a joint cluster of hospitals 
guided by a LDN disease network. For example, in comparison to 
Table 8, in Table 9 hospital admissions for diagnosis 189 Previous C- 
sections occurs with diagnosis 192 umbilical cord complication 59% of 
the time. 

5. Conclusion 

The objective of this study was to cluster hospitals based on their 
monthly admission behavior for different diseases to better reveal hid-
den patterns and assist healthcare organizations in planning and regu-
lation. We proposed a method to summarize multiple disease-specific 
hospital networks and generate a health records-based disease network 
(HRDN) that is used to guide a joint clustering of hospital networks. We 
compared the joint clustering guided by HRDN and the literature-based 
disease network (LDN) constructed from medical bibliographic litera-
ture. The experimental results show the enhancement in clustering ho-
mogeneity when the disease network was extracted from health records 
by summarizing the underlying clustering structure of different hospital 
networks. This is significant because it better revealed the hidden un-
derlying hospital clustering structure for specific diseases without the 
need to get external data. We found unique hospital clusters with 
different admission for the same disease as well as unique disease 
clusters among diagnoses which could inform hospital policies and 
procedures. Further the proposed approach could provide potential so-
lutions to other similar problems. In future research, we need to auto-
mate the proposed method to summarize multiple hospital networks 
using different similarity measures and with the ability to evaluate the 
optimal number of clusters. This will open the road to exploring more 
dimensions of hospital and disease clustering to improve healthcare. 
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