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Abstract 
Utilizing data analytics and machine learning (ML) 

on phasor measurement units (PMUs) data to analyze 
faults automatically is the focus of this paper. 
Insufficient labels and natural uneven distribution of 
different types of line fault events found in field-
recorded PMU data make supervised ML model 
development challenging. To address this issue, we train 
off-the-shelf Support Vector Machine (SVM) ML 
models for line fault classification using simulated PMU 
data obtained from a combination of 12 physical and 
virtual PMUs placed on a synthetic IEEE 14-bus system 
as well as using this simulated data unified with field 
recordings. A conducted sensitivity study is focused on 
three factors, 1) the number of PMUs used to train the 
ML model, 2) the voltage level at which the model is 
trained, and 3) the vicinity of PMUs to transmission line 
faults. The ML models trained with simulated and field 
data are evaluated on one-year field-recorded data 
collected from 38 PMUs sparsely located in the US 
Western interconnection. We demonstrate that when 
training ML models with only simulated data, the 
performance varies significantly with different number 
of PMUs, voltage level, and PMU placement in separate 
areas of the synthetic grid (F1 score of 0.78 to 0.92). We 
obtained an F1 score of 0.94 using the simulated dataset 
integrated with field recordings. The performance of a 
ML model developed using simulated data is also 
evaluated on the three-phase voltage signals extracted 
from 188 PMUs in the Eastern interconnection 
accompanied by imprecise labels, where the majority of 
the labels do not identify the fault type. On this 
extremely challenging task, we achieved 77% accuracy 
solely using synthetic data for ML training. 

Keywords: Transmission Line, Fault Classification, 
Phasor Measurement Units, Machine learning 

1. Introduction
In recent years, synchrophasor technology has been 

deployed to supplement supervisory control and data 
acquisition (SCADA) systems to improve electric grid 
monitoring, control, and protection by providing a 

precise and comprehensive “view” of an entire 
interconnection. Reporting rate for PMU data is over 
100 times faster than SCADA’s, which improves 
situational awareness, wide-area monitoring, power 
system planning, event analysis, and real-time 
operations (Kezunovic et al., 2014; Patel et al., 2010).  

Manual fault classification of historical or real-
time streaming PMU data is infeasible due to high 
data reporting rates and an increasing number of 
PMUs placed in the power grid. Since some field 
recorded data may have insufficient or inaccurate labels 
or some line has limitations in captured fault types, 
a reasonable approach might be to adopt simulated 
data to train ML models to automatically process and 
evaluate collected PMU data for more efficient 
and accurate fault classification.  

Multiple feature extraction and ML methods were 
considered to automatically analyze large amounts of 
power system data in the past. For the early discovery 
of abnormal events, principal component analysis 
(PCA) was used to reduce the dimensionality of data 
gathered from PMUs (Xie et al., 2014). Complex 
cascading events were detected using the same method. 
For the extraction of discriminative features, the 
minimum volume closing ellipsoid (MVEE) approach 
was used (Rafferty et al., 2017; Dahal et al., 2014), 
whereas, for event classification, the agglomerative 
hierarchical clustering method was applied (Khan et al., 
2015). Some of the approaches used for automated 
event detection (Biswal et al., 2016; Brahma et al., 
2017) include fast variation of the discrete S-
transform (Biswal et al., 2016) and signal energy 
transform (Yadav et al., 2019). The normalized 
value of the wavelet coefficient energy was used 
as a feature engineering technique in (Kim et al., 
2017). Swinging door endings based on dynamic 
programming have been used to identify event start 
times (Cui et al., 2019). Micro-PMU data was used to 
examine the applicability of event detection in 
distribution networks (Shahsavari et al., 2019), 
which compared the performance of support vector 
machines, decision trees, and K-Nearest Neighborhood 
for event detection. Inputs for the Convolutional 
Neural Network classification model were generated 
using a wavelet transform-based feature engineering 
method (Wang et al., 2019).   
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The true performance of any trained ML model can 
be evaluated with the field recorded data. However, the 
field-recorded PMU data may not be a good candidate 
for supervised training of ML models for line fault event 
classification due to insufficient labels and/or uneven 
distribution of different types of line faults (Otudi et al., 
2022). 

In this paper, we demonstrate that off-the-shelf 
SVM ML models can be successfully trained with 
simulated PMU data from a synthetic grid exhibiting 
exact labels and an even distribution of all types of line 
faults to classify line faults in field recorded data. The 
conducted study can be carried out using a variety of 
ML techniques as simulated data is shown to help when 
certain types of line faults are insufficiently present in 
the observed field recordings data. However, the 
performance is highly dependent on the selection of the 
PMUs with related simulation waveforms used for 
training. 

Our contribution is in demonstrating the sensitivity 
of choosing simulated data captured at various PMU 
locations and voltage levels to train the ML models for 
improved classification accuracy. Using PMU data from 
simulations allows us to remove the biases that come 
from insufficient and inaccurate labels found in the field 
recorded data, as reported in (Otudi et al., 2022). Our 
method outperforms the previous one by capturing data 
at the voltage level where PMUs are clustered closer to 
the simulated fault location. 

Our findings are presented in more detail as 
follows: Section 2 discusses the problem background 
and how this paper’s contribution expands previous 
work. Section 3 demonstrates how both field-recorded 
and simulated PMU data are utilized to extract features. 
Section 4 explains the methodology used in developing 
and training the ML model. The findings are presented 
in Section 5, followed by conclusions. 

2. ML Model Development Challenges

A. The rationale for the use of ML for line fault
classification

The practice in the power grid has long been to use
the SCADA system, which cannot capture fault 
waveforms due to the low scan rate. To overcome this 
shortcoming, several intelligent electronic devices 
(IEDs), such as digital fault recorders (DFRs) and digital 
protection relays (DPRs) located in substations are 
triggered to capture fault waveforms and breaker 
operations at the time and in close vicinity of the fault. 
The limitations of using such high-precision triggered 
data by the system operator are: a) slowly evolving 
system-wide events that may eventually result in relay 
tripping may not cause the recording instruments to 
trigger, and b) the field-recorded fault data is not 

transferred to the operators in real-time. In the case of 
Independent System Operators (ISOs), who typically do 
not have access to the DFR or DPR recordings but use 
only SCADA RTU scans, characterizing fault 
conditions in real-time is almost impossible.  

PMUs provide streaming data in real-time and can 
capture waveform distortion that characterizes the 
occurrence of a fault. This leads to an opportunity for 
differentiating and detecting not only the fault transients 
but also the slowly evolving events that may contribute 
to the relay tripping or may be caused by it. Recognizing 
such events automatically and associating them with the 
occurrence of a fault or relay operation can be achieved 
with the help of data analytics and machine learning on 
PMU recordings of voltage, current, and frequency. The 
higher reporting data rates and sampling time-
synchronization of PMUs have made online real-time 
analysis of fault events feasible. However, the large 
amount of data from field PMUs requires advanced data 
analytics to automate fault detection and classification. 

One of the main challenges when working with the 
field-recorded PMU data is that the event logs often 
have inaccurate or incomplete labels describing faults. 
The natural uneven distribution of different types of 
faults in field-recorded data also creates a bias in the ML 
model’s training. The goal behind developing ML 
models is to use an unbiased sample set of accurately 
labeled events to train models to recognize and 
characterize such events properly. Since supervised ML 
approaches for line fault classification have serious 
limitations when labels are unavailable or imprecise, 
and event types are biased, it becomes critical to have 
an alternative unbiased training dataset with precise and 
complete labels, such as a simulated PMU dataset with 
known fault events. We hypothesize that it might be 
feasible to rely on a simulated PMU dataset only to train 
ML models for classifying line faults in the field rather 
than doing it on field recordings that are biased and have 
insufficient or incomplete labels. The simulated data can 
be used to facilitate unbiased training by generating an 
even distribution of different types of events. 

B. Challenges addressed in prior work on line fault
classification using ML

Classifying line faults using ML models trained on
integrated simulated and field-recorded data is reported 
in (Otudi et al., 2022). In this previous study, the IEEE 
14-bus system is used to simulate fault cases rarely seen
in the field, and the simulated PMU data is used to
complement the field-recorded dataset for training ML
models. It was demonstrated that this approach
successfully enhances the accuracy of several ML
models used for fault classification. In (Otudi et al.,
2022), field-recorded data is labeled in two steps: a)
Automatic labels are assigned based on six features
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extracted from three-phase voltage data recorded by 
PMUs, and b) These features are used by supervised 
machine learning models to improve the fault 
characterization accuracy based on the provided labels. 
The six features are in a binary form (+1/-1), which for 
ten fault types resulted in 26=64 possible classification 
outcomes. Any fault that does not meet the criteria of 
the first nine classes is assigned to the last class, namely 
a three-phase (3P) line fault. Because some PMUs may 
be located at a distance from the fault, some voltage 
signals experience an indistinguishable change, which 
causes classification biases toward 3P and 3P-G faults, 
all lumped under the 3P category.  

Beyond the scarcity of the three-phase fault 
occurrences, the original raw labels provided with the 
field-recorded data had several other issues. The fault 
events corresponding to raw labels had to be visually 
inspected by a domain expert to improve the accuracy 
of the start and end times of an event. In some instances, 
the fault was labeled with the wrong type. Moreover, 
some labels had to be split to reflect several fault events 
of different types happening within a short time 
window. The improved labels did not solve all the issues 
found in the training data, such as the bias in the 
distribution of fault types, and it would be impractical to 
perform visual inspection of recorded PMU data for an 
extended time period. To make the training data set less 
biased, the field recordings with wrong labels are 
supplemented with data from simulated recordings with 
accurate labels. The use of simulations from a synthetic 
grid balances the number of line faults of each type and 
improves the training of various machine learning 
models. When using the IEEE 14-bus synthetic grid in 
the previous study, no sensitivity studies were done on 
PMU placement, PMU association with the faulted line, 
or voltage levels. Just an arbitrary combination of 
possible fault scenarios is used to get a more reliable 
training set (Otudi et al., 2022). 

C. Additional challenges that need to be addressed 
with new ML methods for line fault classification  

1. Eliminating Bias. What made the fault 
classification feasible in (Otudi et al., 2022) is the 
availability of labels that specify the simulated fault 
type, even if the labels provided along with the data are 
inaccurate or incomplete. The presence of simulated 
data with accurate labels helped mitigate the bias 
mentioned in (Otudi et al., 2022). However, we also 
faced the situation when inspecting year-long PMU 
recordings from the US Eastern interconnect where the 
number of events labeled as faults is much lower, and 
the quality of a few labels that are provided is not very 
good. For example, the line events are rarely specified 
in terms of phase or general fault type, and only a few 
fault events are labeled. As a result, the process followed 

in (Otudi et al., 2022) would be infeasible if applied to 
the recorded data from the Eastern interconnection.  

2. Selecting optimal number, location, and 
voltage-level placement of PMUs in the simulated 
network. None of these factors were investigated in our 
prior research (Otudi et al., 2022). As these factors could 
impact an ML model both during training and 
particularly when tested on unseen field-collected data, 
this has prompted us to do a sensitivity analysis for these 
three conditions. Accordingly, we conducted a 
sensitivity study to address the following:  
Step 1: Sensitivity to the optimal number of PMUs used 
for training. 

As simulated fault data from twelve PMUs is 
available to use for training purposes in this study, an 
interesting research question was whether 
measurements from all PMUs are needed for training. 
How different would the results will be if we only use 
one PMU, and which PMU’s data will yield the best 
results? To answer this question, the same ML models 
were trained separately using data captured by each of 
the twelve PMUs, and their overall performance is 
compared in the results section. 
Step 2: Impact of number of PMUs at a given voltage 
level and their proximity to faults   

Field-recorded data at the time of the fault revealed 
that PMUs at different voltage levels record different 
signal patterns. The fault signature captured by PMUs at 
a particular voltage level may be weak, while some 
PMUs are entirely “blind” to a fault. This sparked the 
investigation into whether the voltage level at which the 
PMU records in the synthetic grid affects training of the 
ML model. By separating the synthetic grid into a high-
voltage and low-voltage area, the separation of PMUs 
by numbers was inevitable due to the different number 
of lines, each monitored by a PMU. By design, the 
system has more PMUs placed closer together on the 
low-voltage side, which also affected the results. 

3. Dealing with an extreme use case of imprecise 
or incomplete event labels. The main goal of this study 
is to assess if an algorithm that is resilient to inaccurate 
or incomplete event labels from field recorded data can 
be developed to optimize the ML algorithm. Final 
testing of the developed models was done on the US 
Eastern interconnection since its field-recorded data was 
accompanied by imprecise and incomplete labels. The 
existing labels rarely specify the fault type or duration 
accurately. The only reliable way to test this dataset is 
to use the models developed using simulated data.  

3. Data Description 
Both simulated and field-recorded datasets are used 

in this study. Field-recorded data used for this research 
covers two years period (2016–2017) and is obtained 
from two sources. The first data source comes from the 
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38 PMUs in the Western Interconnection, and the 
second data source comes from the 188 PMUs in the 
Eastern Interconnection of the US. The simulated 
dataset is used to train ML models, whereas the field-
recorded dataset is used to test these models. Further 
properties of the two datasets utilized in this 
investigation and their impacts are described next. 

A. Properties of the Field Recorded Data  

For confidentiality reasons, the field data was 
stripped of geographic information and of any physical 
location or technological characteristics of the PMUs, 
and no information was provided about the electric grid 
to which they are connected. For this experiment, the 
PMUs provide data on voltage, current, and phase 
angle, for each phase, as well as positive sequence 
voltage and current, frequency, and rate of change of 
frequency. After visual inspection of field-recorded 
current magnitude measurements, it was recognized that 
the current magnitude change was not as prominent as 
the voltage magnitude change for most occurrences in 
the dataset due to a substantial distance of PMUs from 
the fault location. Hence, the three-phase voltage 
magnitudes are used to preprocess data from the event 
log.  

By examining the Western interconnect data, we 
observed that event logs are inaccurate. For example, 
the start and end times of the events were recorded at the 
time resolution of minutes, while the fault events 
typically have a range of 100 – 300 milliseconds. Fault 
durations thus are often much shorter than one minute, 

and so our model takes fault signals as input and classify 
line faults within a 2-second window. Furthermore, 
improvement of the labeling of events through visual 
inspection by domain experts to create more accurate 
labels becomes highly impractical when the amount of 
PMU data is very large. The Eastern interconnect 
dataset with 188 PMUs and poorer data quality 
presented more difficult challenges than the Western 
interconnection dataset of <40 PMUs and better data 
quality. For the Eastern Interconnection dataset, there 
are only 40 out of 1059-line events that have proper fault 
type descriptors and most of the PMUs do not have three 
phase measurement.  

The Western Interconnection dataset was used for 
testing new ML models because this data has already 
been well-studied in (Otudi et al., 2022) with both raw 
and cleansed fault type labels. In addition, 40 events 
with fault type descriptors from the Eastern 
interconnection dataset are used to compare the results 
with the ones from the Western interconnection dataset 
when only simulated data is used for ML model training. 
The ML model accuracy from (Otudi et al., 2022) also 
served as a reference against which we compared the 
performances of our new ML algorithms. 

B. Properties of the Simulated Data  

To overcome the aforementioned issues with 
recorded data, in this paper, we develop and train a line 
fault classification model using simulated PMU data 
alone. New models are developed using the same IEEE 

 

Figure 1. Simulated IEEE 14-bus power system with PMU placement 
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14-bus system used in (Otudi et al., 2022). Since line 
fault event signatures are sometimes partially 
distinguishable in scarcely located PMU data, our study 
shows how to implement automatic means of 
identifying these occurrences from such measurements. 
The study in this paper eliminates the automatic labeling 
stage used in (Otudi et al., 2022) and explores the use of 
individual PMU recordings from various locations in 
the 14-bus system to train ML models and test them on 
field-recorded data. The analysis of results of such 
supervised learning using higher-precision simulated 
PMU data demonstrates that the new approach is 
capable of classifying line faults captured by field 
PMUs with high accuracy without the need for 
accurately labeled field-recorded data. The synthetic 
IEEE 14-bus system (Figure 1) implemented on a real-
time digital simulator RTDS is used to generate 1,350 
simulated faults in various locations with different fault 
resistances and types. For every line in the system, a 
fault was simulated at locations of 10%, 50%, and 90% 
of the length of the line. All single-phase-to-ground 
faults have automatic line reclosing simulated, while all 
other fault types have manual line switching by 
operators simulated following the fast fault clearing. 
Each simulated fault event is logged in a separate event 
log file with precise labels for fault start and end time, 
fault location, fault type, and fault resistance value. 

A simulated PMU dataset was generated using 
electromagnetic transient program implemented on a 
real time simulator with some PMUs connected to the 
simulator as hardware in the loop and some represented 
as a virtual high precision model. The analog output of 
RTDS of simulated fault events were fed into the analog 
input of 12 PMUs (Figure 1), among which PMU1 to 
PMU4 are physical PMUs, and PMU5 to PMU12 are 
software-emulated (virtual). The output data from 
PMUs is transmitted in the IEEE C37.118 format to a 
phasor data concentrator (PDC), where it is stored and 
combined to generate the simulated PMU dataset for 
training. No noise was added in the fault events 
simulations, the generated simulated PMU data have 
shown excellent resemblance of the field recorded fault 
events as seen in the field recorded PMU data. This may 
be attributed to the analog signal filters and the phasor 
calculation algorithms of actual PMUs that have the 
ability of filtering out most of such noises in the field 
recorded and simulated PMU data. 

 The simulated IEEE 14-bus power system has 
two voltage levels (low voltage on the left and high 
voltage on the right) connected through three 
transformers, as shown in Figure 1. The low-voltage 
side of the system has more PMU as there are more lines 
on the low-voltage than on the high-voltage side. This 
means that if and when data from these two sides are 

used as separate training datasets, the low-voltage side 
contains more training data, and the PMUs are closer to 
the simulated faults.  

C. Summary of simulated and field-recorded data 

Table 1 summarizes the properties of simulated 
and field-recorded data used in this study as 
described in this section. 

Table 1. Statistics of 3-phase PMU data 

Properties 
Simulated 
data 

Field-recorded 
data 

No. of 
PMUs 

12 38 

No. of faults 1,350 266 

4. Methodology 
Data preprocessing, feature extraction, and data 

labeling are the three essential steps that were taken to 
train and test the ML models in this study. These three 
steps were done for both the simulated and field-
recorded data. Figure 2 illustrates this process. 

A. Data preprocessing 

The simulated data from each PMU is preprocessed 
to allow for the training of the ML models. The 
magnitude of the A, B, and C voltage phasors is 

 
Figure 2. Unified representation of simulated and 

field-recorded data 
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retrieved from the simulated dataset for each PMU. 
Then, the time series data is divided into two-second 
intervals and windowed for discretization and 
quantification. we preprocess the data independently as 
three cases. In the first two cases, the simulated data was 
preprocessed from a synthetic grid after split into a   
subsystem (lines 1–7) that has fewer PMUs and a 
subsystem (lines 8–15) that has more PMUs. In the third 
case, simulated data was preprocessed for all 12 PMUs. 
Field-recorded datasets are used from 38 out of 43 
PMUs placed in the Western interconnection, with the 
remaining five PMUs being removed due to the 
unavailability of the three-phase voltage measurement 
data and excess bad data issues. The data quality issues 
include missing or duplicated data, many outliers, and 
wrong time tags (PARTF: PMU Data Quality 2017). 
Data from these remaining PMUs were also divided into 
two-second windows. 

 In a previous study the impact of time window 
selection on the fault detection accuracy is analyzed and 
it is found that shorter 2-sec windows result in the 
increased accuracy as compared to longer windows of 
up to 3-minute duration (Dokic et al., 2022). This can be 
explained by the smaller fluctuation of normal operation 
within a shorter time window and exclusion of multiple 
events having a start time within a single window. 
Windows shorter than 2-sec are not considered since 
this results in large uncertainty in the distance between 
the event log start time and actual event start time due 
to imprecise event logs in the field recorded data.  

Because the developed models can only classify 
what is already declared as a line fault, only the data 
windows that were originally labeled in the event log as 
a “line” event were used. As mentioned earlier, for the 
Eastern interconnection dataset, there are only 40 out of 
1059-line events that have proper fault type descriptors. 

B. Feature Extraction 

Data from a synthetic grid as well as field 
recordings include phasor measurements related to line 
faults that are labeled in the event log. The impact of 
PMU concentration and the voltage level on fault 
detection is considered when using an ML model trained 
on simulated data. The proposed feature extraction from 
PMU measurements is described as follows.   
Step 1: Three-phase voltage values in the range 
va_m(tmin,tmax), vb_m(tmin,tmax), vc_m(tmin,tmax) in 2-
second intervals  are monitored to identify sudden 
voltage change in each phase due to a line fault.  
Step 2: Next, the voltage range ∆∅ is computed for each 
of the PMUs placed in the simulated and actual network, 
respectively. Then, the lowest magnitude (MAG) of 
voltage value is subtracted from the highest voltage 
measurement in a 2-second window, as shown in 

Equation 2. The sum of these ranges is determined for 
all PMUs in a network. 

∆(𝑉∅) = max(𝑉(∅) 𝑀𝐴𝐺) − min (𝑉(∅) 𝑀𝐴𝐺)       (1) 

𝑆𝑈𝑀(𝑉∅) = ෍
∆൫୚(∅)൯

ே௨௠௕௘௥ ௢௙ ௉ெ௎௦

#௉ெ௎௦

௜ୀଵ
                          (2)

Step 3: The difference between each pair of phase 
scores, ∅(𝐴, 𝐵 𝑎𝑛𝑑 𝐶) is then measured, and the signs 
of these three numbers are used as the first three features 
as shown in Equation 3 for phases A and B 

∅(𝐴𝐵) = 𝑆𝑈𝑀(𝑉𝐴) − 𝑆𝑈𝑀(𝑉𝐵)         (3) 
Step 4: In addition, the ratio between the voltage range 
is computed. As shown in Equation 3 for phases A and 
B, the higher value is always divided by the smaller, 
and these values are employed as extra characteristics 
for training a classifier.  

𝐴𝐵_𝑑𝑖𝑓𝑓 = 𝑠𝑖𝑔𝑛 (𝐴, 𝐵)                                (4) 
𝑋 = 𝑟𝑎𝑡𝑖𝑜 (𝐴, 𝐵)                                            (5) 
𝑌 = 𝑟𝑎𝑡𝑖𝑜 (𝐵, 𝐶)                                            (6) 
𝑍 = 𝑟𝑎𝑡𝑖𝑜 (𝐶, 𝐴)                                            (7) 

Step 5: Lastly, the absolute value of the Phase 
difference on each phase pair is computed. The above 
steps are applied to all combinations of phases (AB, 
BC), (BC, CA), AND (CA, AB). 

C. Data Labeling  

We formulate the problem as a multiclass 
classification task addressed by a support vector machine 
(SVM) (Scikit Learn, n.d.). An SVM is a supervised 
machine learning algorithm that transforms data to a 
high-dimensional feature space to maximize a gap 
among categories.  

Generally, there are 11 types of line faults that can 
occur in the field. There are three possible line-to-ground 
faults (A-G, B-C, and C-G), three types of line-to-line 
faults (AB, BC, and CA), three types of double-line-to-
ground faults (AB-G, BC-G, and CA-G), and three-

Table 2. Distribution of transmission line fault 
types in field-recorded data 

Line fault 
type Fault description 

Faults 
frequency 

1 Fault (P-G{A}) 22 

2 Fault(P-G{B}) 34 

3 Fault (P-G{C}) 36 

4 Fault (PP {AB})/PP-
G{AB}) 

13 

5 Fault (PP {BC}/PP-
G{BC}) 

8 

6 Fault (PP {CA}//PP-
G{CA}) 

1 

7 Fault (3P{ABC}/3P-
G{ABC}) 

7 
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phase and three-phase to ground faults (ABC and ABC-
G). It is very difficult to differentiate between the line-
to-line faults and double-line-to-ground faults in the 
field-recorded data, however. The same is true for three-
phase and three-phase to-ground faults. Due to the 
labeling issues associated with the field recorded data, 
visual inspection of originally labeled fault events in 
field recorded data based on expert knowledge was 
applied to generate cleaned labels for those events that 
can be positively confirmed with precise start and stop 
time and remove those that couldn’t. Most of the labeling 
issues are the results of using imprecise methods (e.g. 
using imprecise time at a 1-minute resolution) and/or 
manual processes without the use of the field recorded 
PMU data. Sparsity of PMUs may have also played a 
role as PMUs far away from a fault location or in 
different voltage levels may not be able to “see” the fault 
event clearly. 

As a result, the problem is reduced to a seven-class 
problem, as shown in Table 2 for the Western 
interconnection data. This requires the development of 
binary models for seven different types of line faults. 
Each binary classifier model assigns a class label to a 
specific fault type, with the class receiving the most 
votes being chosen. 

To optimize SVM parameters, 75% of the data 
selected completely at random is used to train the 
models, while a disjoint 25% is utilized to validate the 
accuracy of the trained model. The trained model is 
evaluated on the year 2017 field recordings. The overfit 
was analyzed by evaluating and validating the 
performance of SVM using five cross-validations (5-
CV) before testing the model on an unknown set. 

5. Results and Discussion   
Apache Parquet files are utilized to store field-

recorded data, while Apache Spark (Apache spark, n.d.) 
was used to retrieve the data. Figure 2 illustrates the 
unified representation of the simulated grid and field 
recordings of line fault classification before applying 
the ML technique. 

We developed several ML models, each of which 
helps us to discuss how to approach various challenges:  

Use Case 1: We trained an ML model on simulated 
data only and checked whether such model would 
be sufficient to classify line faults without relying 
on field-recorded data. We compared the 
performance of the ML model trained on simulated 
data to the model developed in the previous study 
trained on simulated and field data to demonstrate 
that the new model does not have the bias that 
existed in the prior method. 

Use Case 2: We performed a sensitivity study of the 
location of PMUs with respect to the simulated 

faults in the synthetic system and illustrated how 
the PMU location/concentration affects the model 
performance. 

Use Case 3: We evaluated the use of the proposed 
approach on the PMU data set obtained from PMUs 
in the Eastern interconnection of the US, where 
labels are imprecise and indicate neither the fault 
type nor a line where the fault occurred. 

A. ML model trained using simulated data is sufficient 

Three ML models are trained using only simulated 
data observed at higher voltage and lower concentration 
of PMUs (model 1), lower voltage and higher 
concentration of PMUs (model 2), and both voltage 
levels (model 3). The results of applying these models 
to field-recorded data from the year 2017 shown in 
Table 3 provide clear evidence that using simulated data 
alone (models 1, 2, and 3) outperforms a model trained 
on field-recordings only (model 4). In particular, model 
4 achieved an F1 score of 0.74, while the F1 score for 
models 1 to 3 was 0.88 to 0.94, demonstrating that 
simulation is an excellent choice when learning to 
classify line faults from sparse streaming data. F1 score 
is reported in conducted experiments since it provides a 
measure balance between precision and recall. It is 
computed as (2*precision*recall)/(precision+recall), 
where the precision is the number of true positive results 
divided by the number of all positive and the recall is 
the number of true positive results divided by the 
number of all samples that should have been identified 
as positive.   

Table 3: F1 score on 2017 field-recorded test data 
for models 1-4 

Model/ 
Training 
Dataset 

PMU 
Concentration 

Voltage-
level 
and 

Number 
of PMUs 

Weighted 
F1-score 

1/simulated low 
5 PMUs 
at high-
voltage 

0.88 

2/simulated high 
7 PMUs 
at low-
voltage 

0.93* 

3/simulated both 
All 12 
PMUs 

0.88 

4/field-
recorded 
(2016) 

N/A 

all 38 
field-

recorded 
PMUs 

0.74 
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 In models 5, 6, and 7 presented in Table 4, 
where simulated data is used to enhance field 
recordings, simulated data from the area with higher 
PMU concentration was also more helpful than 
simulated data from the area with lower PMU 
concentration or using all simulated data (F1 score of 
0.94 is obtained by model 6 vs. 0.88 obtained by model 
6 and 0.92 by model 7).  

 
Table 4: F1 score on the 2017 field-recorded test 

data for models 5-7 

Our experiments provide evidence that the proposed 
method eliminates the biases that are found in (Otudi et 
al., 2022), as shown in Figure 3.  
 In the previous method, if none of the labels 
aligned with predefined combinations, the fault is 
classified as 3 phases or 3 phases to ground. This is a 

serious issue when the classifier is applied to small 
datasets. In contrast, the proposed method eliminates 
that bias by not relying on the labeling technique and 
manually centering the line fault in a training window 

B. PMUs concentration/voltage level impacts the 
model performance  

Placement of PMUs in the synthetic grid affect the 
accuracy of the ML model classification. Figure 4 
depicts and compares performance when using a lower 
concentration of PMUs (orange bar) with the case when 
a higher concentration is used (blue bar). Two criteria 
are examined: accuracy and F1 weight average. In this 
experiment, two subsystems are used to train the ML 
models. Model 1 is trained on a subsystem with lower 
PMU concentration, and Model 2 is trained on a 
subsystem with higher PMU concentration, as shown in 
Figure 1. Both models are tested using field-recorded 
data from 2017. Then, the suggested approach is further 
evaluated by domain expert visual inspection. We found 
that the misclassified are the same 16 events when tested 
on the field-recorded events from 2017. These 16 events 
constitute 48.5 %, 69.5 %, and 61.5% of the errors made 
by models 1, 2, and 3 trained on simulated data of 
subsystems where the PMU concentration was low, 
high, and from both subsystems, respectively.  

Visual inspection revealed that these 16 events are 
difficult to classify even by a domain expert. The reason 
is that time windows either contained more than one 
event, or the events themselves are difficult to 
distinguish because of their very close resemblance. For 
example, Figure 5 shows one such event. The model 
classified this event as a CA-G fault, but it is logged as 
a C-G fault. It is difficult to classify this fault because a 
significant voltage dip is seen in phases A and C. 
However, the first dip is clearly in phase C, while the 
second is in phase A. This is an example of an event 
where the fault may have evolved into a different type 
during the auto-reclosing sequence.  

Next, we extend our experiment by training 
classifiers using an equal number of line faults on lower 
and higher PMU concentration subsystems of the 

Model/ 
Training 
Dataset 

PMU 
Concentration 

Voltage-
level and 
Number 
of PMUs 

Weighted 
F1-score 

5/simulated 
& field-
recorded 
(2016) 

low 

5 PMUs 
at high-
voltage 
and 38 

PMUs of 
field-

recorded 

0.88 

6/simulated 
& field-
recorded 
(2016) 

high 

7 PMUs 
at low-
voltage 
and 38 

PMUs of 
field-

recorded 

0.94* 

7/simulated 
& 

field-
recorded 
(2016) 

both 

50 PMUs 
(12 in 

simulated 
and 38 in 

field-
recorded) 

0.92 

 

Figure 4. Fault classifier comparison for higher vs 
lower PMU concentration using three metrics 
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Figure 3. Comparing the previous method (i.e., rule 
based labeling technique) vs the proposed method 
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simulated network. Table 4 illustrates how the difference 
in PMU concentration affects the classifier accuracy. We 
observe that even if the number of PMUs is intentionally 
made equal, training an ML model on the subsystem with 
a higher number of lines resulted in better accuracy, as 
reported in Table 5.  

In addition, training data is split into an equal 
number of PMUs selected from the high (right) and low 
(left) voltage subsystems. Resulting models 8 and 9 are 
trained on PMU’s measurement from the synthetic grid 
and evaluated on the field recorded data from the year 
2017. 

Model 8 outperformed model 9 with a low standard 
deviation (see Table 5). Moreover, models 10 and 11 are 
trained on the mixture of simulated and field- recorded 
data resulting in high performance and low value of std. 
 

Table 5. Weighted F1 score for models 8-11 when 
tested on field recordings from year 2017 
Model/ 

Training 
Dataset 

Event 
location 

No. 
of 

lines 
STD AVG 

8/simulated  low 4 0.001 0.92 
9/simulated high 4 0.002 0.78 

10/simulated & 
field-recorded 

(2016) 
low 4 0.010 0.93 

11/simulated & 
field-recorded 

(2016) 
high 4 0.036 0.87 

C. Model evaluation on Eastern interconnection  

As previously mentioned, the data received from 
PMUs installed in the US Eastern interconnection 
exhibits imprecise and incomplete labels for line faults. 
The majority of the labels do not identify the fault type. 
We wanted to see how the model trained using only 
simulated data and precise corresponding labels for such 
data will perform when tested on the mentioned field 
data. The model used in this evaluation is model 2. The 
results are evaluated by visual inspection of the three-
phase voltage signals extracted from 188 PMUs in the 
Eastern interconnection. Because missing PMU data 
presented a real challenge to view some of the faults, 
only the fault instances that are identifiable are included 
in this evaluation. The issue of missing PMU data was 

addressed during data preprocessing by imputing the 
missing data with the last available value. The resulting 
performance of the classifier model resulted in an 
accuracy of 77 %, which is not high but acceptable for 
the case with almost no usable labels. 

6. Conclusion 
Three tasks considered in this work are: 
 Confirm if the usage of only simulated data 

that have high precision labels captured by 
PMUs in a synthetic system will yield high-
performance models,  

 Check the sensitivity of the models when PMU 
location and voltage level are varied, and 
whether the concentration of PMUs in the 
simulated subsystem affects the accuracy of 
the ML model trained using simulated data. 

 Evaluate performance of the model trained 
suing simulated data and tested on field-
recorded data from the US Eastern 
interconnection. 

The results suggest the following: 

 If event log labels are inaccurate or 
insufficient, a useful line fault classification 
model could be trained with simulated PMU 
data. 

 Using simulated data alone to train an ML line 
faults classification model is preferable to 
relying only on improperly labeled PMU field 
recordings.  

 Compared to the previous method (Otudi et al., 
2022), the proposed method eliminates the bias 
that was introduced by the automatic labeling 
method. 

 The use of higher-concentration PMUs in the 
synthetic grid is beneficial, which in our case 
meant using PMUs from the left-hand side of 
Figure 1. 

 A model trained using simulated data from a 
network with higher PMU concentration and 
field-recorded data resulted in higher 
prediction accuracy. 

Figure 5. Misclassified event on phases A, B, and C (from left to right) 
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