Vision Journal Club, Oct 20, 2011, 10:30AM – 11:30AM, Wachman 1015D
RASL: Robust Batch Alignment of Images by Sparse and Low-Rank Decomposition, Yigang Peng, Arvind Ganesh, John Wright, Wenli Xu, and Yi Ma. 2010.
Yu Pang, Temple University
Abstract: Abstract: This paper studies the problem of simultaneously aligning a batch of linearly correlated images despite gross corruption (such as occlusion). Our method seeks an optimal set of image domain transformations such that the matrix of transformed images can be decomposed as the sum of a sparse matrix of errors and a low-rank matrix of recovered aligned images.We reduce this extremely challenging optimization problem to a sequence of convex programs that minimize the sum of ?1-norm and nuclear norm of the two component matrices, which can be efficiently solved by scalable convex optimization techniques. We verify the efficacy of the proposed robust alignment algorithm with extensive experiments on both controlled and uncontrolled real data, demonstrating higher accuracy and efficiency than existing methods over a wide range of realistic misalignments and corruptions.