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Abstract For many real-world applications, structured regression is commonly used for
predicting output variables that have some internal structure. Gaussian conditional random
fields (GCRF) are a widely used type of structured regression model that incorporates the
outputs of unstructured predictors and the correlation between objects in order to achieve
higher accuracy. However, applications of this model are limited to objects that are symmetri-
cally correlated, while interaction between objects is asymmetric in many cases. In this work
we propose a new model, called Directed Gaussian conditional random fields (DirGCRF),
which extends GCRF to allowmodeling asymmetric relationships (e.g. friendship, influence,
love, solidarity, etc.). The DirGCRF models the response variable as a function of both the
outputs of unstructured predictors and the asymmetric structure. The effectiveness of the
proposed model is characterized on six types of synthetic datasets and four real-world appli-
cations where DirGCRF was consistently more accurate than the standard GCRF model and
baseline unstructured models.
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1 Introduction

Structured regressionmodels are designed to use relationships between objects for predicting
output variables. In other words, structured regression models are using the given attributes
and dependencies between the outputs to make predictions. This prior knowledge about
relationships among the outputs is application-specific. For example relationships between
hospitals can be based on similarity of their specialization (Polychronopoulou and Obradovic
2014), relationships between pairs of scientific papers can be presented as the similarity of
sequences of citation (Slivka et al. 2014), relationships between documents can be quantified
based on similarity of their contents (Radosavljevic et al. 2014), etc. TheGaussian conditional
random fields (GCRF) model is a type of structured regression model that incorporates the
outputs of unstructured predictors (based on the given attribute values) and the correlation
between output variables in order to achieve higher prediction accuracy. This model was
first applied in computer vision (Liu et al. 2007), but since then it has been used in different
applications (Polychronopoulou and Obradovic 2014; Radosavljevic et al. 2010; Uversky
et al. 2013), and extended for various purposes (Glass et al. 2015; Slivka et al. 2014; Stojkovic
et al. 2016). A main assumption in the GCRF model is that if two objects are closely related,
they should be more similar to each other and they should have similar values of the output
variable. The similarity considered in GCRF is symmetric. However, in many real-world
networks objects are asymmetrically linked (Beguerisse-Díaz et al 2014). Therefore, one
limitation of the GCRF model is that the direction of link is neglected.

Networked data (such as social networks, traffic networks, information networks, etc.)
are naturally modeled as graphs, where objects are represented as nodes, and relations are
represented as edges between nodes. Many of these objects have directed links. For example,
friendship strength is often not symmetric. In empirical studies (Michell and Amos 1997;
Snijders et al. 2010) of friendship networks, participants are typically asked to identify their
friends and to mark how close friends they are, which results in a directed graph in which
friendships often run in only one direction between a pair of individuals. Another example
is in social networks, such as Twitter or GitHub, where a user could follow all tweets posted
by another user, or a developer could follow the work conducted by another developer. Also,
in the email system, each individual communicates with one or more individuals by sending
and receiving email messages, which results in a directed graph in which each edge has the
number of sent emails as its weight.

The similarity matrix that quantifies the connections among the nodes of the graphs pre-
sented in these examples is an asymmetric matrix, and GCRF could not be directly applied
on it since this model requires a symmetric matrix. One possible solution for this problem is
to convert the similarity matrix from asymmetric to symmetric, which will probably cause
loss of accuracy. To elaborate on this problem, we give an example of a relationship network
at Fig. 1. Figure1a presents the graph in which three nodes (marked A, B, and C) are linked
with edges for which weights represent influence, in the sense that higher weight means
higher influence. The edge from A to B means that A is influenced by B with weight 25.
From this figure, we can conclude that node A is influenced by node C much more than by
node B. On other hand node C is very much influenced by B, and not influenced at all by
A. The influences from B to A, and from A to B, are the same. Converting this graph to an
undirected one using the average approach results in the graph that is presented at Fig. 1b. If
we look at this graph we will come to very different conclusions. Now the influence is bidi-
rectional, which implies that connected nodes are mutually influenced with the same weight.
Influence values on the relations B–A andC–A now have the same value, and nodes B andC
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Fig. 1 An illustrative example of a graph that represents influence between objects. a Directed graph and b
Undirected graph

Fig. 2 An illustrative example of graph that represents influence between objects B andC , with corresponding
values of the predicted output (ŷB and ŷC ). RB and RC are values predicted by unstructured predictor for
nodes B and C . a Directed graph and b Undirected graph

are mutually influenced with a high weight. At Fig. 2 we presented how these structures can
affect the predicted values, on the example of nodes B andC . First we will assume that values
predicted by unstructured predictor (R) for nodes B and C are 100 and 10, respectively. At
Fig. 2a these nodes are asymmetrically influenced, which means that predicted output (ŷ) for
the node C will get close to the output for the node B. On other hand, at Fig. 2b these nodes
are symmetrically influenced, which means that predicted outputs for the nodes C and B
will get close to each other. This example clearly illustrates how direction of the relation can
affect the predicted value of the output.

In this work, we propose a new model, called Directed Gaussian Conditional Random
Fields (DirGCRF), which extends the GCRF model by considering asymmetric similarity.
The DirGCRF models the response variable as a function of both the outputs of unstructured
predictors and the asymmetric structure. To evaluate the proposed model, we tested it on both
synthetic and real-world datasets and compared its accuracy with standard GCRF, as well as
with unstructured predictors Neural Networks and Linear Regression and simple Last and
Average methods. All datasets and codes are publicly available.

We summarize contributions of this work as follows:

1. This is the first work that considers asymmetric links between objects in GCRF-based
structured regression.

2. The proposed model considers both asymmetric structure and the outputs of unstructured
predictor.

3. The effectiveness of the proposed directed model is characterized by experiments on six
types of synthetic datasets and four real-world applications.
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Table 1 Survey of graph models literature

Method Network Year Purpose Cold start

GLS (Altken 1935) Discriminative 1935 Bias reduction Yes, O( f )

GCRF (Radosavljevic et al. 2010) Discriminative 2010 Multiple output Yes, O(n3)

SpGCRF (Wytock and Kolter 2013) Generative 2013 Multiple output No

Network lasso (Hallac et al. 2015) Discriminative 2015 Multiple output Yes, O(n f )

f is number of features, n is number of nodes

In the following, we first review related work in Sect. 2, followed by the details of the
proposed method in Sect. 3. In Sect. 4 we provide the details about the datasets used and
the experimental setup, as well as present experimental results. Finally, Sect. 5 consists of a
summary of our findings, as well as future directions we intend to undertake with this project.

2 Related work

There exists a large corpus of research on regression and classification using graph based
models (Table 1). Each approach takes different inputs and has various benefits and draw-
backs. Some of these methods (Wytock and Kolter 2013) learn relationships between nodes
from attributes. These are referred to as generative networks. On the other hand, discrim-
inative network requires inputing the network structure (Radosavljevic et al. 2010; Altken
1935; Hallac et al. 2015). The origins of Gaussian conditional random fields (GCRF) model
(Radosavljevic et al. 2010) lie in generalized least squares (GLS) (Altken 1935). In thatmodel
relationships between outputs are observed and affect the Mahalanobis distance in order to
reduce training bias. GCRF leverages the same idea for multiple output regression.

None of the above models can handle asymmetric link weights. However, this work is
focused on advancing the GCRF model because it produces high accuracy and it is the most
scalable learning approach of all listed above (Glass et al. 2015). GCRF has been used on
a broad set of applications: climate (Radosavljevic et al. 2010, 2014; Djuric et al. 2015),
energy forecasting (Wytock and Kolter 2013; Guo 2013), healthcare (Gligorijevic et al.
2015; Polychronopoulou and Obradovic 2014), speech recognition (Khorram et al. 2014),
computer vision (Tappen et al. 2007;Wang et al. 2014), etc. There are otherworks that capture
asymmetric dependencies, such as Asym-MRF model (Heesch and Petrou 2010). Since it is
out of scope of this paper, for more details, please refer to Heesch and Petrou (2010) and
Wang et al. (2005). Below we give a brief description of CRF and GCRF.

In a conditional random field (CRF) model, the observables x interact with each of the
targets yi directly and independently of one another. For a general network structure, the
outputs y also have independent pairwise interaction functions. Thus, the CRF probability
function can be represented by an equation of the form:

P(y|x) = 1

Z(x, α, β)
exp

⎛
⎝

N∑
i=1

A(α, yi , x) +
∑
j∼i

I (β, yi , y j )

⎞
⎠ .

There are two sets of feature functions, association potential (A) and interaction potential
(I ). The larger the value of A, the more yi is related to attributes x. The larger the value of
I , the more yi is related to y j . Restricting these feature functions to be quadratic differences
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between a function of observables R(x) and targets y produces a convex ensemble method:

A(α, yi , x) = −
N∑
i=1

K∑
k=1

αk(yi − Ri,k(x))2,

where Ri,k represents output of unstructured predictor Rk for node i , and K is the number
of unstructured predictors, and N is the number of nodes. When incorporating quadratic
pairwise interaction functions among outputs y, a general graph structure ensemble method
is obtained:

I (β, yi , y j ) = −
L∑

l=1

∑
i∼ j

βl S
l
i j (yi − y j )

2,

where L represents the number of similarity functions, and Si j represents similarity between
nodes i and j . This similarity is symmetric, which means that Si j = S ji .

The GCRF model is a CRF model with both quadratic feature and quadratic interaction
functions that can be transposed directly onto aGaussianmultivariate probability distribution:

P(y|x) = 1

2π |Σ |1/2 exp
(

−1

2
(y − μ)T Q(y − μ)

)
.

When setting these two conditional probability models equal to one another, we get a
precision matrix (Q) defined in terms of the confidence of input predictors and the pairwise
interaction structure, measured by α and β respectively. Let denote L j as the Laplacian
matrix of pairwise interaction structure matrix S j for brevity:

Q =
∑
k

αk I +
∑
j

β j L j .

Representing input predictions as a matrix R, the formula for the final prediction can be
concisely written as:

μ = Q−1Rα.

The only remaining constraint is that Q is positive semi-definite, which is a bound on
convexity, but also a by-product of the multivariate Gaussian assumption. As long as the
positive semi-definite constraint is satisfied, the model is convex.

In this work, the restrictions on symmetric link weights is relaxed, which alters the model
in a way that is no longer capable of using a precision matrix. Additionally, convexity is no
longer guaranteed. We will show convexity in special cases and demonstrate it empirically
in Sect. 4.4.

3 Methodology

The proposed model DirGCRF is described in this section. Since asymmetric influ-
ence between objects violates some of the fundamental assumptions of the GCRF model
(Radosavljevic et al. 2010), we re-derive the pseudo-Gaussian form and explain where the
new formulation differs from the original. Below are the details of the derivation of a new
matrix Q.
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We start by showing that Gaussian normal form (GNF) can be equivalent to a conditional
random field (CRF) model under certain conditions. The CRF is represented as:

P(y|x) = 1

Z(x, α, β)
exp

⎛
⎝

N∑
i=1

A(α, yi , x) +
∑
j∼i

I (β, yi , y j )

⎞
⎠ .

The following is the exact formulation for the CRF as mentioned above. The summations
are re-arranged so that the CRF can be shown to be equivalent with the GNF.

N∑
i=1

A(α, yi , x)+
∑
j∼i

I (β, yi , y j ) = −
N∑
i

K∑
k

αk(yi −Ri,k(X))2−
∑
i∼ j

L∑
l

βl S
l
i j (yi − y j )

2,

(1)
where∼means that i is connected to j . Since the summation of all linkweights is unchanged,
by assuming that all nodes have a linkweight of zero if not otherwise specified, we can rewrite
Eq.1 in a form which requires no outside information about the structure of S.

Eq. (1) = −
N∑ K∑

αk(yi − Ri,k(X))2 − 1

2

N∑
i

N∑
j

L∑
l

βl S
l
i j (yi − y j )

2.

Then the quadratic feature functions are expanded out. This allows us to group summations
of independent linear and quadratic components.

Eq. (1) = −
N∑ K∑

αk y
2
i +

N∑ K∑
2αk yi Ri,k(X) −

N∑ K∑
αk(Ri,k(X))2

+
N∑
i

N∑
j

L∑
l

βl S
l
i j yi y j − 1

2

N∑
i

N∑
j

L∑
l

βl(S
l
i j + Sli j )y

2
i .

The main difference between GCRF and DirGCRF is that the matrix S row sum,
rowsum(S), is not equal to column sum, colsum(S). The equivalent conditions for the
Conditional Random Field and Gaussian Normal Form Probability distributions are solved
by segmenting the equation into quadratic, linear, and constant components. This is because
the coefficients across the models differ but these variable degrees are the same across both
models. This equivalence can then be solved as three different equivalences: quadratic coeffi-
cients, linear coefficients, and a constant component. In order tomake this as clear as possible,
the GNF is written using summations rather than matrix notation:

P(y) = −1

2
yT Qy + yT b + c =

N∑
i

N∑
j

Qi j yi y j +
N∑
i

yi bi + c,

where Q, b, and c are an arbitrary matrix, vector, and scalar for GNF. Equivalent conditions
for the quadratic component are:

N∑
i

N∑
j

Qi j yi y j =
(

K∑
αk

)
N∑

y2i +
N∑
i

L∑
l

(rowsum(Sl) + colsum(Sl)) · βl y
2
i

−
N∑
i

N∑
j

L∑
l

βl S
l
i j yi y j ,

(2)
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where summations over the coefficients y2i are diagonal elements of Q and coefficients for
yi y j are off-diagonal elements of Q. Thus, the entries of Q can be segmented into a diagonal
matrix, D (Eq.3), plus a weighted adjacency matrix, A (Eq.4):

Q = D + A

Dii =
(

K∑
αk

)
+

L∑
βl
1

2
(rowsum(Sl) + colsum(Sl)) (3)

Ai j = −
L∑

βl S
l
i j (4)

Let the Laplacian of an asymmetric similarity matrix be defined as:

L = −1

2
(diag(rowsum(S) + colsum((S)) − 2S),

then the new derived “precision” matrix (Q) can be concisely defined as:

Q =
(

K∑
αk

)
I +

L∑
βl Ll .

When mapping the linear coefficients from CRF to GNF, one finds that the asymmetric
network does not change the mappings as found in the original GCRF:

bi =
K∑

αK Ri,k(X),

or, more concisely, b = Rα. Since the constant does not affect the marginalized likelihood,
it can be omitted.

The Multinormal Likelihood Function (P2(ε), Eq. 5) is equivalent to a Gaussian Normal
Form (P1(y), Eq. 6) given certain conditions.

P2(ε) = 1

Z
exp

(
−1

2
εTΣ−1ε

)
(5)

P1(y) = 1

Z
exp

(
−yTΣ−1y + bT y + c

)
(6)

The equivalent conditions are:

c = −μTΣ−1μ, μ = Σb,

where μ is the optimal prediction given the covariance matrix (Σ) and the linear component
of the Gaussian Normal Form (b).

DirGCRF uses the above formulas and gradient ascent in order to find the optimal values
for parameters αi and βi . The only remaining step is to find the first order derivatives of
log-likelihood function and updates of αi and βi in gradient ascent. Equation for the log-
likelihood function (l) is:

l = −1

2
εT Qε − Z .

The partial derivatives of the precision matrix (Q) with respect to αi and βi can be found
as:

∂Q

∂αi
= I

∂Q

∂βi
= Li .

123



Mach Learn

Recall from the mapping of Gaussian Normal Form to Multinormal Likelihood Function, μ
can be presented as:

μ = Q−1b. (7)

Since μ is in the log-likelihood function via ε = y− μ, its partial derivatives with respect to
αi and βi are:

∂μ

∂αi
= −Q−1 I Q−1b + Q−1Ri

∂μ

∂βi
= −Q−1Li Q

−1b.

Fully elucidated form of the log-likelihood function is:

l =+ −1

2
(yT Qy − yT Qμ − μT Qy + μT Qμ) − log|Q−1|2.

Minor steps in the remaining derivation of the partial derivatives with respect to the
parameters αi and βi are omitted. The final result is below, and is not hard to verify:

∂l

∂αi
= −1

2

[
(y − μ)T (y − μ) + (Ri − μ)T (I + Q−1Q)(μ − y)

]
+ 1

2
Tr(Q−1)

∂l

∂βi
= −1

2

[
yT Liy − (−Q−1Liμ)T Qy − μT Liy + (−Q−1Liμ)T Qμ

]
+ 1

2
Tr(Li Q

−1)

4 Experiments

4.1 Datasets and experimental setup

4.1.1 Synthetic datasets

The purpose of experiments on synthetic data was to investigate the proposed model under
controlled conditions on different types of graphs. Below are the descriptions of each type
of graph and their node attributes and asymmetric similarities.

– Fully connected directed graph: Each pair of distinct nodes is connected by a pair of
edges (one in each direction) with different weights.

– Directed graph with edge probability p: Directed graphs with different density. For each
pair of distinct nodes, a random number between 0 and 1 is generated. If the number
exceeds p, then the selected node pair will be connected with an edge.

– Directed graph without direct loop: Each pair of distinct nodes is connected by a single
edge, which direction is chosen randomly. For example, if there is an edge from node A
to node B, there could not be an edge from node B to node A.

– Directed acyclic graph: A graph with no cycles. For example, there is no path that starts
from a node A and follows a consistently-directed sequence of edges that loops back to
node A.

– Chain: All nodes are connected in a single sequence, from one node to another.
– Binary tree: A graph with a tree structure in which each node could have at most two

children.

All these graph types are unlabeled and unweighted. Therefore, we randomly generated
edge weights S and unstructured values R. The generated S and R were used to calculate the
actual value of response variable y for each node, in accordance to the Eq.7, with some added
random noise. For calculation of y we needed to choose values for α and β parameters. For
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GCRF based models, when there is only one α and only one β, only the ratio between values
of α and β parameters matters, not their actual values. A greater value of α means that the
model is putting more emphasis on values that are provided by the unstructured predictor (R),
while a greater value of β means that the model is putting more emphasis on structure (S).
We chose three different combinations in order to compare the performance of the model: (1)
larger value of α parameter (α = 5, β = 1); (2) larger value of β parameter (α = 1, β = 5);
(3) same value of both parameters (α = 1, β = 1).

In all experiments on generated synthetic datasets one graph is used for training and five
graphs for testing. For evaluating accuracy, experiments were conducted on graphs with 200
nodes. For testing run time, experiments were conducted on fully connected directed graphs
with 500, 1K, 5K, 10K and 15K nodes.

4.1.2 Real-world datasets

We also evaluated our model on four real-world datasets:Delinquency (Snijders et al. 2010),
Teenagers (Michell and Amos 1997), Glasgow (Bush et al. 1997) and Geostep (Scepanovic
et al. 2015). The first three datasets contain data about habits of students (e.g. tobacco and
alcohol consumption) and friendship networks at different observation time points. Geostep
dataset contains data about treasure hunt games. Node attributes, edge weights, and response
variables are extracted from data. All values were normalized to fit in range from 0 to 1. The
experimental procedure and the obtained results are described in more detail in Sects. 4.3.1–
4.3.4.

4.1.3 Baselines

The accuracy performance of DirGCRF was compared with the standard GCRF (Poly-
chronopoulou and Obradovic 2014), and four nonlinear and linear unstructured baselines
briefly described in this section: neural networks (NN) (Haykin 2009), linear regression
(LR) or multivariate linear regression (MLR) (Weisberg 2005), average and last methods.

• GCRF: In order to apply the standard GCRF to the directed graphs, S matrix was con-
verted from asymmetric to symmetric. In a symmetric matrix each pair of distinct nodes
is connected by a single undirected edge, where the weight was calculated as an average
of weights in the corresponding asymmetric matrix. The Neural Network unstructured
predictor was used for both, DirGCRF and standard GCRF.

• NN : Neurons in feed-forward artificial neural networks are grouped in three layers: input,
output and hidden layer. The number of neurons in the input layer was same as the number
of features in the considered dataset. The number of neurons in the output layer was 1
for all datasets. The number of neurons in the hidden layer was selected based on the
accuracy performance on the training data.

• LR or MLR: Linear regression or multivariate linear regression is used depending on the
number of features in the considered dataset. Coefficients of predictors were trained on
the features of all nodes on the training data, and then applied on the features on the test
data to form the prediction.

• Last: In the real-world datasets, the graphs have evolved. Therefore, we consider one
simple method, Last, which assigns values to the response variables using the same
values as in the previous time point.

• Average: Another simple technique that calculates prediction of y value at each time
stamp as the average of the y values in all previous time stamps.
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Table 2 Average (± standard deviation) R2 of DirGCRF and GCRF on different types of asymmetric struc-
tures with parameters values α = 5 and β = 1

Graph type DirGCRF GCRF

Directed graphs 0.9176 (±0.00625) 0.5893 (±0.02680)

Directed graphs with p = 0.5 0.9799 (±0.00332) 0.6582 (±0.06063)

Directed graphs with p = 0.2 0.9951 (±0.00074) 0.8880 (±0.00846)

Directed graphs without direct loop 0.9865 (±0.00084) 0.4608 (±0.03497)

Acyclic graphs 0.9881 (±0.00019) 0.2580 (±0.03584)

Chains 0.9995 (±0.00001) 0.9987 (±0.00009)

Binary trees 0.9995 (±0.00004) 0.9988 (±0.00008)

To calculate the regression accuracy of all methods, we used R2 coefficient of determi-
nation that measures how closely the output of the model matches the actual value of the
data. A score of 1 indicates a perfect match, while a score of 0 indicates that the model
simply predicts the output variable mean. R2 of some poor predictors can even be worse than
average and are characterized with negative coefficient of determination.

R2 = 1 −
∑
i

(yi − ŷi )2

(yi − yaverage)2
,

where ŷi is the predicted value, yi is the true value, and yaverage is the average of y values.
ForDirGCRFandGCRFgradient ascentwas used to find the optimal values for parameters

α and β. Initial values of parameters were α = 1 and β = 1, in each experiment. Learning
rate was set to 0.01.

All methods are implemented in Java, and experiments were run on Windows with 32GB
memory (28GB for JVM) and 3.4GHz CPU. All codes are publicly available.1

4.2 Performance on synthetic datasets

4.2.1 Effectiveness of DirGCRF

We first tested the accuracy of the DirGCRF model, and compared the performance against
the standard GCRF model. Experiments were conducted on all synthetic datasets described
in the Sect. 4.1.1. The outputs of unstructured predictor (R) and similarity matrix (S) are
randomly generated. For each type of graph, one graph is used for training the model, and
five graphs for testing. All graphs contain 200 nodes. α was set as 5 and β was set as 1 in this
experiment. Average R2 and standard deviations of both models are presented in Table2.

The results show that the DirGCRF produces higher accuracy than the standard GCRF
on all synthetic directed graphs. On the fully connected directed graph, DirGCRF has 0.33
larger R2 value thanGCRF.With decreasing probability of edge existence, the graphs become
sparser. Thus, the difference between DirGCRF and GCRF in accuracy becomes smaller. For
graphs that do not have a direct loop or cycle, DirGCRF performs much better than GCRF,
0.53 and 0.73 larger R2 value, respectively, which indicates the superiority of DirGCRF on
directed graphs. Also, we noticed that in all experiments DirGCRF has very low standard
deviation (from 0.007 to 0.00004) of R2 performance.

1 https://github.com/vujicictijana/NewApp.
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Fig. 3 Average R2 of DirGCRF on different types of asymmetric structures with different α and β values

The only exceptions are the results on the chains and binary trees where both algorithms
have similar accuracy. This is expected since these structures are very sparse where every
node has a maximum of two nodes that directly affect its output.

4.2.2 Accuracy with respect to different α and β values

The purpose of this experiment is to find out how values of α and β parameters in data
generation process affect the accuracy of DirGCRF and GCRF models. In this experiment,
we tested three different setups to generate synthetic graphs. In the first one, α has higher
value, α = 5 and β = 1, whichmeans that more emphasis is put on the unstructured predictor
value and less on the structure. In the second one, both parameters have the same value: α = 1
and β = 1. In the third one, the β parameter has higher value: α = 1 and β = 5, that is,
more emphasis is put on the structure.

From Fig. 3, we can notice that the variations in R2 value for DirGCRF across three
different settings in all types of graphs are minor. However, there is a big difference in R2

value for GCRF, especially on directed graphs and on directed graphs without loop or cycle.
For example, in directed graphs a larger value of β parameter caused a slight increase in
accuracy of DirGCRF (from 0.92 to 0.96), but a large decrease in accuracy of GCRF (from
0.59 to −0.1) (Fig. 4). This indicates that the standard GCRF could not utilize asymmetric
structure to provide good results, especially for datasets in which structure is more useful.

4.2.3 Run time

Time complexity of DirGCRF is same as time complexity of the standard GCRF (Radosavl-
jevic et al. 2014). If the number of nodes in the training set is N and the learning process
lasts T iterations, computation results in O(TN3) time to train the model. The main cost of
computation is matrix inversion.

The following speed tests of the DirGCRF model were conducted on synthetically gener-
ated fully connected directed graphs with varying numbers of nodes: 500, 1K, 5K, 10K and
15K nodes. The time consumption is presented after 50 iterations and the results are shown
in Table3. Model takes more time due to Java’s object-oriented nature, which requires more
memory and more time to handle large matrix computations.
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Fig. 4 Average R2 of GCRF on different types of asymmetric structures with different α and β values

Table 3 Run time of DirGCRF
for different number of nodes

No. of nodes Speed

500 8s

1000 48s

5000 2h

10,000 17h

15,000 2.2days

4.3 Performance on real-world datasets

We have conducted experiments on four real-world datasets and compared the performance
of DirGCRF against all baselines. We chose NN as the unstructured predictor for DirGCRF
andGCRF, as it produces better results than LR\MLR.Details about each dataset are provided
in Table4 and they will be described in the following sections.

4.3.1 Delinquency dataset

The Delinquency (Snijders et al. 2010) dataset2 consists of four temporal observations of
26 students (aged between 11 and 13) in a Dutch school class between September 2003 and
June 2004. For each observation, a friendship matrix is provided, as well as delinquency
and alcohol scores. Both the delinquency and the alcohol scores are ranked from 1 to 5. The
friendship networks were formed by allowing the students to name up to 12 best friends. The
total number of edges in these matrices was between 88 and 133 (density from 13 to 20%).
On average, 49% of students’ friendships were one-directional. The similarity (Sti j ) from the
student i to the student j at the specific time point t was calculated based on the friendship
existence in all previous time points and the current one, that is,

Sti j =
∑t

k=1 S
k
i j

t
. (8)

2 https://www.stats.ox.ac.uk/~snijders/siena/tutorial2010_data.htm.
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Table 4 Real-world dataset

Dataset (nodes) Time points x y S

Delinquency 4 1. Previous delinquency Delinquency level Friendship
network(26 students) 2. Alcohol consumption

Teenagers 4 1. Previous alcohol
consumption

Alcohol consumption Friendship
network(50 teenagers)

Glasgow 3 1. Alcohol Tobacco consumption Friendship
network(129 students) 2. Cannabis consumption

3. Romantic relationship

4. Pocket money per month

Geostep
(50 games)

N/A 1. No. of clues in social
category

Relevance for touristic
purposes

Games similarity

2. No. of clues in business cat.

3. No. of clues in travel cat.

4. No. of clues in irrelevant
cat.

5. Privacy scope

6. Duration

Fig. 5 Average R2 for Delinquency dataset

The goal was to predict the delinquency level for each student. Training was performed
on the observation points 2 and 3. Alcohol consumption and previous delinquency level were
used as attribute values x. The models were tested on the observation point 4.

From the results presented at Fig. 5 we can see that the DirGCRF model outperforms all
other competing models. The DirGCRF model has 8% larger accuracy than the standard
GCRF model, and 4% larger accuracy than the Neural Network. Neural Network was the
second best model. Multivariate Linear Regression was less accurate, but better than the Last
and Average methods which produced negative R2s. The GCRF model produces a lower R2

than NN, which means that using converted symmetric friendship network was not helpful
to improve the regression.
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Fig. 6 Average R2 for Teenagers dataset

4.3.2 Teenagers dataset

The Teenagers (Michell and Amos 1997) dataset3 consists of three temporal observations
of 50 teenagers (aged 13) in a school in the West of Scotland over a 3-year period (1995–
1997). Just like in the Delinquency dataset the teenagers were asked to identify up to 12 best
friends. The total number of edges in these observations was between 113 and 122 (density
around 5%). On average 60% of teenagers’ friendships were one-directional. The same
approach (Eq.8) as in theDelinquency datasetwas used to calculate similaritymatrix. Besides
friendship networks, the dataset contains information about teenager’s alcohol consumption
(ranging from 1 to 5). The goal in this dataset was to predict alcohol consumption at the
observation time point 3, based on two previous observations.

Figure6 shows that the DirGCRFmodel has 17% larger accuracy than the standard GCRF
model, and 4% larger accuracy than the Neural Network. Neural Network and Linear Regres-
sion have similar accuracy on this dataset, 0.35 and 0.34, respectively. The simpleLastmethod
has higher R2 than both unstructured predictors and the same R2 as DirGCRF, and the Aver-
age method also produced a high accuracy. This is due to the fact that in this application there
are no additional features—only previous value of y was used to make predictions.

4.3.3 Glasgow dataset

The Glasgow (Bush et al. 1997) dataset4 consists of three temporal observations of 160
students at a secondary school in Glasgow. Students were followed over a 2-year period
starting in February 1995, when the students were aged 13, and ending in January 1997. We
used data for 129 students who were present at all three measurement points. The friendship
networks were formed by allowing the students to name up to six friends and to mark them
from 0 to 2 as follows: 1—best friend, 2—just a friend, 0—no friend. The total number of
edges in thesematriceswas around362 (density 2%).On average 72%of students’ friendships
were one-directional. In order to predict tobacco consumption, the following features were
used as attribute values x:

– Alcohol consumption (from 1 to 5).
– Cannabis consumption (from 1 to 4).

3 https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm.
4 https://www.stats.ox.ac.uk/~snijders/siena/Glasgow_data.zip.
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Fig. 7 Average R2 for Glasgow dataset

– Romantic relationship (indicates whether the student had a romantic relation at the spe-
cific time point).

– Amount of pocket money per month.

Graphs from the first two observation points were used for training, and the graph from
third one was used for testing. From Fig. 7, we can see that DirGCRF model outperforms all
other competing models, but almost all other baselines (except the simple Last and Average
methods) have produced close R2 values. There is a noticeable difference between models
that are using asymmetric and symmetric structure, that is, DirGCRF has 5% higher accuracy
than the standard GCRF.

4.3.4 Geostep dataset

TheGeostep (Scepanovic et al. 2015) dataset5 consists of data about 50 treasure hunt games.
Each game can have maximum 10 clues and each clue belongs to one of 4 categories. The
goal is to predict probability that the game can be used for touristic purposes. Features that
were used as x values are: the number of clues in each category (business, social, travel,
and irrelevant), game privacy scope, and game duration. We randomly chose 25 games for
training and the rest of them were used for testing. A similarity matrix was created based on
the games’ features. The similarity of game i to the game j (Si j ) is defined as the sum of the
common number of clues in each category k in both games divided by total number of clues
in the game i .

Si j =
∑4

k=1 min(Ck
i ,C

k
j )∑4

k=1 C
k
i

, (9)

where Ck
i is the number of clues in the category k for the game i .

From the results presented at Fig. 8, we can see that the use of this asymmetric struc-
ture significantly improved the result of Neural Network. On the other hand, the difference
in accuracy between GCRF and NN is the highest on this dataset (accuracy of GCRF is
13% lower), which indicates that converting asymmetric similarity matrix to symmetric had
negative impact on regression performance.

5 http://www.geostep.me/.
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Fig. 8 Average R2 for Geostep dataset

Fig. 9 Experimental demonstration of model convexity for synthetic datasets

It can be noticed that, from Figs. 5, 6, 7 and 8, the accuracies of DirGCRF, GCRF and
NN are consistent for all four real-world datasets. In each dataset DirGCRF has the highest
accuracy, while GCRF has lower accuracy than Neural Network.

4.4 Convexity

The experimental results presented in the previous sections were obtained for a specific
value of hyper-parameter θ . The learning task was to choose the parameters α and β to
maximize the conditional log-likelihood. The additional experimentswere conducted in order
to empirically demonstrate model convexity for all used synthetic and real-life datasets.
Results are presented at Figs. 9 and 10. In this experiment we incrementally increase θ from
0 to π

2 . For each θ we calculate α and β as α = sin(θ) and β = cos(θ). Then we calculate
log-likelihood with respect to these parameters and plot the values. These figures show that
log-likelihood is a convex function of parameters α and β and that its optimization leads to
globally optimal solution. The only exception is the Binary Tree dataset in Fig. 9, where the
kink on the left hand side of the curve does not show convexity for this network structure.
However, the optimization procedure still finds the global maximum evenwhen starting close
to the local maximum. The fact that we can plot the entire likelihood function guarantees
that we are finding the global maximum.
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Fig. 10 Experimental demonstration of model convexity for real-world datasets

5 Conclusions

In this paper, we introduced a problem of using structured regression for predicting output
variables that are asymmetrically linked. A new model, called directed Gaussian conditional
random fields (DirGCRF), is proposed. This model extends the GCRF model by considering
asymmetric similarities among objects. To evaluate the proposed model, we tested it on both
synthetic and real-world datasets. A significant accuracy improvement is achieved compared
to standard GCRF: from 5 to 19% for real-world datasets and in average 30% for synthetic
datasets. If the data has more emphasis on structure than on values that are provided by
the unstructured predictor, then the DirGCRF model even doubles the accuracy of GCRF
for some types of directed graphs. Also, the experimental results confirmed that the simple
approach of converting an asymmetric similarity matrix to a symmetric one for GCRF has
negative impact on regression performance. Since this model is implemented in Java, which
takes time to handle large matrix computations, our plan for future work is to implement
the model in a procedural or functional programming language in order to speed it up and
make it more efficient for large datasets. We also plan to apply the DirGCRF model to other
real-world applications and to demonstrate that our model can use multiple unstructured
predictors (multiple α parameters) and multiple graphs (multiple β parameters).
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