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Abstract

A novel method for problem decomposition and for local
model selection in a multi-model prediction system is
proposed. The proposed method partitions the data into
disjoint subsets obtained by the local regression model-
ing and then it learns the distributions on these sets in
order to identify the most appropriate regression model
for each test point. The system is applied to a site-
specific agriculture domain and is shown to provide a
substantial improvement in the prediction quality as
compared to a global model. Also, some aspects of local
learner choice and setting of their parameters are dis-
cussed and an overall ability of the proposed model to
accurately perform regression is assessed.

Purpose

Technological advances such as the global positioning
system and computer controlled variable rate application
equipment are enabling agriculture producers to vary
rates of fertilizers and other crop production inputs
within fields [7]. To derive application maps, producers
are collecting large amounts of site specific data such as
soil fertility levels and previous crop yields. Most often,
these site-specific data are used as input into existing
general agronomic recommendation models. These mod-
els usually consider only one or a few variables at a time
and often have been developed for the “typical” condi-
tions of a fairly large agricultural region (the Eastern
Washington for example). In many cases, general non-
site specific recommendation models are all that exist.
Unfortunately, recent studies [7] show that traditional

crop production recommendation models cannot be
scaled to a site-specific basis. To adequately predict site-
specific crop production needs requires both site-specific
data and site-specific recommendation models.

One promising way to develop site-specific recommen-
dations is to learn site-specific models from site-specific
data sets containing important driving variables and crop
yield [7]. If adequate yield response functions can be de-
fined, optimum production input levels can then be cal-
culated. The purpose of this work is to develop a proce-
dure for defining locally specialized regression models
and determining the most appropriate model for a given
site-specific data vector.

Method

One of the primary premises of site-specific agriculture
is that fields are heterogeneous [7]. Therefore, it follows
that multiple, locally specialized models may be better
suited for site-specific yield prediction than a single
global model. However, with the development of multi-
ple models, one must also develop methods to determine
which model to apply for any given pattern not used in
the training process. These might be test patterns or any
new data for which predictions are desired.

Lazarevic et al. has recently presented one approach to
the development and selection of locally specialized
models for site-specific agriculture [8]. They merged
multiple fields to identify a set of spatial clusters using
parameters that should influence crop yield but not the
yield itself. Three yield prediction models were then fit
to each cluster in a training portion of the merged field



data. The three models were for low, average, and high
yield classes. For each point in the test set, its corre-
sponding cluster is identified. Then, the nearest point
from the training set which belongs to the same cluster is
found and the corresponding regression model is applied.

Here, a different approach for developing a sequence of
local regression models each having a good fit on par-
ticular subsets of training data, is considered. This ap-
proach is depicted in the following figure:

After training local models, the corresponding distribu-
tion functions are learned. Each training data point is
then assigned to the distribution it fits the best and the
corresponding local model is used to predict yield.

In the training phase (Fig. 1), we first construct regres-
sion models Mi i=0,…k, each result providing superior
for a subset of the training data. These can be either local
linear regression models [5] or local feedforward neural

networks [6] trained on disjoint data sets Di, i=1,2,…,k
The initial data set, denoted by D, consists of all training
data provided to the learner and the first regression
model, denoted as M1, is trained on D. Then, a subset D1

of D where M1 has sufficiently low error, is selected.
Similarly, the successive   models   Mi+1   are   trained  on
D\ (D1∪ D2∪…∪ Di) and corresponding low error sub-
sets Di+1 are identified. Finally, the subset Dk+1 that con-
tains data on which training errors from M1,…Mk are all
too high, is obtained. Data from Dk+1 are not suitable for
regression by any generated model.

The next step is to learn the distribution for each disjoint
subset. To accomplish this, a feedforward neural network
consisting of m nodes in the first and fourth hidden layer
and n neurons in the second and third hidden layer (Fig.
2) is applied. Attributes of each pattern are used both as
inputs and reference outputs to the network. The back-
propagation algorithm [1] is used for training. One net-
work Ti is trained with each subset Di,i=1,...k+1. Once
the distribution model is trained (when the error on its
outputs is sufficiently small), the network Ti contains the
distribution information of dataset Di.

In the testing phase (Fig. 3), for each test pattern x its
attributes are assigned to all distribution models to find
the network Ti with the smallest error on its output. This
implies that pattern x expresses the highest similarity to
data set Dj on which Tj is trained. If j=k+1, x is the most
similar to dataset Dk+1 on which no one of trained models
Mi, i=1,..k, performs well. Therefore, in such a case, no
prediction should be provided. Otherwise, the corre-
sponding model Mi is used to predict on pattern x.
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Figure 2:  Multiple-layer neural network for data dis-
tribution learning

Figure 1:  Block-diagram of the proposed method for
learning local regression models
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 Observe that even in the case k=1 the herein proposed
approach is different from using a simple global model
since if there is no evidence that the observed test point x
is similar to the part of the training set where model M1

performs well, the proposed method will not provide a
prediction, whereas a global model will always perform
regression.

Finally, it is possible that the size of the set Di of points
on which model Mi works fine is small. In this case,
model Mi would perform well only on a few points and
would add little to overall prediction accuracy. Further-
more, it is difficult to properly learn the distribution Di

given a low number of training patterns. Therefore, a
threshold for the size of Di is introduced and only models
with | Di|>threshold  are considered.

Results

The proposed methodology was tested on a site-specific
agricultural data set obtained from the Idaho National
Engineering and Environmental Laboratory SST4Ag
Project [7]. The data set contained 7036 patterns on a 10
m x 10 m grid covering a 280 ha spring wheat field. Each
pattern contained  a x- and y-coordinate and the follow-
ing soil attributes: salinity, cation exchange capacity
(CEC), pH and the concentration of: organic matter, bo-
ron, calcium, copper, iron, potassium, magnesium, man-
ganese, nitrate nitrogen, sodium, organic nitrogen, phos-
phorus, sulfur, and zinc.

The soil attributes were obtained by low-resolution sam-
pling (20 samples from the field). The data from these
original sample points were then interpolated to a 10 m x
10 m grid using the inverse distance method [4]. The
wheat yield data were obtained using a commercially
available combine mounted yield monitor that provided
georeferenced yield measurements at 1 to 2 second inter-
vals.  These data were interpolated to the same 10 m x 10
m grid as the soil data. To identify a subset of relevant
attributes, feature selection using inter-class and prob-
abilistic selection criterion with Mahalanobis distance
and branch and bound search was applied to the com-
plete data set [9]. The feature selection procedures indi-
cated that CEC, iron, manganese and salinity were the
most useful features and thus these features were used
for all regression experiments. To allocate training and
testing data, the experimental field was split into two
subfields by a north to south dividing line so that each
subfield contained 3518 patterns. The East subfield was
used for training, and West subfield was used for testing
(Fig. 4).

Mean wheat yield, the response variable, was similar
(about 7% difference) between the training and testing
subfields.  However, the yield variance of the testing
subfield was 54% greater than that of the training sub-
field, which implies that a single model, once well
learned on the training set, can be expected to perform
worse on the test.

Neural networks are used in our experiments as regres-
sion models Mi. Two-layer perceptrons with 5 non-linear
sigmoidal units in a single hidden layer are used and the
backpropagation training algorithm is employed [11].
The criterion for partitioning training data into disjoint
sets Di was a squared prediction error less than a thresh-
old. If the prediction error on a pattern was smaller than
θ=ασ2

Train
  where α is a user defined constant, and σ2

Train

is the variance on training set, then the pattern was as-
signed to a set Di.

Figure 4:  The split of field onto training and
test set
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Figure 3:  Block-diagram of the application of
learned regression models



To determine an appropriate range for the values of coef-
ficient α, and also to verify the basic assumption that the
proposed distribution models can learn the distributions
well, we first experimented with one model (k = 1). The
model M1 was trained and points D1 on which the model
performed well and points D\ D1 on which it provided
unacceptable results were identified. The threshold value
α was varied and the mean standard error on the test set
was compared with that obtained by applying a global
model. Recall that in the case of proposed method,  M1 is
applied only on those test points where T1 has smaller
error than T2, whereas in the case of using global model
M1 is applied on all test points. 

The results of these experiments, shown in Fig. 5, sug-
gest that with the proper choice of the threshold, network
T1 can identify test data where model M1 works fine. If a
small threshold (α=0.01) is used, the size of set D1 was
insufficient for distribution learning. It resulted in a
highly specialized network T1. In addition, network T2

trained on heterogeneous data has a tendency to
misclassify test data more often. Therefore, some points
were wrongly assigned to model M1 and the consequence
was high a mean square error (MSE), sometimes even
higher than when only one (global) model was applied.
On the other hand, if the threshold is set too high (α=1),
subset D1 was still heterogeneous and network T1 was
not able to train properly and therefore some test points
were again misclassified.

The minimum size for sets Di was also examined. For
very small sets Di, the models, Mi, were too specialized
(and appropriate only for very small sets of data), and

hence the consequence was the same as if using a small
value for α. Selecting a very large minimum size for sets
Di can also result in poor algorithm performance. In this
case, the data were too heterogeneous and a specialized
regression model, which should perform well on large
subset of data, was difficult to develop. Based on infor-
mal trials, the minimum size threshold was set to 100 for
all experiments

The second phase of experimenting considered an in-
creased number of models. For five models (k=5), an
MSE of 316 was obtained which was much better than
the MSE of 561 obtained by applying a single conven-
tional model  (Table 1).

global
model

k=1 k=5

Number of points on which
regression is performed

3518 2602 2033

MSE 561 413 316

Table 1:  Effect of using multiple locally specialized
models on decreasing MSE

Our experiments show that model parameters must be
carefully chosen. For example, we increased the number
of hidden neurons in the neural network regression mod-
els, Mi, from 5 as used in the previous experiment to 8
and repeated the comparison of one global model versus
5 local models.  With 8 hidden neurons, the MSE of the
global model was 644, while the MSE when 5 locally
specialized models were combined was 544. It appears
that increasing the number of hidden neurons is leading
to overfitting [6] and resultant poor performance on the
test set. Overfitting in our approach can be controlled by
the complexity of the local model and by the threshold
for the minimum set size of Di. The probability of over-
fitting is proportional to the complexity of the local
model (number of parameters) and inversely proportional
to the minimum size of Di.

The question arises about the optimal number of locally
specialized models. If the number of models Mi is too
large, then their corresponding Dis will decrease in size
and the models will be increasingly specialized. Hence,
the distribution-estimating networks, Tis, will have more
difficulties learning the distribution, and the probability
that a test point will be assigned to the appropriate model
will be smaller. In our experiments, after 5 models were
evaluated, subsequent training of models did not result in
sufficiently large sets Di and therefore training was
halted.

An important consideration in our method for developing
locally specialized regression models is the choice of
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Figure 5:  The influence of the error threshold on the
size of set D1 and on the error on the test set if  pro-
posed method for k=1 is applied



model type to employ for Mi. Generally, it is desirable to
use regression models with enough expressive power,
since with increasing i, models Mi should gradually learn
more “difficult” distributions. Performed experiments
suggest that if M1 is a statistical linear regression model,
subsequent data sets Di on which Mi are trained, are not
large enough. Therefore for Mi, it seems that linear re-
gression models are not suitable. However, the parame-
ters of linear statistical models are deterministically cal-
culated from the training data while the random character
of the neural network training process leads to instability
of trained models and hence sets Di. One obvious way to
make Di more stable but to retain expressive power
might be to average an ensemble of neural network mod-
els (e.g. through bagging  [2]) instead of using a single
Mi and research towards such a goal is in progress.

While experimentation has shown that our method for
developing and selecting locally specialized models can
result in better performance than global models, we are
currently studying several issues that could lead to fur-
ther performance improvements.

First, observe that in order for our method to perform
well, for each test point x∈Di distribution model Ti
should have the minimal error among all models Tj,
j=1,..k. Because models Ti are trained to minimize aver-
age error on distributions Di, there can  be  subregions
S⊂Di on which Ti performs poorly as compared to the
other distribution models. In these subregions, the choice
of Mi based on the Ti that gives the smallest error will be
incorrect leading to poor predictions. It is possible that
employing simultaneous instead of successive training of
distribution models could avoid this problem.

Secondly, observe that each model Mi is trained on
points for which none of the previous models perform
well. However, this does not imply that model Mi would
not perform well on subsets Di-1, Di-2… D1 on which pre-
vious models performed well. Therefore, assuming that
Ti properly learns Di, there is an asymmetry of the usage
of these networks when determining an optimal model
for a test point. Namely, although some regression model
Mi chosen for regression on a test point performs well,
there is possibility that some other model Mj j>i, per-
forms better. This asymmetry is not considered in the
current implementation. One of the ways to alleviate this
is to apply weighted combinations of regression models
instead of the one most appropriate local model, where
weights are inversely proportional to the errors of the
distribution models.

New aspect of work

A novel method for problem decomposition and for local
model selection in a multi-model prediction system is
proposed. It is demonstrated that the proposed approach
can provide substantial improvements in the prediction
quality as compared to using a single global model on all
test data. In addition, parameter selection for the pro-
posed method is discussed and further refinements are
suggested.

Conclusions

This work proposed a promising method for increasing
yield prediction accuracy in site-specific agriculture.
Identification of proper modeling parameters in the pro-
posed system is currently performed by an expensive
trial and error process. The aim of our research in prog-
ress is to identify a more efficient and computationally
stable technique for determining values of these pa-
rameters in large scale spatially distributed databases.
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