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ABSTRACT 
 
In this paper, we propose several techniques for data reduction and spatial-
temporal prediction in precision agriculture databases. The proposed methods are 
based on various statistical and machine learning techniques including sensitivity 
based analysis, spatial-temporal autoregression, multiple time series and response 
modeling with spatially-correlated residuals. The considered techniques are 
implemented in described a prototype software and applied for analysis and 
compression of multi-temporal precision agriculture data.  The spatial-temporal 
prediction on real-life soil fertility data using the proposed spatial-temporal 
autoregression method is discussed in an accompanying paper. 
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INTRODUCTION 
 
     Advances in spatial databases have allowed for the collection of huge amount 
of data in various GIS applications ranging from remote sensing and satellite 
telemetry systems, to computer cartography and environmental planning. In 
addition, majority of such collected data may also change through time, so not 
only the spatial but also temporal dimension should be considered in these 
databases. An area of data mining aimed to extraction of knowledge and spatial 
relationships not explicitly stored in spatial-temporal databases is called spatial-
temporal knowledge discovery. 
     In many real life applications, both the number and the size of spatial-temporal 
databases are rapidly growing, and therefore the need for data reduction of very 
large spatial databases is of fundamental importance for efficient spatial-temporal 
data analysis. The main purpose of this paper is to discuss various techniques that 
could reduce the size of spatial-temporal database without loosing much 
information. The considered techniques include spatial statistical analysis, spatial-
temporal modeling and sensitivity analysis as well as identification of data subsets 
that can be reduced. After the brief overview of the considered methods, we 
proceed with the structure of the developed software for spatial-temporal data-
reduction with particular emphasis on the user interface and its functionality. 
 

METHODS 

     To perform data reduction on spatial data, we apply estimation of spatial data 
statistics at preprocessing stage by estimating spatial variograms. Variograms are 
standard descriptive statistics for spatial data (Cressie, 1993; Deutsch and Journel, 
1998; Chilès and Delfiner, 1999; Olea, 1999). Basically, variograms depict spatial 
(or-spatial-temporal) dissimilarity of data samples on a given distance and can be 
applied for data interpolation by kriging techniques. In kriging, the data value is 
interpolated as a linear combination of the known data values (Cressie, 1993). In 
addition, data interpolation can be performed through the inverse distance 
technique, where the weights in the interpolation function are inversely 
proportional to the distance from the sample point to the points where the attribute 
value is known  (Isaaks and Srivastava, 1990). Regardless of the applied 
interpolation technique, we propose to gradually vary the sampling density and to 
measure the interpolation error such that the maximal sampling distance that still 
could provide pre-specified interpolation accuracy is applied to reduce the size of 
original dataset by sampling. 
     When performing data reduction on spatial-temporal databases, we apply two 
different families of techniques. In the first family, our goal is to reduce storage 
requirements for the response variable  (e.g. crop yield), while in the second 
group of techniques, we aim to reduce required storage space for the driving 
attributes (e.g. concentrations of nutrients, terrain attributes, etc.). 
     One of possibilities to reduce memory requirements necessary for storing 
redundant response variable information is to first apply response modeling based 
on response values in previous time instants and on current attribute values, and 
then to keep in storage only those values that cannot be predicted within specified 



tolerance. Here, we apply modeling with spatially correlated lagged residuals 
(Pokrajac and Obradovic, 2001). In this model, for each point of each temporal 
data layer, the response is predicted as a function of attributes and the prediction 
residuals in neighboring points at previous time instant on uniform grid. 
     A similar procedure is applied to reduce the need for storing attribute values. 
Using Spatial-Temporal autoregressive modeling on Uniform Grid (STUG) 
(Pokrajac et al., 2002), we model values of an attribute according to the values of 
the same attribute in historical data. Based on a recent history of each observed 
attribute, a spatial-temporal model for predicting future attribute values is 
constructed, stored and then evaluated using data from the next temporal layer. 
Coordinates of points where the predictive model performs within pre-specified 
accuracy boundaries are stored and the corresponding data values are removed 
from the main data set. In the data set reconstruction phase, at each spatial-
temporal location an attribute value that is not stored at the data set is 
reconstructed using appropriate historical data, previous reconstructions and their 
corresponding prediction model. 
     If an attribute value can be properly predicted using historical values of other 
attributes, there is again no need to store the value in the database. To determine 
locations where this prediction and corresponding data compression is possible, 
we apply multiple time series approach (Lütkepohl, 1991).  
     In data reduction for knowledge discovery, one of the goals is to maintain 
fidelity of the attributes sufficiently high to preserve attribute-response 
relationship (Vucetic and Obradovic, 2000). When applying this technique, we 
build neural network prediction models (Haykin, 1999) and estimate the influence 
of attributes quantization on models prediction accuracy. Finally, we compress 
their driving attributes based on the results of a sensitivity analysis of the applied 
neural network model. 
 

SOFTWARE ORGANIZATION 
 
     We developed software package for spatial-temporal data reduction based on 
VisualBasic® and Matlab® functionality. The software is organized into following 
software modules (tools) as shown in Figure 1: 

• Data Manipulation and Loading 
• Spatial Data Reduction  
• Reduction of response data through spatial-temporal modeling 
• Data Compression using model sensitivity analysis 
• Partial Spatial-Temporal Data Reduction 

 
     All implemented functions (operations) are organized into standard menu 
items corresponding to existing software modules. When some of the menu items 
are opened, available operations within that corresponding module can be selected 
from a drop-down menu.  
     For every function to be executed within the developed software system, the 
appropriate dialog box is opened, and the user may choose various parameters in 
order to optimize results of the corresponding function. In general when some 
default parameter values are offered the user does not need to specify any 



parameters. In contrast, when a parameter is not pre-specified, the user must 
assign its value explicitly. 
     In order to perform any implemented operation, the data have to be loaded 
first. If one wants to accomplish some operations on a different data set, there are 
two possibilities. The better option, which is always available, is to load the new 
data set. In this case, this data become active and all future operations are 
performed on this new data. The second option, not always available, is related to 
loading the data sets when some operation has already been started. In this case, 
the user can choose to perform the operation on already loaded data set or to load 
new data set. However, this new data set is active only for this operation, so when 
the user close the dialog box related to this operation the old data is active again. 
     One of common approaches in machine learning is to test model (e.g. some 
relationship or function describing the association between the driving variables 
and the response variable) by examining its generalization capabilities on new 
unseen data set called test data set. The data used for determining the 
relationships or models is called train data. For some operations user must 
specify both the train and test data. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Data reduction tools organization 
 
    

SPATIAL DATA REDUCTION 
 
     Spatial data reduction module provides several techniques for reduction of 
spatial layers. In spatial data, explanatory attribute values as well as the target 
attributes are strongly related to a spatial location where observations close to 
each other are more likely to be similar than observations widely separated in 
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space. Using the tools of spatial statistics, ‘spatial continuity’ can be quantified by 
measuring the spatial covariance of samples as a function of their distance. Our 
preliminary results indicated that for the known spatial characteristics of data, one 
could determine the grid distance satisfying a predetermined accuracy loss in the 
spatial reconstruction of compressed data. In this module we have implemented 
the following operations for spatial data reduction: 

• Spatial Statistics Estimation 
• Sampling Grid Estimation 
• Data Sampling 
• Data Interpolation 

 
Spatial Statistics Estimation 

 
     This option is employed to estimate the basic spatial characteristics of the data, 
producing spatial variograms. Variogram itself can be estimated using all samples 
from original dataset (which is prohibitive for large data sets due to high 
requirements for memory and computational time) or from a random subset of a 
data set with a pre-specified size. In order to estimate the variograms the user has 
to set the following parameters at the software (Deutsch and Journel, 1998): 

- sampling flag determines whether the variogram is estimated on original 
data or on a random data subset 

- minimal and maximal lag distance for which the variograms are to be 
computed 

- number of equidistant lags on which the variogram is estimated 
- minimal number of points in a bin necessary to estimate variograms for a 

particular lag 
- percentage that specifies the effective bin size (ratio of the bin size and the 

lag difference) 
- the estimation variogram will be estimated. In addition to original 

Matheron’s method (e.g. Cressie, 1993) we provide Cressie’s robust 
estimation (Hawkins and Cressie, 1984) 

- the name of the file where the parameters of the estimated variogram will 
be saved. 

     For each attribute, variograms estimation is an iterative process during wherein 
the user may vary parameters of the theoretical variogram (range, nugget, sill and 
variogram type) that serves as an approximation to the estimated one. At each 
iteration, the user observes the goodness of variograms fit, based on MSE (Mean 
Squared Error) criterion as well as Cressie weighted MSE (Cressie, 1985)(Figure 
2).  
 

Sampling Grid Estimation 
 

     In this operation the maximal sampling distance that satisfies the pre-specified 
loss is determined. The user has to select the following parameters: 

- Minimal interpolation error for each feature separately. Here, the 
interpolation error is squared difference between predicted and true 
sample value normalized with the attribute variance. The interpolation 
error for all features is initially set to 0.5. 



- Minimal and maximal sampling distance 
- The decremental value that specifies how fast we decrease the sampling 

distance from maximum to minimum. 
- The method for data interpolation, which can be Kriging or inverse 

distance method. 
After finishing this operation, software provides all the errors and obtained 
sampling distances in a table (Figure 3). It is important to note, that if the kriging 
method is used for interpolation, variograms have to be computed beforehand. 

 
Figure 2. Variogram estimation 
 
 

Data Sampling 
 

     The purpose of this function is to interpolate the dense raw data to a proper 
sparse regular grid and obtain a reduced data layer. The required step for this 
operation is to first determine the sampling density in the Sampling Grid 
Estimation module. The only parameter that the user has to specify is the name of 
the file where the sampled data will be saved. 

 
Data Interpolation 

 
     This operation is used to reconstruct the original layer from a reduced data 
layer using an appropriate spatial interpolation method. In order to perform this 
operation, the reduced data file created in the Data Sampling module has to exist 
on the disk and to be loaded into the software. The user specifies only the file 
name where the interpolated data will be saved. 
 



 
Figure 3. Determination of sampling distance in spatial data reduction 
 
 

REDUCTION OF RESPONSE DATA 
 

     In this module we have implemented the following operations for spatial-
temporal data reduction based on modeling with spatially correlated lagged 
residuals: 

- Reduction of Response Variable 
- Reconstruction of Response Variable 

 
Reduction of Response Variable 

 
In this module, the user has to specify the following parameters: 

- parameters of a regression model (convergence rate, maximal number of 
iterations and the maximal tolerance (ε - epsilon)) 

- minimal normalized error (squared difference between predicted and true 
sample response value normalized with the response variance).  

- size of the neighborhood that has influence on the prediction model 
- name of the file where the reduced file is saved 

and as a result the information about mean-squared error on each temporal layer 
(first two layers are used for model learning and cannot be compressed) is 
displayed  (Figure 4). 
 

Reconstruction of Response Variable 
 

     In order to reconstruct the values of the response variable that have not been 
stored, the user first has to load the reduced data set obtained by previous 
operation (Reduction of Response Variable). In addition to specifying the name of 
the saved reduced data set, the user has also to specify the name of the file where 



the reconstructed data will be saved. Finally, the user is prompted when the 
reconstruction phase is finished (Figure 5). 

 

 
Figure 4. Spatial-temporal response reduction 
 
 

PARTIAL SPATIAL TEMPORAL DATA REDUCTION 
 

     The objective of this module is to determine if subsets of the spatial-temporal 
attributes can be determined (predicted) by other data, such that the predictable 
attributes or attribute values would not have to be collected, analyzed, compressed 
and stored. 
     In this module we have implemented the following operations for partial 
spatial-temporal data reduction: 

- Reduction and reconstruction of attributes using spatial-temporal 
autoregression 

Reduction and data reconstruction using multiple time series. 
 



 
Figure 5. Screen for data reconstruction in spatial-temporal response reduction 

 
 
Reduction of Attributes using Spatial-Temporal Autoregression 
 

     This operation is performed in order to reduce memory requirements for 
attribute data using spatial-temporal autoregressive models on uniform grid. Here, 
the attribute value at sampling location is predicted using the values of the same 
attribute at the same location and its neighborhood taken in previous time 
intervals. 
     After user has  specified the following parameters: 

- the order of the temporal layer specifies the number of temporal layers the 
observed sample depends on 

- the order of the spatial layer specifies spatial neighborhood size 
- maximum allowed normalized prediction error; for each sample, we do 

not save the actual attribute value if squared difference between predicted 
and true value, normalized with the attribute variance, does not exceed this 
maximum 

- the name of the file where the reduced file will be saved, 
the software shows achieved compression levels for each attribute (Figure 6). 

 
Reconstruction of Attributes Compressed using Spatial-Temporal 

Autoregression 
 

     In order to perform this operation the user first has to load the reduced data set 
obtained by previous operation. In addition to specifying the saved reduced data 
set, the user has also to specify the name of the file where the reconstructed data 
will be saved. Finally, the information that the reconstruction phase is completed 
and that the reconstructed file is saved under the specified name is given (Figure 
7). 

 



 
Figure 6. Screen for attribute reduction using spatial-temporal auto-regression 

 
 

Reduction of Attributes Using Multiple Time Series 
 
     This operation is performed in order to reduce memory requirements for 
attribute data using multiple time-series. Here, the attribute value at sampling 
location is predicted using the values of the same attribute as well as other 
attributes at the same location taken in specified past intervals. 
     The user has to specify the following parameters: 

- the order of the temporal layer specifies the number of temporal layers the 
observed sample depends on 

- maximum allowed normalized prediction error. For each sample, we do 
not save the actual attribute value if squared difference between predicted 
and true value, normalized with the attribute variance, does not exceed this 
maximum 

- the name of the file where the reduced file will be saved 
 

Reconstruction of Attributes Compressed Using Multiple Time Series 
 
     In order to perform this operation the user first has to load the reduced data set 
obtained by previous operation. In addition to specifying the saved reduced data 
set, the user has again to specify the name of the file where the reconstructed data 
will be saved. Finally, the information that the reconstruction phase is completed 
and that the reconstructed file is saved under the specified name. 
 

SENSITIVITY BASED ANALYSIS 
 

     This module contains operation which purpose is to perform data reduction 
based on non-uniform sensitivity based attribute quantization. 



     The user has to specify the following parameters: 
- allowed percentage loss in prediction accuracy 
- number of hidden neurons in a neural network model 
- number of epochs for training a neural network model 
- the name of the file where the reduced data set will be saved 

and at the end, the result is achieved data compression and the achieved loss in 
prediction accuracy (in percents). 
 

 
Figure 7. Reconstruction of attributes compressed using spatial-temporal 
autoregression 

 
CONCLUSIONS 

 
     This paper proposes several techniques for data reduction and spatial-temporal 
prediction in precision agriculture databases. The techniques have been 
implemented in a prototype software, operational at Idaho National Engineering 
and Environmental Laboratory. Although the software has been preliminary tested 
on analyses of agricultural spatial-temporal data (Hoskinson et al., 2002) we 
emphasize the need to evaluate software performance on the broader spectrum of 
datasets, including data from various spatial-temporal domains. In addition, our 
future work will focus on providing automatic procedures for parameter setting of 
the implemented techniques as well as on exploring other, alternative data 
compression techniques and their applications in spatial-temporal domains. 
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