
Constraint Graphs as Security Filters for Privacy
Assurance in Medical Transactions

George Mathew, Zoran Obradovic
Center for Data Analytics and Biomedical Informatics

Temple University, Philadelphia, PA

{George.Mathew, Zoran.Obradovic}@temple.edu

ABSTRACT
We model transactions as exchange of graphs and propose
constraint graphs as transaction filters for attribute-based
transformations in clinical settings. An informal representation
and working of constraint graphs is presented. A workbench was
developed using a real world EMR system to demonstrate the
concept. Results of our experiments using constraint graphs are
consistent with published benchmark results.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection; J.3 [Life and Medical Systems]:
Medical Information Systems; K.4 [Computers and Society]:
Privacy

Keywords
Medical informatics, Privacy

1. INTRODUCTION
Transactions involving patient data can be 1) administrative 2)
financial 3) analytical or 4) clinical in nature. These transactions
involve raw attributes that form a subset of the patient record. In
another form of transaction in distributed data mining, raw data is
not disclosed, but statistics about the attributes are passed along
[1]. We introduce constraint graphs as a mechanism to enforce
restrictions on data attributes in both these types of transactions.

Graph databases [2] are emerging as a viable alternative to
relational models. The structure of most real life domain models
is graph. Hierarchical structures, ad hoc structures, dynamic
structures and semi-structured data are hard to be maintained by
relational databases. Graph databases provide the agility to
accommodate changes in underlying structures. In this study, we
explore constraint graphs as a mechanism to control security in
application-level transactions. Constraint graphs gateway is a
service layer in a multi-tiered pipeline of services (see Figure 1).

Figure 1: Constraint graphs service in a pipeline of services.

2. RELATED WORK
Differential Privacy [3] was designed for data analysis and not
data transactions. In our case, for most transactions, raw data has
to be shipped outside the system as opposed to differential
privacy, where no data leaves the population database. Privacy
Integrated Queries (PINQ) [4] is a data analysis platform that was
designed to provide access to underlying data sets through a
declarative language (LINQ) and provides formal guarantee of
differential privacy. Our approach is similar. Constraint graphs
enforce site-specific restrictions on data in transit.

3. PROTOTYPE GRAPHS AND
CONSTRAINT GRAPHS
GraphQL [5] deals with graphs as the unit of operation. We model
graphs as the currency for transactions. Pattern graphs in
GraphQL are extended to prototype graphs and forms the basis for
constraint graphs. Prototype graphs can be used for checking
conformance on a given set of graphs. Constraint graphs are
prototype graphs used specifically for enforcing transaction-based
restrictions. The predicates on the attributes enforce the
restrictions. Constraint graphs are useful in three ways. 1) To
identify a matching subgraph in a given transaction graph 2) for
masking specific attributes in selected graphs and 3) for data
cleansing by applying targeted transformations on specified
attributes.
In GraphQL, a graph motif consists of node and edge
specifications. To extend graph motif, we define “general
expression” (“genex”) as generalization of the regex quantifier
metacharacters. The genex tokens are shown in Table 1.

TABLE I. LIST OF GENERAL EXPRESSION TOKENS

Token Interpretation

? One item satisfies the condition.

+ At least one item satisfies the condition.

{n} Exactly n items satisfy the condition.

{n,m} At least n and ≤ m items satisfy the condition.

[] One item in square brackets satisfies the condition.

The following is a graph motif:
 graph G { node v1;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM-BCB ’11, August 1–3, 2011, Chicago, IL, USA
Copyright © 2011 ACM 978-1-4503-0796-3/11/08…$10.00

 node v2;
 edge e(v1,v2); }
When the graph motif has a tag followed by an optional genex, it
is called a “genex motif”. The following genex motifs A & B will
match graph motif G. Genex motif C will not match motif G.
 graph A { node x +; graph B { node u +; graph C {
 node y ?;} node v +; node u {3};}
 edge (u,v);}

A prototype graph is a genex motif with a set of predicates based
on the tags. The following graph P is a prototype graph.
graph P { node x + where x.sex = ‘m’;
 node y ? where y.temp > 99; }
A constraint graph is used for the purpose of filtering out (or
modifying) specific attributes or relations in a set of input graphs
for transactions. A constraint graph is a genex motif or a
prototype graph and a set of actions from the following 3 forms:

exists <tag>[.<attribute>]
eliminate <tag>[.<attribute>]

 substitute <tag>[.<attribute>] =~ /<transform>/

3.1 ‘exists’ action
A constraint graph with ‘exists’ action is a Boolean mechanism to
qualify a transaction. If all the ‘exists’ conditions are satisfied, the
transaction is unqualified. Otherwise, the transaction is qualified.
For example, consider the constraint graph C:
 graph C { node u + exists u.name;
 node v + exists v.address;
 node w + exists w.dob;
 node x + exists x.id; }
The attributes name, address, date of birth and id together in one
transaction makes it unqualified.

3.2 ‘eliminate’ action
In the eliminate action, specified attributes are eliminated from
matching graphs. Each eliminate action is independent of each
other. For example,
graph E { node x + eliminate x.dob;
 node y + where y.country = “USA” eliminate y.id; }

3.3 ‘substitute’ action
The format for substitute action is:
 substitute <target>[.<attribute>] =~ /<transform>/
 /<transform>/ can be a function or a pattern followed by a
replacement pattern. If it is a function, it takes the format /fun()/.
A pattern replacement takes the form /<original>/<replacement>/.
Here, <original> is replaced by <replacement>. For example:
graph S { node u + substitute u.id =~ /hash()/;
 node v + substitute v.dob =~ /dob_transform()/;
 node x + substitute x.name =~ /Mike/Michael/; }

3.4 Combining actions
Sometimes it is necessary to combine actions to perform more
interesting transformations. For example, when data records in
transit have ‘name’ attribute, it is possible to de-identify ‘name’
and add another attribute to replace ‘name’. Suppose this action is
referred to as ‘add’. The following constraint graph represents a
possible syntax to capture this idea:
 graph N { node u + exists u.name;
 node u + eliminate u.name;
 node u + add u.identifier =~ de-identify(u.name); }

4. EXPERIMENTS
The first two sets of experiments were done in interactive mode,
while the third set was performed in batch (non-interactive) mode.

4.1 Workbench in OpenEMR
The OpenEMR [6] electronic health information system was used
as the platform for experiment. We implemented the constraint
graphs server using SOAP Web Services protocol (see Figure 2).

Figure 2: Details of Constraint graph gateway implementation.

We introduced a user interface (Workbench) for a set of
transactions that could be initiated in the context of a patient. The
Workbench allows for the selection of attributes of interest and
associate a transaction type. We defined three transaction types:
1) financial 2) administrative and 3) research. Constraint graphs
for these transaction types were defined and stored in a neo4j
graph database. Since neo4j supported JAVA natively, we used a
SOAP-based service for exchange between JAVA and PHP.
Transformation rules were implemented as PHP functions.

When a transaction is initiated from the Workbench, a graph
based on the selection is generated and sent to the gateway
service. Based on the transaction type, the set of constraint graphs
for that type is retrieved and applied on the data graph. An
example of a constraint graph for financial transactions is:
 graph C { node x + substitute x.ss =~ /ss_transform()/; }
The resultant graph is also passed back to the workbench. In a
working transaction implementation, the transformed data graph
will be forwarded to the external agency associated with the
transaction. We verified the working of various constraint graphs
with actions using different data graphs within the Workbench.

4.2 Combining Actions
To illustrate the working of combining actions (sec 3.4), we used
Bloom filters in a ‘research’ transaction within the Workbench.
We specified a constraint that ‘name’ and ‘address’ attributes be
eliminated and a new attribute ‘identifier’ be added. A function
de_identify() with ‘name’ and ‘address’ as inputs generated the
‘identifier’. The function concatenated ‘name’ & ‘address’ and
the result string was run through Bloom Filters to generate 24
hash bits in a 100-bit array. The hash bit positions were sorted in
ascending order and combined to generate an identifier. We
defined a constraint graph for ‘research’ transaction using the
function de_identify(). Research transactions were initiated to
trigger the constraint graph filtering. The results were verified to
be correct.

4.3 Local Attribute Policy Enforcement
These set of experiments, based on the work published on
Distributed ID3-based Decision Tree (DIDT) [1], were used to
enforce local data attribute policies using constraint graphs. The
DIDT algorithm builds a decision tree using statistics about data
from distributed sites. The algorithm iteratively builds the nodes.
There are two stages in each iteration. In stage one, a global
schema for data is generated using metadata from the sites. In
stage two, the node to be split is decided using crosstable matrices
of attributes in the global view. The DIDT algorithm starts with a
query to zoom in on attributes of interest. The query is mediated
by a Clearing House (CH) and forwarded to sites of interest in the
network. Individual sites identify instances satisfying the query

and forward metadata about the instances to the CH. The CH
aggregates the metadata to create a global view, which is used by
sites to generate crosstable matrices for attributes. The crosstable
matrix for an attribute is a representation for the number of
instances that has a specific value and belonging to a specific
class. These matrices are used by CH in calculating gain to select
the node to be split in the decision tree. In each stage, there may
be local data policies that prohibit the disclosure of attributes. The
experiments and results published in the cited work under the
section “Learning from Multiple Sites when some sites constrain
certain attributes” are use cases of this scenario. We used our
recent results [1] as the benchmark.

The baseline experiments used SPECT heart data set of patients
from the UCI machine-learning repository [7]. The data set
consists of summary features of 267 cardiac Single Proton
Emission Captured Tomography (SPECT) images. The patients
are classified as normal or abnormal. The 22 binary attributes
were labeled a1, a2, . . . , a22 and classes were labeled c0 & c1.
Duplicates with all 0’s were eliminated. The resulting 256 data
instances were distributed randomly to 16 sites, each site getting
16 instances. The baseline query was a3∧a5∧a8 to select data
instances with positive values for a3, a5 and a8. During the
process, attributes were constrained by suppression from being
disclosed. When we re-enacted the experiments, attribute
constraints were implemented using constraint graphs with
‘eliminate’ actions. The layout of gateway services and
interaction with CH is shown in Figure 3.

Figure 3: Constraint Graph Gateway Used for Local Attribute

Policy Enforcement
Attributes a13 and a10 were independently blocked from 4,12 &
16 sites in 3 consecutive experiments and DIDT was constructed
using 16 leave-one-site-out cross-validations. Results are shown
in Table 2.

TABLE II. RESULTS OF CONSTRAINING AN ATTRIBUTE

attribute
blocked

of sites
blocking

cross-
validation

correctly
classified accuracy

a13 4,12,16 16 36/37 97.30%

a10 4,12,16 16 32/37 86.47%

These results are consistent with the published benchmark results,
thus verifying the working of the actions. The minor differences
in correctly classified instances in Table 2 vs. published
benchmark results are due to the randomness of data distribution
to the sites and consequent aberration in cross-validation results.

Next set of experiments was using exclusive and inclusive
constraints enforcements. In both cases, a pair of attributes was
excluded from a fixed number of sites. In exclusive mode, each
attribute was excluded from specified number of sites with no
overlap; while in inclusive mode, the pair of attributes was

simultaneously excluded from a given number of sites. Results are
shown in Table 3.

TABLE III. RESULTS OF COMBINED BLOCKING OF a13 & a10

type of
blocking

of sites
blocking

cross-
validation

correctly
classified accuracy

Exclusive 8 16 33/37 89.12%

Inclusive 4 16 33/37 89.12%

These results are also consistent with the corresponding published
benchmark results, thus verifying the working of constraint
graphs

5. CONCLUSIONS
We presented graph databases as viable store for clinical data and
constraint graphs as a filtering mechanism to enforce local data
policies; thus, assuring privacy in medical data transactions. We
implemented a workbench in an electronic health records system
to demonstrate the concept. In the case of constraining statistics
about data, we demonstrated the working of constraint graphs as a
successful filtering mechanism. Future work directions include
incorporating more actions, sophisticated general expressions in
actions and formal specification of actions.

6. ACKNOWLEDGEMENT
This project is funded in part under a grant with the
Pennsylvania Department of Health. The Department
specifically disclaims responsibility for any analyses,
interpretations, or conclusions.

7. REFERENCES
[1] Mathew, G and Obradovic, Z. 2011. A Privacy-Preserving

Framework for Distributed Clinical Decision Support. In
Proceedings of the 1st IEEE International Conference on
Computational Advances in Bio and medical Sciences. Feb
2011, Orlando, FL.
DOI=http://dx.doi.org/10.1109/ICCABS.2011.5729866

[2] Aggarwal, C. C., and Wang, H. 2010. Managing and Mining
Graph Data. Springer, NY, USA.

[3] Dwork, C. 2006. Differential Privacy. In Proceedings of
33rd International Colloquium on Automata, Languages and
Programming, July, 2006. Venice, Italy, pp. 1-12.

[4] McSherry, F. D. 2009. Privacy integrated queries: an
extensible platform for privacy-preserving data analysis. In
Proceedings of the 35th SIGMOD International Conference
on Management of Data, Providence, RI. pp. 19-30.
DOI=http://dx.doi.org/10.1145/1559845.1559850.

[5] He, H., and Singh, A. K. 2008. Graphs-at-a-time: Query
Language and Access Methods for Graph Databases. In
Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data. Vancouver, Canada.
DOI=http://dx.doi.org/10.1145/1376616.1376660.

[6] Home page for Open EMR software, 2010.
http://www.oemr.org.

[7] SPECT Heart Data Set: Available at –
http://archive.ics.uci.edu/ml/datasets/SPECT+Heart

	1. 0B0BINTRODUCTION
	2. 1B1BRELATED WORK
	3. 2B2BPROTOTYPE GRAPHS AND CONSTRAINT GRAPHS
	3.1 7B7B ‘exists’ action

	4. 3B3BEXPERIMENTS
	4.1 8B8BWorkbench in OpenEMR
	4.2 9B9BCombining Actions
	4.3 10B10BLocal Attribute Policy Enforcement

	5. 4B4BCONCLUSIONS
	6. 5B5BACKNOWLEDGEMENT
	7. 6B6BREFERENCES

