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ABSTRACT 
We model transactions as exchange of graphs and propose 
constraint graphs as transaction filters for attribute-based 
transformations in clinical settings. An informal representation 
and working of constraint graphs is presented. A workbench was 
developed using a real world EMR system to demonstrate the 
concept. Results of our experiments using constraint graphs are 
consistent with published benchmark results. 

Categories and Subject Descriptors 
K.6.5 [Management of Computing and Information Systems]: 
Security and Protection; J.3 [Life and Medical Systems]: 
Medical Information Systems; K.4 [Computers and Society]: 
Privacy 
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1. INTRODUCTION 
Transactions involving patient data can be 1) administrative 2) 
financial 3) analytical or 4) clinical in nature. These transactions 
involve raw attributes that form a subset of the patient record. In 
another form of transaction in distributed data mining, raw data is 
not disclosed, but statistics about the attributes are passed along 
[1]. We introduce constraint graphs as a mechanism to enforce 
restrictions on data attributes in both these types of transactions.  

Graph databases [2] are emerging as a viable alternative to 
relational models. The structure of most real life domain models 
is graph. Hierarchical structures, ad hoc structures, dynamic 
structures and semi-structured data are hard to be maintained by 
relational databases. Graph databases provide the agility to 
accommodate changes in underlying structures.  In this study, we 
explore constraint graphs as a mechanism to control security in 
application-level transactions. Constraint graphs gateway is a 
service layer in a multi-tiered pipeline of services (see Figure 1). 

 

Figure 1: Constraint graphs service in a pipeline of services. 

2. RELATED WORK 
Differential Privacy [3] was designed for data analysis and not 
data transactions. In our case, for most transactions, raw data has 
to be shipped outside the system as opposed to differential 
privacy, where no data leaves the population database. Privacy 
Integrated Queries (PINQ) [4] is a data analysis platform that was 
designed to provide access to underlying data sets through a 
declarative language (LINQ) and provides formal guarantee of 
differential privacy. Our approach is similar. Constraint graphs 
enforce site-specific restrictions on data in transit. 

3. PROTOTYPE GRAPHS AND 
CONSTRAINT GRAPHS 
GraphQL [5] deals with graphs as the unit of operation. We model 
graphs as the currency for transactions. Pattern graphs in 
GraphQL are extended to prototype graphs and forms the basis for 
constraint graphs. Prototype graphs can be used for checking 
conformance on a given set of graphs. Constraint graphs are 
prototype graphs used specifically for enforcing transaction-based 
restrictions. The predicates on the attributes enforce the 
restrictions. Constraint graphs are useful in three ways. 1) To 
identify a matching subgraph in a given transaction graph 2) for 
masking specific attributes in selected graphs and 3) for data 
cleansing by applying targeted transformations on specified 
attributes. 
In GraphQL, a graph motif consists of node and edge 
specifications. To extend graph motif, we define “general 
expression” (“genex”) as generalization of the regex quantifier 
metacharacters. The genex tokens are shown in Table 1. 

TABLE I.     LIST OF GENERAL EXPRESSION TOKENS 

Token Interpretation 

? One item satisfies the condition. 

+ At least one item satisfies the condition. 

{n} Exactly n items satisfy the condition. 

{n,m} At least n and ≤ m items satisfy the condition. 

[ ] One item in square brackets satisfies the condition. 

The following is a graph motif: 
                       graph G  {    node v1; 
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                                            node v2; 
                                            edge e(v1,v2);  } 
When the graph motif has a tag followed by an optional genex, it 
is called a “genex motif”. The following genex motifs A & B will 
match graph motif G. Genex motif C will not match motif G. 
 graph A { node x +;       graph B { node u +;       graph C { 
                  node y ?;}                     node v +;             node u {3};}  
                                                        edge (u,v);} 



A prototype graph is a genex motif with a set of predicates based 
on the tags. The following graph P is a prototype graph. 
graph P {   node x + where x.sex = ‘m’; 
                  node y ? where y.temp > 99; } 
A constraint graph is used for the purpose of filtering out (or 
modifying) specific attributes or relations in a set of input graphs 
for transactions. A constraint graph is a genex motif or a 
prototype graph and a set of actions from the following 3 forms: 

exists <tag>[.<attribute>] 
eliminate <tag>[.<attribute>] 

       substitute <tag>[.<attribute>] =~ /<transform>/ 

3.1  ‘exists’ action 
A constraint graph with ‘exists’ action is a Boolean mechanism to 
qualify a transaction. If all the ‘exists’ conditions are satisfied, the 
transaction is unqualified. Otherwise, the transaction is qualified. 
For example, consider the constraint graph C: 
        graph C {  node u + exists u.name; 
                          node v + exists v.address; 
                          node w + exists w.dob; 
                          node x + exists x.id;  } 
The attributes name, address, date of birth and id together in one 
transaction makes it unqualified.  

3.2 ‘eliminate’ action 
In the eliminate action, specified attributes are eliminated from 
matching graphs. Each eliminate action is independent of each 
other. For example, 
graph E {   node x + eliminate x.dob; 
                  node y + where y.country = “USA” eliminate y.id; } 

3.3 ‘substitute’ action 
The format for substitute action is:  
          substitute <target>[.<attribute>] =~ /<transform>/ 
 /<transform>/ can be a function or a pattern followed by a 
replacement pattern. If it is a function, it takes the format /fun()/.  
A pattern replacement takes the form /<original>/<replacement>/. 
Here, <original> is replaced by <replacement>. For example: 
graph S {  node u + substitute  u.id =~ /hash()/; 
                 node v + substitute v.dob =~ /dob_transform()/; 
                 node x + substitute x.name =~ /Mike/Michael/;   } 

3.4 Combining actions 
Sometimes it is necessary to combine actions to perform more 
interesting transformations. For example, when data records in 
transit have ‘name’ attribute, it is possible to de-identify ‘name’ 
and add another attribute to replace ‘name’. Suppose this action is 
referred to as ‘add’. The following constraint graph represents a 
possible syntax to capture this idea: 
     graph N {  node u + exists u.name; 
                       node u + eliminate u.name; 
                       node u + add u.identifier =~ de-identify(u.name);  } 

4. EXPERIMENTS 
The first two sets of experiments were done in interactive mode, 
while the third set was performed in batch (non-interactive) mode. 

4.1 Workbench in OpenEMR 
The OpenEMR [6] electronic health information system was used 
as the platform for experiment. We implemented the constraint 
graphs server using SOAP Web Services protocol (see Figure 2).  

 
Figure 2: Details of Constraint graph gateway implementation. 

We introduced a user interface (Workbench) for a set of 
transactions that could be initiated in the context of a patient. The 
Workbench allows for the selection of attributes of interest and 
associate a transaction type. We defined three transaction types: 
1) financial 2) administrative and 3) research. Constraint graphs 
for these transaction types were defined and stored in a neo4j 
graph database. Since neo4j supported JAVA natively, we used a 
SOAP-based service for exchange between JAVA and PHP. 
Transformation rules were implemented as PHP functions. 

When a transaction is initiated from the Workbench, a graph 
based on the selection is generated and sent to the gateway 
service. Based on the transaction type, the set of constraint graphs 
for that type is retrieved and applied on the data graph. An 
example of a constraint graph for financial transactions is: 
        graph C {  node x + substitute x.ss =~ /ss_transform()/; } 
The resultant graph is also passed back to the workbench. In a 
working transaction implementation, the transformed data graph 
will be forwarded to the external agency associated with the 
transaction. We verified the working of various constraint graphs 
with actions using different data graphs within the Workbench. 

4.2 Combining Actions 
To illustrate the working of combining actions (sec 3.4), we used 
Bloom filters in a ‘research’ transaction within the Workbench. 
We specified a constraint that ‘name’ and ‘address’ attributes be 
eliminated and a new attribute ‘identifier’ be added. A function 
de_identify() with ‘name’ and ‘address’ as inputs generated the 
‘identifier’. The function concatenated ‘name’ & ‘address’ and 
the result string was run through Bloom Filters to generate 24 
hash bits in a 100-bit array. The hash bit positions were sorted in 
ascending order and combined to generate an identifier. We 
defined a constraint graph for ‘research’ transaction using the 
function de_identify(). Research transactions were initiated to 
trigger the constraint graph filtering. The results were verified to 
be correct.  

4.3 Local Attribute Policy Enforcement 
These set of experiments, based on the work published on 
Distributed ID3-based Decision Tree (DIDT) [1], were used to 
enforce local data attribute policies using constraint graphs. The 
DIDT algorithm builds a decision tree using statistics about data 
from distributed sites. The algorithm iteratively builds the nodes. 
There are two stages in each iteration. In stage one, a global 
schema for data is generated using metadata from the sites. In 
stage two, the node to be split is decided using crosstable matrices 
of attributes in the global view. The DIDT algorithm starts with a 
query to zoom in on attributes of interest. The query is mediated 
by a Clearing House (CH) and forwarded to sites of interest in the 
network. Individual sites identify instances satisfying the query 



and forward metadata about the instances to the CH. The CH 
aggregates the metadata to create a global view, which is used by 
sites to generate crosstable matrices for attributes. The crosstable 
matrix for an attribute is a representation for the number of 
instances that has a specific value and belonging to a specific 
class. These matrices are used by CH in calculating gain to select 
the node to be split in the decision tree. In each stage, there may 
be local data policies that prohibit the disclosure of attributes. The 
experiments and results published in the cited work under the 
section “Learning from Multiple Sites when some sites constrain 
certain attributes” are use cases of this scenario. We used our 
recent results [1] as the benchmark. 

The baseline experiments used SPECT heart data set of patients 
from the UCI machine-learning repository [7]. The data set 
consists of summary features of 267 cardiac Single Proton 
Emission Captured Tomography (SPECT) images. The patients 
are classified as normal or abnormal. The 22 binary attributes 
were labeled a1, a2, . . . , a22 and classes were labeled c0 & c1. 
Duplicates with all 0’s were eliminated. The resulting 256 data 
instances were distributed randomly to 16 sites, each site getting 
16 instances. The baseline query was a3∧a5∧a8 to select data 
instances with positive values for a3, a5 and a8. During the 
process, attributes were constrained by suppression from being 
disclosed. When we re-enacted the experiments, attribute 
constraints were implemented using constraint graphs with 
‘eliminate’ actions. The layout of gateway services and 
interaction with CH is shown in Figure 3. 

 
Figure 3: Constraint Graph Gateway Used for Local Attribute 

Policy Enforcement 
Attributes a13 and a10 were independently blocked from 4,12 & 
16 sites in 3 consecutive experiments and DIDT was constructed 
using 16 leave-one-site-out cross-validations. Results are shown 
in Table 2. 

TABLE II.  RESULTS OF CONSTRAINING AN ATTRIBUTE 

attribute 
blocked 

# of sites 
blocking 

cross-
validation 

correctly 
classified accuracy 

a13 4,12,16 16 36/37 97.30% 

a10 4,12,16 16 32/37 86.47% 

 
These results are consistent with the published benchmark results, 
thus verifying the working of the actions. The minor differences 
in correctly classified instances in Table 2 vs. published 
benchmark results are due to the randomness of data distribution 
to the sites and consequent aberration in cross-validation results. 

Next set of experiments was using exclusive and inclusive 
constraints enforcements. In both cases, a pair of attributes was 
excluded from a fixed number of sites. In exclusive mode, each 
attribute was excluded from specified number of sites with no 
overlap; while in inclusive mode, the pair of attributes was 

simultaneously excluded from a given number of sites. Results are 
shown in Table 3. 

TABLE III.  RESULTS OF COMBINED BLOCKING OF a13 & a10 

type of 
blocking 

# of sites 
blocking 

cross-
validation 

correctly 
classified accuracy 

Exclusive 8 16 33/37 89.12% 

Inclusive 4 16 33/37 89.12% 

 
These results are also consistent with the corresponding published 
benchmark results, thus verifying the working of constraint 
graphs 

5. CONCLUSIONS 
We presented graph databases as viable store for clinical data and 
constraint graphs as a filtering mechanism to enforce local data 
policies; thus, assuring privacy in medical data transactions. We 
implemented a workbench in an electronic health records system 
to demonstrate the concept. In the case of constraining statistics 
about data, we demonstrated the working of constraint graphs as a 
successful filtering mechanism. Future work directions include 
incorporating more actions, sophisticated general expressions in 
actions and formal specification of actions.  
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