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Abstract 

More than 6,000 amino acid sequence attributes were ranked by their conditional probabilities for indicating 
ordered or disordered protein structure.  The top 10 each from several different groups of attributes were 
merged with still other attributes and then subjected to selection by logistic regression. Evidently, the 
determination of order or disorder results from the interplay among several attributes, such as average 
Coordination Number, aromatic content and the numbers of non-polar amino acids, all of which favor the 
ordered state, and others like Net Charge, Flexibility Index, and the presence of certain polar amino acids, all 
of which favor disorder.   The top 12 selected attributes were used as inputs for artificial neural network 
(ANN) predictors.  Five predictors were developed, compared with each other, and with previous work. The 
best of these shows substantially improved generalization compared to our previously published predictor.  
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Introduction  
 
Current dogma holds that amino acid sequence determines 3-D protein structure [2] with the resulting 3-D 
structure being a prerequisite for function.  However, many proteins remain unfolded under physiological 
conditions, yet carry out function. These “natively unfolded” [26] or “intrinsically disordered” proteins have 
led to a call for a re-assessment of the protein structure / function paradigm  [27].  

Amino acid sequence determines protein folding, so sequence should also determine non-folding [20]. If 
so, then the existence of intrinsically unstructured proteins implies a “protein non-folding problem,” i.e. the 
prediction whether a given string of amino acids folds into a 3-D structure or remains partially or completely 
unfolded.  Recently we are focusing on this non-folding problem [6, 18, 20, 7, 9, 21, 28, 10, 15, 19, 22].       
 Our published studies on the non-folding problem suffer from at least three limitations. First, small 
numbers of ordered and disordered amino acids were used, due mainly to the lack of appropriate data.  
Second, the predictor inputs were selected from a fairly small pool of sequence attributes, so many 
potentially important sequence features were not evaluated.  Finally, attributes were calculated as their 
average values about a central position; these simple windows contain no directional information.   

The present study focuses on the three aspects mentioned above.  First, more data were used for predictor 
training. Second, a substantially larger attribute pool was explored.  Finally, simple windows were compared 
with a triple-windowing process that included directional information.  Overall, the results provide additional 
insight into the sequence basis of intrinsic disorder and yield improvements in prediction accuracy.      
 
Materials and Methods 
 
2.1. Data  
 
Data on regions of disorder were from a non-redundant set of 57 putatively disordered segments of at least 
21 residues in length from which only 898 residues were used, an increase in size of about 80% over the data 
in our initial study[20].  The first and last 5 residues of each protein chain were dropped to reduce the end-



effects noted previously [15], so disorder at the ends of chains had to be at least 21 + 5 = 26 residues in 
length to be used.  Sliding windows of 21 residues in length were used to calculate sequence attributes.  The 
disordered training set was balanced by ordered segments of length 21 randomly chosen from 130 non-
homologous, putatively structured proteins having no disorder.  

Several out-of-sample databases of order and disorder were used or constructed for evaluation of the 
various predictors.  PDB_Select_25 contains proteins families based on 25% sequence identity from the 
Protein Data Bank [3], with the highest quality structure representing each family [11].  Starting with 931 X-
ray-determined protein structures in the PDB_Select_25 of August, 1999, the 230,777 observed residues 
from 1,135 segments of at least 21 in length were gathered to form a database of ordered structure called 
O_PDB_Select_25.  The 4,781 unobserved residues in 86 segments of at least 21 in length were likewise 
compiled to form a disordered set, called D_PDB_Select_25.  NRL_3D [17] contains only the ordered (e.g. 
observed) segments of the proteins in PDB, but differs from O_PDB_Select_25 in having many redundant 
proteins. In total, the version of NRL_3D used here had 17,791 protein chains with a total of 2,636,570 
residues.  Intrinsic disorder has also been characterized by NMR and by far UV circular dichroism (CD).  
Such proteins were identified by literature searches, giving an NMR disorder dataset of 33 proteins having 
less than 25% sequence identity with 3,331 residues and a far UV CD disorder dataset of 45 proteins having 
less than 25% sequence identity with 6,438 residues.  

All of the ordered and disordered data used here are described in detail at http://disorder.chem.wsu.edu, 
accessed by the Database button on the home page.      
 
2.2. Attribute construction and ranking 
 
Our previous study [15] used 51 attributes, 46 of which were based on composition and 5 of which were 
based on residue properties. These attributes were developed largely from domain knowledge.  

Composition-based attribute values are determined simply by summing the numbers of the specified 
amino acids in a given window.  Here, we exhaustively screened every amino acid combination having 1-4 
amino acids, giving 6195 composition-based attributes in all.  Additional composition-based attributes with 
more than 4 amino acids were included for comparison with previous studies [28, 15] 

In addition to the composition-based attributes, we investigated 14 property-based attributes. With the 
convention that a property will be capitalized if it is used as an attribute, these included Hydropathy [13], 
two scales of Flexibility [25](Smith, personal communication), Coordination Number [8] two different 
measures of formal Net Charge [28], two different scales of Residue Volumes [23, 4], two scales of Side 
Chain Polarity  [12, 4], Surface Area [5], Bulkiness [12], Refractivity [12], Electron-Ion Interaction Potential 
(EIIP) [24, 14]. The pairs of attributes are qualified by the last names of the developers, yielding Flexibility-
V and Flexibility-S, Volume-S and Volume-C, Polarity-J and Polarity-C.  

From the collected data, the ln(odds-ratio) of a given site being ordered or disordered is fitted as:  
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where p is the probability of being ordered, 1 - p the probability of being disordered, β   is the constant to be 
estimated,  and x is the given attribute value. Positive values of β are found for attributes that correlate 
positively with order and negative values for those that correlate with disorder.  
  Once the parameterβ is estimated by fitting to the data, the probability of being ordered is calculated as 
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with the probability of disorder being simply 1 – p. 
The attributes were ranked by the absolute values of β . The top 20 attributes (10 for order and 10 for 

disorder) were picked from each of the 2, 3, and 4 residue combinations, giving 60 new composition-based 
attributes for further study. These 60 plus 51 attributes from our previous study and the 9 new property-based 
attributes were pooled, giving a total of 120 attributes for further analysis. 

 
2.3. Windowing 
 
Three windowing procedures were used, called left, right and whole.  For Left Windows, attributes were 
calculated over 11 residues, the one being predicted and the 10 to its right. The 11 residue Right Windows 



included the 10 to the left plus the position being predicted. Whole Windows included 10 on each side of the 
prediction site, for a total of 21 residues.   
 
2.4. Attribute selection  
 
The logistic regression method [1] was used for attribute selection as described in our previous study [15].  
Briefly, let p be the probability of order (1-p is disorder) as defined above.  Then the following model is 
established using the data: 
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where the bi values are the parameter estimates, and xi are the attributes used in the selection process.  
Attributes were introduced or removed one-by-one at each step.  To determine whether an attribute should be 
introduced or removed from the model, the Chi-square test was carried out at each step to test whether such 
action had a significant effect on the model or not. A 0.15 significance level was used.  Any of the 
previously selected attributes, not just the last one, could be removed, thus enabling the discovery of 
synergistic effects for attributes that might be weak individually. If no significant effect is observed, then the 
attribute was removed from the model, or was not added to the model.  The process is repeated until no 
attribute can be added to, or removed from, the model. Although more than 20 ranked attributes were 
identified by this step-wise logistic regression to the significance level mentioned, just the top 12 were used 
for training neural network predictors since the lower ranked attributes contribute less and less to the 
discriminating power [15]. 
 
2.5. Training the feedforward neural networks 
 

A detailed description of the application of neural networks to the prediction of ordered and disordered 
proteins was previously reported [20, 15].  The feedforward artificial neural networks (ANNs) used in this 
study contained one input layer, one hidden layer and one output layer. During training, the data were 
partitioned into 5 disjoint subsets, with training on 4/5 and testing on 1/5; the accuracies obtained during this 
5 cross-validation were averaged and are reported below as one way to characterize the different predictors. 

Five predictors were developed and compared in this study.  The first predictor used whole -window 
data; the next two used left-window or right-window data. The numbers of neurons in the input, hidden, and 
output layers of these ANN predictors were 12, 12, and 1, respectively.  The output of the fourth predictor, 
Vote, was determined by the order / disorder assignment made by 2 of the 3 predictors.  The fifth predictor, 
ANN-ANN, was a neural network developed from limited experimentation. This predictor used the output 
results of the first 3 predictors mentioned above as inputs, had 6 hidden neurons and one output neuron.  
 
2.6 Evaluation of the Predictors 
 
To evaluate the discrimination power of the predictors, receiver operating characteristic (ROC) curves [16] 
were generated.  The curves plot the true positive prediction rates versus the false positive prediction rates 
for various classification-threshold values over the range from near 0 to near 1. 
 
Results 
 
3.1. Ranking the composition-based attributes  
By the ln(odds-ratio) ranking method, the top 10 attributes for ordered and disordered proteins for the 
composition-based attributes were determined (Table 1). These rankings are grouped by window type: left 
(L), right (R) or whole (W).  Within each group, attributes favoring disorder (rows labeled 1) and those 
favoring order (rows labeled 0) are listed in order from highest-ranking (columns labeled 1) to lowest-
ranking (columns labeled 10).  The last row in each group, labeled overall, contains rankings based on | β | 
without regard to number of residues/attribute, and so indicates the “best overall individual attributes” for 
each window type.  

The higher-ranking attributes in Table 1 show good ability to discriminate order and disorder.  As an 
example RES, the highest-ranking three amino acid attribute from the whole windows, is compared with 
RDS, the tenth ranked, RHL, the 168th ranked, and KCQ, the 594th ranked (Fig. 1).  The y-axis for this graph 
indicates the probability of disorder given the number of residues belonging to the 3-mer set (x-axis) where 



the probability of order, p, is calculated from (2), and the probability of disorder is 1 - p. Obviously, the 
higher-ranking attributes have better discrimination power than the lower-ranking ones.   

 
Table 1. Ranks (high to low) of order- or disorder- promoting amino acid combinations for each windowing 
procedure.  

Window                   Order 0 
Disorder 1 1 2 3 4 5 6 7 8 9 10 

1 R P K S E Q M H A  -- 
0 W C Y F T I V G D L 
1 RP RE RQ RM RS ES EP KR RA RH 
0 CW CF CY FW YW FY IC IW TC TW 
1 RES REP REQ RSQ ESQ RPM RQP KRP KRS REM 
0 CFW CYW CFY FYW ICW TCW TCY ICF ICY IYW 
1 RES RESP RES KRES REAS RDES REQP REHS KRS REP  
0 CFY ICFW TCY VCF ICY CFW TCFY TCF ICFY IFYW 

 
 
 
L 

overall W C CW CFW CYW CF Y CFY CY FW 
1 R P M S E K H Q N D 
0 W Y C F T G V I L A 
1 RM RP RS RH RE EP PM SP ES RW 
0 YW CY CW FY FW CF TY GY HY TW 
1 RSM REP RES RSP RPM ESP RHP RHM RHS RDP 
0 CY FYW CFW CFY TYW TCY HYW GYW TFY GCY 
1 RES RSP RES REP RDSP REHP RHP RHSP RDE KREP 
0 CFY TCY TFY VCY GCY HFY VFY HCY TCF  GFY 

 
 
R 

overall YW W Y CYW CY CW FYW CFY FY C 
1 R P E S M Q K H A D 
0 W Y C F T I G V N L 
1 RM RS RP RE ES RH RQ EP RD SP 
0 CW YW CY FW CF FY TY TC TW TF 
1 RES RSM REP RSP RPM RSQ ESP RDP RHP RDS 
0 CY FYW CFW CFY TYW TCY TCW TFY TCY ICW 
1 RES RESQ RSP RES RDES KRES RDSP RDEP RDP REHS 
0 CFY TCY VCF TCFY VCY TFY CYW TCF ICY VFY 

 
 
W 

overall W CW WY CYW Y C CY FYW CFW CFY 
  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Conditional probability of disorder for attributes of different ranking.  
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The individual rankings of the property-based attributes were determined by their |β  | values using the 
ln(odds ratio) method of equation 1, and these were merged with the composition-based rankings to give the 
overall ranking of individual attributes (Table 2).  Only one property-based attribute, Coordination Number, 
is among the 10 best individual attributes for distinguishing order and disorder (Table 2).   

 
Table 2: Ranks of the property-based attributes and their merged ranking with the composition-based  
 attributes for each of the windowing methods 

 
3.2. Attribute selection  
 

The top 10 attributes in each length class from 2 to 4 for both order and disorder were pooled with the 51 
previously used attributes [15] and with the 9 additional property-based attributes, giving a total of 120 
attributes as described above. Step-wise logistic regression was carried out for each of the window types.  
The results are given in Table 3, with the first row for each window type ranking the top 6 (X1 – X6) and the 
second row ranking the next 6 (X7 – X12), for a total of 12 attributes for each.  

Coordination Number was selected as the best overall for all three types of windows (Table 3) even though 
this attribute did not consistently rank first when the attributes were considered individually (Table 2).  This 
attribute correlates positively with the order. Some selected attributes correlate positively with order and 
some with disorder.   
 
Table 3: Selected Attributes for ANN predictor training.  

 
3.3. Prediction accuracy 
 

Property Based Attributes Only Property and Composition Based Attributes  

Left window Whole window Right window Left window Whole window Right window 
Coordination 
number 

Coordination 
number 

Coordination 
number W W Coordination 

number 

Flexibility-V Flexibility-S Flexibility-S Coordination 
number 

Coordination 
number Y 

Flexibility-S Flexibility-V Flexibility-V C CW W 
Hydropathy Hydropathy Hydropathy CW YW Y 
Refractivity Refractivity Net charge II CFW CYW CYW 
Net charge I Net charge II Net charge I CYW Y CY 
Bulkiness Net charge I Refractivity CF C CW 
Net-charge II Bulkiness Polarity-C Y CY FYW 
Volume-C Volume-C Polarity-S CFYW FYW CFYW 
Volume-J Volume-J Bulkiness CY CFY C 
Polarity-S Polarity-C Volume-C FW CFYW CF 
Polarity-C Polarity-S Volume-J YW FW CFY 
Surface area Surface area Surface area CFY CFY FW 
EIIP EIIP EIIP FYW CF TYW 

Window X1/X7 X2/X8 X3/X9 X4/X10 X5/X11 X6/X12 
 Coordination No.  TCFW RH Net-Charge KRSQ VIFWY Left 

Flexibility-V CW RPM Flexibility-S D ICFY 
Coordination No.  GFYW TCYW RSP V Net Charge Right 

ASFWY RDSP RS Flexibility-V Y RESM 
Coordination No.  RDEP FYW Net Charge V RSP Whole 
ATRGQSNPDE TFY RESQ VLICFYWPM KDESPG TW 



The accuracy of the 5 ANNs developed for predicting ordered and disordered regions are given in Table 4; 
also included in this table for comparison is our initial predictor based on long disordered regions [20]; this 
predictor is herein called XL1. With regard to 5 cross-validation training accuracies, the predictor based on 
whole windows performed better than those based on left or right, the predictor based on voting gave a 
similar accuracy, while ANN-ANN appeared to be best.   
 When applied to out-of-sample ordered data, the 4 new predictors other than ANN-ANN generalized 
similarly and very well. That is, the decreases in prediction accuracies from training to testing were small, 
usually less than 4%.  Only the ANN-ANN predictor failed to generalize well for prediction of order, 
showing a drop of more than 13% in accuracy from training to testing.  The predictor based on whole 
windows showed much better generalization for the prediction of order than did the original XL1 predictor, 
with improvements in the 5% range.   
 In contrast, generalization for the prediction of disorder is much poorer for all of the predictors, with large 
drops in accuracy from training to testing being the rule rather than the exception.  These large drops in 
prediction accuracy are discussed below.   
 
Table 4. Accuracies of 6 predictors of protein disorder. 

   Predictors    

Data Left window Whole window Right window Vote ANN-ANN XL1 

5-cross validation 64.0% 74.3% 70.3% 75.0% 79.1% 73.0% 

O_PDB_ 
Select_25 65.2% 73.0% 68.1% 72.6% 65.2% 67.4% 

NRL_3D 66.5% 74.3% 66.0% 73.1% 66.5% 68.3% 

D_PDB_ 
Select_25 60.6% 64.7% 59.6% 63.2% 60.6% 47.8% 

NMR 
Disordered 62.2% 56.7% 61.8% 63.1% 65.3% 58.1% 

Far UV CD  
Disordered 54.7% 48.6% 53.7% 52.6% 56.3% 48.5% 

 
3.4. Evaluation of the predictors using ROC 
 
Applying a predictor to data while varying the threshold yields, a receiver operating characteristic (ROC) 
curve can be generated [16]. The ROC curves of the five predictors are presented in Fig. 2. Five independent  

 
Figure 2. ROC curves for the 5 predictors 
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sets of calculations on five different sets of data were averaged to yield these curves.  Sensitivity is the 
fraction of true positives predicted by the various methods.  Specificity is the fraction of false positives.  
When specificity is low, the whole window approach has the best sensitivity.  When specificity is high, the 
ANN-ANN procedure has as high sensitivity or better than the whole window method.  
 
Discussion and Conclusions 
 
4.1 Attribute Ranking 
 
Except for Net Charge, every amino acid contributes to each property-based attribute, with the contribution 
being simply the value of the associated property.  In contrast, for composition-based attributes, each amino 
acid is assigned a value of 1 (present) or 0 (absent), with only a few amino acids contributing to a given 
window. We expected property-based attributes to be superior to composition-based ones due to the finer 
grain of the former, but instead the composition-based attributes appear to be generally superior.  
 In our initial study [20], Flexibility-V, and Hydropathy were both found to be important for discrimination 
between order and disorder.  Of 11 property-based attributes developed since the first study, only 1, 
Coordination Number, shows a better capacity for discriminating order and disorder than do Flexibility and 
Hydropathy (Table 2).  Evidently Coordination Number depends on side chain size, shape, and surface area 
in a complex way that relates to a side-chain’s capacity to pack with the other side chains.  From this view, 
the very strong correlation of Coordination Number with the ordered state makes good structural sense.  We 
recently carried out an evaluation of 27x attributes; Coordination Number ranked very high with the top 
ranking attribute being simply an alternative coordination number scale (Williams et al.)  
 In a previous study to evaluate the importance of 31 individual attributes for distinguishing order and 
disorder for windows of 21, whic h is directly comparable to the whole window data reported here, CFYW 
ranked 1, C ranked 2, FYW ranked 6 and Y ranked 17 [28].  Here the corresponding attributes ranked 11 
rather than 1 (CFYW), 7 rather than 2 (C), 9 rather than 6 (FYW) and 6 rather than 17 (Y).  There are several 
contributing factors for these ranking differences.  Here we explored more than 6,000 amino acid 
combinations and residue properties whereas the previous study tested just 31 attributes.  Several previously 
unexplored attributes are among the best, thus shifting the ranks of the attributes that appear in both studies.  
Second, very different data sets for order and disorder were used in the two studies.  Third, different data 
modeling methods were used to determine the rankings in the two studies.    
  In the overall rankings of Tables 1 and 2, all of the highest-ranking attributes have strong positive 
correlations with order; none of the attributes that positively correlate with disorder were among the top.  A 
likely explanation, to be more fully explored below, is that the ordered part of the training data set is much 
less noisy than the disordered part.  In such a case, much stronger correlations would be observed between 
attribute values and order, and so only attributes that pos itively correlate with order would be top ranked.    
 
4.2 Attribute Selection  
We used a 2-step process for attribute selection. First, different groups of attributes were ranked. Next, a 
step-wise logistic regression protocol was used on a pooled set of top ranking attributes from each group. A 
weakness of this approach is obviously that synergy between lower ranking attributes could be missed; 
however, the current study still involved a much larger attribute pool, 120, than the previously used pools of 
24 [20] or 51 [15]. 
 Essentially all of the attributes used in this study are correlated with other attributes to some degree. The 
step-wise logistic regression model used here to select attributes might not yield the globally optimum set, 
but in general this method excludes highly correlated pairs or sets of attributes. Thus, the selection protocol 
yields sets of attributes with information being contributed from each member. We speculate that this 
approach might be more than a machine-learning protocol and might actually indicate the interplay among 
the attributes that determines order or disorder.  

Although W is the top attribute for two of the three window types and second for the third (Table 2), this 
attribute is not selected among the top 12 for any of the window types using the logistic regression model.  
Instead, Coordination Number, which ranks 2, 2 and 1 for the three types of windows (Table 2), is selected 
as the top attribute for all three (Table 3).  W and Coordination Number attributes are correlated in their 
specification of order/disorder, with W having a larger coordination number than any other residue [8].  
Evidently Coordination Number is selected over W because of its superior synergy with the other important 
attributes.  



 Property-based attributes other than Coordination Number  (e.g. Flexibility-V, Flexibility-S, and Net 
Charge II) and composition-based attributes that correlate positively with disorder (e.g. RSP, RDSP, RS, 
RESM, RH, RPM, REDP, RESQ) are all selected.  These attributes are among the top 12 in combination 
with other attributes (Table 3), even though none of these are ranked among the top 10 on an individual basis 
(Table 2).  This result shows that lower ranking attributes are selected by this method because of synergy 
with other attributes and because of removal of higher ranking, but correlated, attributes.    
 Flexibility (-V or -S) is the highest-ranking, property-based attribute after coordination number (Table 2).   
At least one of these is selected for two of the three window types but not the third. That is, Flexibility-V 
was selected 10th for right windows, 7th for left windows, but not selected for whole windows.  However, the 
composition-based attribute that contains the 10 most flexible residues according to the Flexibility-V scale  
[25], namely ATRGQSNPDE, was selected 7th for whole windows, so flexibility is represented for all three 
window types.  Unexpectedly, both Flexibility-V and Flexibility-S were selected for one window type, left, 
at 7th and 10th, respectively.  Evidently, these two flexibility scales are not so highly correlated that selection 
of one excludes the selection of the other in every case.  
 The next-ranking, property-based attribute, Hydropathy, was not selected for any of the windows.  
However, the composition-based attribute WFYCVILMP, which was selected for the whole window data, is 
the set of the amino acids with the highest hydropathy values.  Thus, this attribute provides a simplified 1,0 
representation of hydropathy.  

Several composition-based attributes for individual and pairs of amino acids were selected (Table 2). 
These include V, RS, and Y at the 5th,  9th, and 11th positions, respectively, for right-window data, RH, CW, 
and D at the 3rd, 8th, and 11th positions, respectively, for left-w indows data, and V and TW at the 5th and 12th 
positions, respectively, for whole-window data.  It is interesting that such singles and pairs are selected as 
important in competition with the triplet-, quartet-, and property-based attributes.      
 
4.2 Multi-ANN predictor development 
 
In our previous studies, all the attributes for internal regions of sequence were assigned to the centers of the 
windows, thus including information from both the left and right of the position being predicted.  However, a 
polypeptide chain has a direction, for example from the N- to the C-terminus. Thus, the influence of a given 
attribute on a given locus might differ on the C- compared to the N-side. In this case, the influence of the 
attributes would be unbalanced on the two sides of the locus being predicted.  For this reason we developed 
attributes based on Left and Right Windows.  

Because of the smaller size (11 residues) of the Left and Right Windows compared to the Whole Windows 
(21 residues), the Left and Right Window predictors would be expected to have lower accuracies than the 
Whole Window predictor, just as observed (Table 4).  Two additional predictors were developed using 
combinations of the Left, Right, and Whole Window predictors. One of these, Vote, gave the output 
specified by 2 of the 3 predictors.  The second one, ANN-ANN, used the outputs from the 3 predictors as 
inputs to a second neural network.      
 
4.3 Comparisons of the Predictors  
 
 The training set of the original predictor, XL1, contained just 505 disordered residues balanced with an 
equal number of ordered residues.  The training set used here is larger, but still small, with just 898 
disordered residues balanced with ordered data. O_PDB_Select_25 has over 230,000 residues and NRL_3D 
has over 2,500,000 residues, and yet nearly all of the predictors generalize very well on these much larger 
datasets, with typically smaller than 4% decreases in accuracy compared to the 5-cross validation accuracies 
estimated during training.  It is remarkable that predictors based on so few amino acids generalize so well.  
One possible explanation of such a result is that all ordered proteins are quite similar to each other.     
 The new predictor based on Whole Windows gives the best performance overall, with Vote coming in a 
very close second. From Table 4, the drop in accuracy from training to prediction on out-of-sample ordered 
data for the Whole Window predictor is just 1% for O_PDB_Select_25 and nil for NRL_3D, with  
accuracies of 73 amd 74%  for these two datasets, respectively. The ROC curve (Figure 2) for this predictor 
is a second indicator that it is the best among the 5 new predictors.  Compared to the original predictor, XL1,  
prediction of order on the large out-of-sample datasets shows > 5% improvement (Table 4).   
 For out-of-sample disorder prediction, comparisons on the D_PDB_Select_25 are the most useful because 
these disordered regions, like the training data, were characterized by X-ray diffraction.  When the prediction 
accuracies on this database are compared with the accuracy estimated by the 5-cross validation during 



training, all of the predictors show large drops, ranging from ~ 10 to ~ 20% (Table 4).  Again, the Whole 
Windows predictor performs the best, with Vote a close second.  This new predictor perform s almost 17% 
better than the our first predictor of long disordered regions, here called XL1.   
 For the NMR- and CD-characterized out-of-sample disorder, prediction accuracies drop even further for 
the Whole Window predictor.  For the other 5 predictors, accuracies on these out-of-sample disordered data 
are sometimes better but more often worse than the accuracies on D_PDB_Select_25 (Table 4). 
 Overall, the Whole Window predictor performs slightly better than the 4 other new ones and much better 
than the originally published one, XL1.  Including directional information did not improve the predictions as 
we had hoped it would.  
 
4.4 Prediction errors 
 
Apparent prediction errors result from two obvious sources: 1. actual errors due to failures of the predictors; 
and 2. false errors due to miss-classification within the order or disorder data.  A preliminary error analysis 
of the present and earlier predictors provides some insight into these two possibilities.  
 Several proteins in NRL_3D are predicted to be entirely disordered. Since entirely disordered proteins 
would not be expected to form crystals, such a result seems anomalous.  Examination of several of these 
anomalous proteins reveals that they exist as co-crystals with DNA, with other proteins, or with other 
ligands.  We have not confirmed that these proteins are actually disordered in the absence of their ligands. 
However, disorder -to-order transitions upon ligand binding is a common occurrence, and so the existence of 
disorder in the absence of the ligand seems to be a reasonable supposition.   

In other cases, short regions of strong disorder predictions correspond to metal ion or other small co-factor 
binding sites.   Again, it is reasonable to suppose that these segments are disordered in the absence of their 
obligatory ligands.   

Finally, in still other cases regions of actual disorder are found to become ordered by the crystallization 
process and correspond to contacts between the proteins in the crystal.  Such examples are just special cases 
of disorder-to-order transitions upon binding.    

The finding of likely disorder in the ordered datasets in the examples given above suggests that the 
prediction error rate on ordered proteins is actually lower than that reported in Table 3.  However, so far we 
have not developed a general strategy for finding such miss-classifications, and the study of examples one-
by-one is simply too time consuming and expensive. At this time it is unclear how much the error rate is 
affected by this miss-classification of disorder as order, but the effects cannot be very large because the error 
rate for prediction on ordered data is already fairly low.  Clearly, more work on this problem is needed.  
 Miss-classification of order as disorder is a much larger problem than the reverse as discussed above.  
Such miss-classification might be a significant cause of the lower success in predicting disorder (Table 4).  
For example, disorder identified by missing coordinates in X-ray structures might actually be the result of 
domain wobble [9] rather the result of the existence of a dynamic structural ensemble. This would lead to 
significant miss-classification of order as disorder and would thus yield significant numbers of false errors.   

The indication of disorder by CD spectroscopy relies on a global estimate of folding with no positional 
information. Therefore, disorder based on this measure seems especially prone to miss-classification of order 
as disorder. 

  Compared to X-ray- or CD-characterized disorder, NMR-characterized disorder would seem to be less 
subject to uncertainties and so would seem to provide very unambiguous disorder data.  However, 
examination of predictions of order in regions of NMR-characterized segments of disorder reveal a 
correlation with ligand binding sites [10].  Evidently, some NMR-characterized disordered regions can be 
involved in disorder-to-order transitions upon binding to specific ligands.  In this circumstance, prediction of 
order in a segment of NMR-characterized disorder might not be a true error after all.  
 The indication of ligand binding sites by prediction of disorder in an ordered protein and by prediction of 
order in a disordered protein seems to be a contradiction.  Further examination shows that the ligand binding 
by locally disordered regions typically involves the folding of the protein to fit complex surfaces or to even 
surround the ligand. Thus, disorder in the unbound state helps to solve steric problems associated with 
complex formation. In contrast, binding by a local region of a disordered protein often involves the 
formation of structure by fitting into a groove of the partner. In this case, a local region with a high tendency 
for order would be appropriate for the formation of such complexes.  Thus, the indication of ligand binding 
sites by disorder prediction in ordered proteins and by order prediction in disordered proteins has a 
reasonable explanation.   



 Of course the second source of error is simply prediction mistakes.  This might be a greater problem for 
disordered regions compared to ordered ones.  That is, our previous work suggests that, while ordered 
sequences seem to occupy a more local, more specific region of attribute space, disorder may occupy a much 
more extensive region of this space, with various local regions corresponding to different “flavors” of 
disorder [22].  Another way of saying this is that compositional bias can indicate order or disorder, with the 
type of ordered structure largely determined by the specific sequence of the residues, but with the flavors of 
the disorder largely determined by the type of compositional bias.  If this is indeed true, then the small 
sample size used to train our predictors is a much greater problem for the prediction of disorder as compared 
to the prediction of order. This is consistent with the results displayed in Table 3.  
 
4.5 Future Directions 
 
Two themes for future research are suggested from the discussion of prediction errors.  First, strategies are 
needed, other than one-by-one study of examples, to reveal order / disorder miss-classification.  Second, the 
flavor concept for disorder needs to be more fully tested and utilized. If the concept of disorder flavors is 
true, then classification by flavors could help to reduce miss-classification of order as disorder. Further, it is 
likely that flavor-specific predictors of disorder would be superior to one global predictor within a particular 
flavor domain.  In this case, the long-term goal would be to identify the set of disorder flavors used in nature 
and then develop predictors for each one.    
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