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Structured Regression 
on Multiscale 
Networks
Jesse Glass and Zoran Obradovic, Temple University

Using multiscale 

networks, the exact 

solution for graph-

based regression on 

networks of millions 

of nodes and 

trillions of links can 

be solved quickly, 

as demonstrated 

on a real-life 

health informatics 

application.

task.1 The challenge is simplified in Gaussian 
CRFs (GCRFs) by restricting feature func-
tions to the set of all quadratic functions. This 
yields a CRF probability function that’s trans-
posable into a Gaussian multivariate prob- 
ability function. Gaussian multivariate  
distributions are convex and can be opti-
mized using the gradient descent algorithm.

A host of research has been done with 
GCRFs.2–8 The models in general are faster 
than other structured regression approaches. 
Two advances that resulted in significant effi-
ciency improvement have focused on speed and 
memory efficiency of the GCRF model: one 
is based on using a mean field approximation 
combined with fast filtering,9 and the other uses 
a single network with linear bounds on convex-
ity and fast calculation of gradients.10 The work 
presented here handles multiscale networks far 
more efficiently than either of these two.

GCRFs work as a multiple output regres-
sion (we present them as applied to multivar-
iate time-series data). The motivating task 
in our study is to predict monthly hospital 
admissions by disease for nearly 500 hos-
pitals in the state of California by learning 
from millions of hospitalization records. 
The traditional approach for this large a da-
taset would be to model each disease sepa-
rately at a specific hospital or in a network 
of hospitals. Although efficient, that ap-
proach isn’t as accurate because it accounts 
for neither disease comorbidities nor hos-
pital similarities. An alternative choice is a 
locally weighted regression model, which 
for this dataset takes the form of a vector 
autoregressive integrated moving average 
(VARIMA) model.11 However, the tradition-
ally efficient VARIMA model struggles with 
scalability compared to GCRF for multiscale 

Conditional random fields (CRFs) are part of a broad functional frame-

work that allows for the efficient interaction over graphical models us-

ing an assumption of conditional independence of feature functions. Still, the 

learning process for graphical models including CRFs remains a challenging 
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networks as proposed here, which we 
call GCRF-MSN.

The input to a GCRF method is a 
similarity network and feature func-
tions. Feature functions are the de-
scription of how targets, y, interact 
with observable data, X; a learner 
function is one that directly mod-
els how x determines y. In GCRF, 
learner functions are typically used 
as feature functions. When learner 
functions are input into another 
method, that method is an ensemble 
method. Learner functions are often 
referred to as input functions. It has 
been shown that an ensemble method 
that uses inaccurate input functions 
(often referred to as weak learners) 
can combine to produce a state-of-
the-art prediction.12,13 A similarity 
network is a unique collection of data 
that describes a relation between two 
or more outputs—for example, in the 

dataset used, the similarity among 
diseases is based on the number of 
symptoms that they share.

In the motivating example, we pre-
dict admissions by disease for various 
hospitals in California. Two networks 
were obtainable—one compares dis-
eases to diseases, and the other com-
pares hospitals to each other. Intuitively, 
we can visualize each hospital contain-
ing a network of disease nodes, with 
the diseases interacting with each other 
in and across hospitals. A network with 
networks inside nodes is a multiscale 
network, which can be modeled as a 
Kronecker product of networks. An ex-
ample to illustrate our case is when we 
have a network of disease similarities 
(right side of Figure 1), and we also have 
a network of hospital similarities (left 
side of Figure 1). Each node on the left 
has a graph within it that looks like the 
graph on the right.

Structured regression methods are 
expected to achieve higher accuracy 
compared to unstructured regres-
sion methods, but their drawback is 
computational complexity. On prob-
lems similar to our motivating multi-
scale problem, GCRF-MSN computes 
faster than VAR. When using struc-
tured methods, we must choose from 
many network weight design choices 
including robust weight updating, 
sparse weight learning, or weights as 
prior information. GCRF2 uses net-
work weights as prior information, 
which is by far the fastest approach. 
The multiscale structured regression 
approach described here finds the op-
timal solution to the GCRF problem. 
When using multiscale networks, the 
proposed method can handle trillions 
of links in minutes while alternatives 
require weeks or months.

Background
In a CRF model, the observables, X, 
interact with each of the targets, y, 
directly and independently of one an-
other. For a general network structure, 
the outputs, y, also have independent 
pairwise interaction functions. Thus, 
the CRF probability function takes 
the form
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If we set the feature functions to 
be the quadratic difference between a 
function of observables, f(X), and tar-
gets, y, we produce a convex ensemble 
method:
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When we incorporate quadratic  
pairwise interaction functions among  

Figure 1. Network of disease similarities. The outer network (top left) is the 
hospitals in our example, and the inner network (top right) is located in a node of 
the outer network (diseases, in our example). A single link (bottom left) from the 
outer network shows a relationship between hospitals in our example; two joined 
inner networks (bottom right) represent a network of the relationships among all 
disease admission rates at two different hospitals.
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outputs, y, we produce a convex gen-
eral graph structure ensemble method:

∑∑β β( ) ( )= − −
=

I y y S y y, ,   .i j
l

L

i j l

l ij
l

i j
1 ~

2

The GCRF model is a CRF model 
with both quadratic feature and qua-
dratic interaction functions that can 
be transposed directly onto a Gaussian 
multivariate probability distribution:

π

µ µ( ) ( )

( ) =
Σ

− − −





y XP

y Q y

|
1

2    
exp

1 
2

  .
T

When setting these two conditional 
probability models equal to one an-
other, the result is a precision matrix, 
Q, defined in terms of the confidence 
of our input predictors and the pair-
wise interaction structure, measured 
by a and b, respectively. Define Ll as 
the Laplacian matrix of pairwise in-
teraction structure matrix Sl. The 
precision matrix is given by

∑ ∑β= +
= =

Q a I L  .
k

K

k
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l l
1 1

Representing input predictions as a 
matrix, R, we can concisely write the 
formula for the final prediction:

m = Q−1 Ra.

The only remaining constraint is 
that Q is positive semidefinite, which 
is a bound on convexity but also a by-
product of the multivariate Gaussian 
assumption. As long as we satisfy the 
positive semidefinite constraint, we 
have a convex model and can opti-
mize it using gradient descent. When 
first introduced,2 GCRF used a diago-
nally dominant assumption to guaran-
tee positive semidefiniteness, implying 
that all links (similarities) and all pa-
rameters were strictly non-negative. 

In another study,10 the parameter con-
straints were relaxed because bounds 
on positive semidefiniteness were 
solved as a set of linear functions of 
the hidden parameters. The discussed 
method with faster optimization and 
fewer link weight and parameter re-
strictions was referred to as unimodal 
GCRF (UmGCRF) because it assumes 
at most one link between each node. 
UmGCRF operates on the precision 
matrix, Q, by diagonalizing the La-
placian matrix, L. Because L is a sym-
metric real valued matrix, L = UDUT, 
where UUT = I and D is a diagonal 
matrix. We can then substitute this 
decomposed formula for L into the 
formula for Q. This restricts the hid-
den parameters for GCRF, a and b, to 
be operators in a diagonal matrix:
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Using a traditional notation for a 
diagonalized matrix, we can write Q 
= UΛUT and then define all combina-
tions of a and b that produce feasible 
eigenvalues for Q. This formulation is 
efficient because calculating the parti-
tion function for GCRF was previously 
O(n3) and now is only O(n). Because  
GCRF defines the hidden parameters a 
and b with respect to the precision ma-
trix, we must invert the precision matrix  
for every update of a and b. Instead of 
inverting the entire precision matrix, 
which would take O(n3) operations, 
with the following equation we can 
compute the λ( )= Σ−

=
−Qlog(| |)   logi

N
i

1
1

1  
in O(n) operations:

∑λ α β= +
=

d .i
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1

The first-order derivatives with re-
spect to the partition function would 
also require inverting the precision 
matrix, except that we only need the 
trace of the inverse. Thus, we can use 
the eigenvalue update mentioned pre-
viously to reduce computation time. 
When GCRF was introduced, the 
first-order derivatives were solved in 
the form
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With a couple of preprocessing 
steps such as, C = UTR, we can de-
rive first-order derivatives that can be 
computed in linear time. Previously, 
inference was a component during 
each iteration of learning, which is 
an O(n2) process. It’s also possible to 
remove inference from the learning 
process, which brings learning down 
to linear complexity. We use ⋅× to rep-
resent element-wise multiplication:
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Using the established formula for 
eigenvalues of Q, positive semidefi-
niteness of Q is easily verified. If we 
know that all the eigenvalues of Q 
are greater than or equal to zero, then 
Q is positive semidefinite:
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These parameter boundaries allow 
the model to include negative links 
and remain positive semidefinite. 
The method proposed here improves 
UmGCRF’s computation speeds on 
multiscale networks. Another ap-
proach for speeding up GCRF is 
an approximate method called FF-
GCRF,9 which uses a mean-field ap-
proximation for network interactions. 
However, it requires a network to be 
defined on a Euclidean space. The net-
work in our motivating example is 
not, making this approach dependent 
on an embedding preprocessing step.

All the discussed implementations 
of GCRF use inputs the same way—
specifically, they use input learners 
for feature functions and incorporate 
network weight as prior knowledge. 
We use a VARIMA model for the 
structured regression benchmark.11

GCRF-MSN Method
We introduce an implementation of 
GCRF that operates on nested network 
similarities, otherwise known as a 
Kronecker product of matrices. This 
method is much faster and requires 
less memory than standard ap-
proaches, and it provides a framework 
for incorporating various types of net-
work information into a structured 
regression. To develop this model, we 
formally introduce two properties of 
Laplacians of Kronecker products cur-
rently absent from literature.

Despite the vast literature on Kro-
necker products and Laplacian ma-
trices,14–17 there isn’t a reference that 
contains the formula for the Lapla-
cian of the Kronecker products of 
matrices. To define the Laplacian of 
a Kronecker product, we use the fol-
lowing notation: similarity network, 
S, has a diagonal sum matrix, D(S), 
each entry of which is denoted D. 
The Laplacian of S is L(S), and the 
standard formula for the Laplacian is 
written as L(S) = D(S) – S. We then 

can formulate di = Dii as a summation 
of the entries of S, denoted sij,

∑=
∀

d s .i
j

i j,

Claim: The Laplacian of a Kronecker 
product is

L(S1 ⊗ S2) = D(S1) ⊗ D(S2) – S1 ⊗ S2.

Proof: The Kronecker product can be 
concisely represented via block matrices.  
The Kronecker of diagonal matrices is  
particularly clean:
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When we fully carry out the multi-
plication of the above block matrix, 
it’s clear that the Kronecker product of 
diagonal matrices is diagonal, and the 
exact diagonals are easy to position 
using ceiling and modulo indexing:
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The above diagonal matrix shows 
entries that are a product of the di-
agonal entries of smaller matrices, 
which are computed by summing 
across each row of the matrix. Now 
compute the Kronecker product of 
similarities, S1 ⊗ S2, and calculate 
the diagonal of this matrix, verify-
ing that it equals the above matrix:
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If we use index k to represent posi-
tions in the matrices S1 ⊗ S2 and D(S1 
⊗ S2), it isn’t hard to verify
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This is the same as the Kronecker 
product of diagonals where k maps to 
the ordering resultant of Kronecker 
products. 

Decomposition of a regularized 
laplacian
With this new formula for the Lapla-
cian of the Kronecker of two adja-
cency matrices, we can formalize the 
Eigen decomposition of the Laplacian 
with respect to its input matrices. To 
do this, we use a regularized Lapla-
cian of the form

( ) ( ) ( )= − − −L S I D S S D S    .
1
2

1
2

It has specific bounds on the sum 
of its eigenvalues, and the rows and 
columns of the S matrix are now nor-
malized. We denote the unnormal-
ized network weight matrix, S0, and 
we can obtain a regularized Lapla-
cian by normalizing S0 by performing 
the following operation:

( ) ( )= − −
S D S S D S      .0

1
2 0 0

1
2

With our regularized Laplacian, 
we have a Laplacian in which the 
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eigenvectors are determined en-
tirely by the eigenvectors of the in-
put adjacency matrix, S:

Λ Λ( ) ( )= − = − = −L S I S I U U U I U    .T T

Decomposition of the Kronecker 
product of matrices
Applying our definition of the Lapla-
cian of a Kronecker to our normal-
ized adjacency matrices, we get

L(S1 ⊗ S2) = I1 ⊗ I2 − S1 ⊗ S2.

We can perform an Eigen decompo-
sition on each adjacency matrix in rel-
atively little time. It’s then possible to 
exploit known properties of the Kro-
necker product of decomposed matri-
ces, as seen below:
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To get the formula written in a way 
that yields a computational speedup 
for GCRF, we must project the identity 
matrix onto the new orthonormal ba-
sis, which produces an identity matrix, 
thus

L(S1 ⊗ S2) = (U1 ⊗ U2)  
(I1 ⊗ I2 – L1 ⊗ L2) (U1 ⊗ U2)T.

We’ve diagonalized the Laplacian 
of a Kronecker product of networks 
by operating on the component net-
works before the Kronecker prod-
uct was taken. Diagonalizing in this 
manner is magnitudes more efficient 
than a naive approach. Revisiting 
GCRF’s formulation for the precision 
matrix, Q, we can see
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GCRF provides a closed form so-
lution for the partition function, but 
it’s computed in O(n3) operations. 
In another study,10 the GCRF learn-
ing process was reduced from O(n3 
× I) to O(n3 + n ⋅ I). The remaining 
bottleneck can be addressed with 
GCRF-MSN, resulting in O(h3 + d3 
+ n ⋅ I) such that n = h ⋅ d, where 
h represents the number of nodes in 
the outer graph (hospitals) and d the 
inner graph (diseases). The speedup 
varies according to the size of the 
subnetworks. The optimally effi-
cient case of GCRF-MSN for two 
networks can be seen by minimiz-
ing h3 + d3 such that n = h ⋅ d, which 
results in = =h d n  . Then, we 
can see that + = =h d n n2 23 3 3 3/2 ,  
which implies the entire GCRF 
learning process would be O(n3/2 + 
n ⋅ I). If we nest more than two net-
works, the speedups are even more 
dramatic. 

The current method is also more 
efficient at storing information. In 
our motivating example on Health-
care Cost and Utilization Project 
(HCUP) data, the network changes 
over time, which is often referred 
to as an evolving network. We end 
up with a unique network for every 
year spanning nine years. Predict-
ing 250 diseases across 500 hos-
pitals means predicting 100,000 
different node values each month, 
meaning that each monthly net-
work has 10 billion links. GCRF-
MSN can optimize parameters 
while not storing every link—to 
do so, it needs only 312,500 links. 
What’s more, we can capture the 
interaction between these networks 
without executing the Kronecker 
product. The space requirement of 
GCRF-MSN is only logarithmic 
compared to traditional GCRF or 
other network methods.

It was shown in another study10 
that
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Here, we show that we can extend 
this definition to networks built on 
the combination of multiple scales of 
networks via the Kronecker product. 
The new equivalent set of constraints 
are given by the following lemma.

Lemma:
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Proof:
It was proven previously that only 
the smallest and largest eigenvalues 
must be greater than zero for all ei-
genvalues of Q to be guaranteed to 
be greater than zero.10 We know the 
multiplication of ordered positive 
numbers maintains ordinal relation-
ships. If all the links are positive, 
we know the diagonal of the Lapla-
cian has all non-negative entries, in 
which case,

∏Λ Λ( )( ) =⊗ …⊗ =Max Maxl
L

S S S 1 SL l1 2

and 

∏Λ Λ( )( ) =⊗ …⊗ =Min Min .l
L

S S S 1 SL l1 2

If some of the links are negative, 
there could be a negative diagonal 
entry in any one of ΛSl

. With the rea-
sonable assumption that the absolute 
value of the maximum eigenvalue is 
larger than the absolute value of the 
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minimum eigenvalue for each matrix  
Sl, we can exhaustively search all pos-
sible minimums relatively efficiently 
by multiplying the maximum of all 
the matrices excluding one. We then 
multiply that value by the minimum 
eigenvalue of the excluded matrix. 
Once cycled through all input ma-
trices, we’ve produced all possible 
minimums

∏
Λ{ }( )

= ≥ ∀

⊗ …⊗

≠
−

PossibleMin

d d j0    .

S S S

j
l j

l n,0 , 1

L1 2

Because we can compute the pre-
cision matrix’s eigenvalues as linear 
equations with respect to the Kro-
necker product of the diagonal ma-
trices of the network structures, we 
can compute the maximum and min-
imum values of an eigenvalue and 
then have linear bounds on positive 
semidefiniteness. 

This enables us to utilize improve-
ments introduced elsewhere,10 in 
which a more representationally 
powerful implementation of GCRF 
called UmGCRF was developed, 
which achieves greater accuracy in 
less time than the original implemen-
tation of GCRF.

Experimental Design and 
Baselines
For the first set of experiments, time 
trials were conducted in which the 
proposed GCRF-MSN was com-
pared to three structured regression 
alternatives (GCRF, UmGCRF, and 
FF-GCRF). Then, we ran and evalu-
ated a real-world data experiment in 

terms of execution time and mean-
squared error (MSE). The task is to 
predict monthly admissions for each 
disease for each hospital in the state 
of California. The data comes from 
the California HCUP database, 
contains 35,844,800 inpatient dis-
charge records collected over nine 
years, and uses the CCS disease cod-
ing schema. 

Any datasets in which structured 
regression is applicable could alter-
natively use independent functions 
for each node. In our motivating da-
taset, this corresponds to giving each 
disease within each hospital its own  
time-series function. In Table 1, we 
label this scenario unique. If we use 
the following representations, where 
h is the number of hospitals, d is the 
number of diseases, and t is the num-
ber of time steps, then we can see that 
n = h ⋅ d ⋅ t. In the unique scenario, 
we have h ⋅ d equations and t data 
points per equation.

These various data segmentations 
are useful for understanding the dif-
ferences between models. VARIMA 
and GCRF-MSN use a weighted mix-
ture of unique and all. A VARIMA 
model with a network in which ev-
ery weight was equal to one would be 
an ARIMA model in the all scenario. 
Because GCRF inputs unstructured 
predictions, we train regressions 
on all the above possible segmenta-
tions and then input those predic-
tions into GCRF. This is interesting 
because GCRF can balance the gains 
of each. Some of the algorithms are 
very poor performers, but collectively 
they can produce a much more accu-
rate prediction.

Autoregressive integrated moving 
average (ARIMA) models in particu-
lar have been favored by the research 
community due to their general ap-
plicability.18 Only autoregressive 
(AR) was feasible due to well-known 
restrictions of the ARIMA model. 

When using AR or vector autore-
gressive (VAR), it’s important to 
determine the appropriate lag, per-
haps via a preliminary correla-
tion analysis. Unsurprisingly, in a 
monthly time-step model, the ob-
servations 1 month and 12 months 
back were the most informative, so 
we ran our AR and VAR implemen-
tations with a lag of 12. We trained 
on months 13 through 80 and tested 
on months 81 through 107. We 
start on month 13 because we use 
a 12-month lag as our window size. 
Thus, xi has 12 features for each 
yi, which are the previous 12 val-
ues for y. The experimental setup  
was the same for every model, 
the only difference being that VAR 
and GCRF-MSN incorporate rela-
tional data that isn’t input to un-
structured methods. We applied a 
Z-score normalization to the data 
before applying any model. Both 
a neural network (NN) and VAR 
model were used for experimental 
comparison. 

The structure used for VAR and 
GCRF-MSN boils down to n2 pair-
wise relations, with each relation mea-
sured by a weight that’s input to both 
methods as prior information. For the 
disease similarity network, we use 
symptom similarity scores19 in which 
biomedical literature was parsed and 
binary indicators for correlated symp-
toms were generated. The relation-
ship weight is calculated by taking the 
cosine similarities of each symptom 
vector. The disease network from an-
other study19 was built using MeSH 
terminology, but our dataset uses 
CCS codes, so we built a translation 
table by hand for CCS codes to MeSH 
terminology (http://astro.temple.edu~ 
tud25892). The matching is not one 
to one: sometimes, we mapped several 
MeSH terms to a single CCS code. In 
these cases, we took the average of 
similarities. 

Table 1. Equation segmenting.*

Identifier Parameter sets
Data points  
per model

All 1 h . d . t 

Disease d h . t

Hospital h d . t

Unique h . d t

*h is the number of hospitals, d is the number of diseases, and 
t is the number of time steps.
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Another prior used was a hospital 
similarity network. For this purpose, 
we used a hospital similarity network 
built in a previous study8 to capture 
the overlap in specialization that each 
hospital has. Specifically, the special-
ization is represented by the distinct 
rate at which hospitals treated various 
diagnoses in the previous year. For in-
stance, cardiovascular hospitals only 
treat a subset of diseases and therefore 
will have large similarity values with 
one another. 

Results
We start by comparing the method 
proposed in this article to previ-
ous fast implementations of GCRF, 
as shown in Table 2. The relative 
speed of UmGCRF, FF-GCRF, and 
GCRF was investigated elsewhere,10 
but that analysis was done on a sin-
gle static graph over two time steps. 
In the HCUP dataset, the network 
changes over time. The speed perfor-
mance we examined is for optimizing 
evolving graphs with 100,000 nodes 
at each time step across 72 time 
points. Critically, this network can 
be segmented into two networks on 
different scales.

GCRF-MSN has a subquadratic 
preprocessing step, with linear 
learning time and inference. FF-
GCRF has quadratic learning com-
plexity, but within each iteration it 
requires another entire optimiza-
tion procedure. FF-GCRF’s gains 
are principally on Euclidean space 
where the process can be brought 
down to a linear cost with fast filter-
ing techniques. As it’s implemented, 
FF-GCRF requires a cubic prepro-
cessing step to be run on datasets 
that have similarities that aren’t de-
fined as a distance on a Euclidean 
space. UmGCRF has a cubic prepro-
cessing step that takes nearly a day 
per network, with nine networks, 
which means it takes more than a 

week. GCRF has cubic complexity 
at every iteration of gradient descent 
and takes months to complete learn-
ing on a dataset this size.

We used the four AR setups as our 
input learners for GCRF-MSN be-
cause they were all computable in 
around a minute or less. The com-
parison algorithms took hours (NN) 
or days (VAR), as shown in Table 3.  
In fact, the faster of two alternatives 
(NN) takes 36 times longer than 
GCRF-MSN and produces worse re-
sults. FF-GCRF is omitted because 
it requires that the network be de-
fined in a Euclidean space, which 
this dataset is not. UmGCRF and 
GCRF-MSN produce the exact same 
answers except that GCRF-MSN is 
much faster, and the traditional im-
plementation of GCRF is unfeasible 
for this dataset. The training set con-
sisted of 68 months, and the testing 
was 27 months. The total number of 
testing points across all hospitals and 
diseases for the testing period is over 
1.5 million. Results are averaged and 
standard error is reported.

GCRF-MSN used a combination 
of weak learners to outperform the 
next two most accurate regression 
methods. This is important because 
those weak learners weren’t as ac-
curate, but they were much more 
efficient to compute. VAR utilizes 
a network structure and learns a 
unique prediction function for each 
disease at each hospital, but this 
prediction function can closely be 
approximated when only using neigh-
bors’ prediction functions. The VAR 
model has particularly reasonable 
assumptions and nice imputation of 
missing functions if the network is 
well built. The time to compute VAR 
demonstrates the scaling difficulty 
of VAR as opposed to GCRF-MSN 
in this scenario. VAR is tradition-
ally one of the most efficient struc-
tured approaches, taking O(n2 ⋅ I)  

time. However, in the case where 
the structure can be represented as 
a Kronecker product, GCRF-MSN 
runs much faster.

The GCRF method is a repre-
sentationally powerful struc-

tured regression algorithm and a 
framework that provides a closed-
form solution for the partition func-
tion. Recent speedups for the GCRF 
method have allowed for exact solu-
tions for networks of up to 100,000 
nodes and 10 million links.10 This 
solution also enabled negative link 
weight interactions, which has re-
sulted in increased accuracy in vari-
ous experiments. 

Multiscaled networks are a natu-
rally occurring type of information, 
as we presented here. Such structures 
have exploitable properties that en-
able them to scale up to millions of 
nodes and trillions of links. To use 
these special properties, we had to de-
fine the Laplacian of the Kronecker 
product of matrices, which is surpris-
ingly absent from the literature cov-
ering both Laplacians and Kronecker 
products, even though many sources 
state that the Kronecker product of 
Laplacian matrices is not itself a La-
placian. By applying our findings to 
diagonalize a regularized Laplacian, 

Table 2. Algorithm runtime.

GCRF-MSN UmGCRF FF-GCRF GCRF

10 min 1.1 weeks 1 week 2 months

Table 3. Runtime and accuracy (mean-
squared error) on HCUP data.

Model Time
Train  
MSE

Test MSE  
(standard  
error)*

NN 6.7 hrs 0.0214 0.0574 (3.71e-4)

VAR 166 hrs 0.0189 0.0548 (3.84e-4)

GCRF-
MSN 10 min 0.0178 0.0531 (3.08e-4)

*Using a two-sided difference in means, there’s a p-value  
<0.001 that these differences in error come from similar 
distributions.
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we uncover a self-affine parameter-
ization of the eigenvalues of the pre-
cision matrix for the GCRF model, 
as was done for UmGCRF. GCRF 
and GCRF-MSN outperform state-
of-the-art VARIMA models in terms 
of accuracy, and GCRF-MSN can 
solve systems much faster than the 
VARIMA model.  
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