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Abstract: Using a novel database, ProDES, developed by the Crime and Justice Research Center at Temple University, this
article investigates the relationship between spatial characteristics and juvenile delinquency and recidivism—the proportion of
delinquents who commit crimes following completion of a court-ordered program—in Philadelphia, PA. ProDES was originally
a case-based sample, where the cases were adjudicated in family court, 1994–2004. For our analysis, we focused attention on
studying 6768 juvenile males from the data set. To address the difficult issue of nonstationarity in the data, we considered various
two-way clustering algorithms to group the juveniles into ‘types’ by way of the many variables that described the juveniles.
Following different modeling scenarios, we applied the plaid biclustering algorithm in which a sequence of subsets (‘layers’)
of both juveniles and variables are extracted from the data one layer at a time, but where overlapping layers are allowed. This
type of ‘biclustering’ is a new way of studying juvenile-offense data. We show that the juveniles within each layer can be
viewed as spatially clustered. The layers were determined as descriptive tools to aid in identifying subsets of the data that
could be useful in policy making. Statistical relationships of the variables and juveniles within each layer are then studied using
neural network models. Results indicate that the methods of this paper are more successful in predicting juvenile recidivism
in urban environments when different crimes are modeled as separate data sets rather than being pooled together as a single
data set.  2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 259–275, 2011
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1. INTRODUCTION

One of the most challenging aspects of analyzing social
science data is the presence of spatial effects in quantitative
models of individual behavior. Recent research [1–4] has
shown that one’s surroundings can play a key role in
determining individual behavioral outcomes in a variety
of contexts, such as health and crime. Unfortunately,
quantitative research in the social sciences that focuses on
studying spatial effects has been quite limited in scope,
due primarily to the particular challenges associated with
analyzing spatial data. Such challenges include issues of
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data quality, data integration, and the use of appropriate
statistical techniques. In addition, the large size, high
dimensionality, and complexity of many current social
science data sets are problematic for developing informative
and parsimonious models of behavioral outcomes.

Certainly, conventional statistical approaches have been
adapted to incorporate spatial effects [5]; for example, in
the use of spatial econometrics [6] and hierarchical linear
modeling [7]. However, such approaches typically either
treat spatial effects as a nuisance to be controlled (so as
to obtain an unbiased conventional model) or are subject to
assumptions regarding the nature of the spatial relationships
in question that may indeed mask relevant neighborhood
influences on individual outcomes [8]. Additionally, these
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adaptations of conventional modeling approaches do not
address the analytical challenges associated with very large,
high-dimensional, and noisy data sets.

In this article, we investigate the interplay between spa-
tial and individual effects in the prediction of juvenile delin-
quency and recidivism. Understanding how individual and
spatial characteristics shape youth behavior is fundamen-
tal to planning programs that facilitate positive trajectories
for physical, social, cognitive, and affective youth develop-
ment. Our results indicate that certain groups of juveniles
are particularly susceptible to specific causal mechanisms
of recidivism that should be considered by the court at time
of ‘disposition’ (the juvenile equivalent of sentencing). For
example, removal from the community may be beneficial
to juveniles in a group in which peer influence is seen
to be a major factor in causing recidivism. On the other
hand, if a juvenile is a member of a group defined by, say,
parental criminality or substance abuse, other rehabilitation
approaches should be taken to address those mechanisms.
As far as we know, the courts do not consider these differ-
ences in any coherent way. In other words, this research is
intended as basic research, but it has implications for how
a court may sentence juveniles more effectively based upon
the likely mechanisms of recidivism for different situations.

The remainder of this article is organized as follows.
Section 2 gives some background to the current study. The
Program Development and Evaluation System (ProDES)
database, which contains information on all cases of
juvenile delinquency and recidivism in Philadelphia during
the period 1994 and 2004, is described in Section 3. The
greatest part of this research effort, as is common with

data-mining studies, was concerned with the preparation of
the data set for use in this study; specifically, the selection
of variables, preprocessing the data, data reduction, and
a fundamental refocusing of the objectives of the study.
Nonstationarity in the juvenile recidivism data emerged
as a central issue and was accounted for by fitting a
plaid biclustering model; the results are described in
Section 4. Neural network modeling of each plaid layer
and estimates of prediction error are detailed in Section 5.
An assessment of the accuracy of the modeling process is
given in Section 6, and a concluding discussion is given in
Section 7. An outline of the entire data-analysis process is
displayed in the flowchart in Fig. 1.

2. BACKGROUND

One of the most difficult challenges facing researchers
on the role of spatial effects in a variety of social science
domains is being able to integrate individual and spatial
information to encode spatial relationships. Administrative
records of an individual’s characteristics often contain a
georeference (or locational coordinate) for that individual,
such as an address. In order to retrieve spatial character-
istics for such individuals, the administrative records must
be matched to other spatial information, such as socioeco-
nomic data from the US Bureau of the Census or criminal-
activity data from a municipal police department. We focus
our attention on investigating the combined effects of home
and local environments and individual characteristics on
continued delinquent behavior. Estimating the effect of
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Fig. 1 Flow chart of the data-analysis process.
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the local environment on the likelihood of recidivism has
become increasingly important because ‘aftercare services’
have proliferated for adjudicated youth. At present, the ana-
lytical tools that researchers have been using are inadequate
for this type of research.

Two facts guide our thinking: first, adolescent devel-
opment and behavior can be supported or hampered by
environmental forces [9–11] and second, delinquent youths
are over-represented in neighborhoods characterized by dis-
organization or criminogenic organization [1]. To the extent
that environmental forces impede social, emotional, and
physical development, programs for delinquent youths can
intervene to increase individual and social efficacy; these
programs also serve as a buffer between youths and harmful
external forces, so that natural developmental processes can
continue. This view of intervention programs is particularly
important in light of the finding that in neighborhoods char-
acterized by poverty and social disorganization, residents
are less willing to intervene when they see youths engag-
ing in antisocial or unlawful acts [12]. In addition to these
environmental effects, recent research has demonstrated
the potential deleterious effect of the actual institutional
placements on child development [13]. This implies that
aftercare services must address the youths’ developmental
needs, which may be aggravated by a period of institu-
tionalization, as well as the external forces that inevitably
compete with program effects.

Wilson’s 1987 book The Truly Disadvantaged [14]
stimulated a flurry of academic activity examining the role
of the local environment in producing a host of outcomes,
including educational attainment, cognitive skills, early
or unplanned pregnancy or parenting, and labor-market
success [11,15–20]. Concurrently, there was a resurgence
of interest in social disorganization theory [21], which
highlighted the role of the local environment in promoting
or prohibiting crime and delinquency through (a lack of)
cohesion among neighbors and community-level social
control. Despite this fact, correctional scholarship has
not examined the role that local environments play in
reinforcing or weakening the treatment effects of these
interventions. A review of the outcomes for youth aftercare
programs suggests that half of their clients re-offend at
some time during the year after release, and one-third return
during this time to a more secure placement.

3. THE DATA SET

3.1. The ProDES Database

The ProDES database is a population database of all
juvenile cases committed by the Philadelphia Family Court
to community and residential programs between 1994 and
2004. ProDES was a project of the Crime and Justice

Research Center (CJRC), Temple University, funded by
the Department of Human Services during 1994–2004.
The ProDES database tracked juveniles assigned to court-
ordered programs by the Family Court of Philadelphia, PA,
and was designed to evaluate all programs used by the City
of Philadelphia for its delinquent youth. ‘Delinquent’ is a
status that includes delinquent acts or offenses as well as
a judgment that the youth requires supervision beyond that
being provided by the parents. ProDES was designed to
provide outcome information to programs for delinquent
youths and to users of these programs, namely judges, pro-
bation officers and funding agents. Its goals are to provide
continual feedback to the programs and to the juvenile court
that will facilitate program development, facilitate better
matching of youths to programs, and identify and facili-
tate improvements in the array of programs available to the
Philadelphia juvenile-justice system.

Following a youth’s arrest, charging, detention, pretrial
hearing, and a trial (in which the judge not only must
find the youth guilty but must also find the youth to be a
delinquent), the following options are available to a judge
at the disposition of a case: (i) Probation: the youth will
continue to live at home or in the home of a relative, and
is supervised by a probation officer; (ii) Foster care: the
youth is placed in an approved foster home for a period of
time; (iii) Community-based program: the youth is required
by the court to attend a program (after-school program,
an alternative program, or a mentoring program) in the
community; (iv) Residential facility: the youth is removed
from his/her home and placed in a residential facility with
other delinquent youths; (v) Aftercare: after completing a
required period of time in a residential facility, the youth
returns to court for a second disposition on the same offense
and is committed to an aftercare program designed for
youths reentering the community following a period of
being incarcerated. Of primary interest in our study are
options (iii) and (v), because these are the cases in which
the youth is in a program while living at home.

ProDES collected data at four points in time: (i) at the
point of disposition (the juvenile equivalent of sentencing),
data are extracted from the youth’s record that contains
information such as offense history, placement history,
needs (e.g., drug use, mental health problems), and family
history; (ii) at program intake, staff persons are asked to
complete a needs assessment and the youth completes a
self-report section containing psychometric scales; (iv) at
discharge, the intake process is repeated and program
staff report on the youth’s progress in the program; and
(iv) 6 months following program discharge, a follow-up
record check is conducted to identify any new petitions
(arrests leading to charges) generated in the juvenile or
adult court systems, and telephone interviews are conducted
with youths, when available, and guardians. Although
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the juveniles in our data set range in age from 10 to
20 years old, the majority (69%) are between 15 and
17 years old, predominantly male (90%) and African-
American (73%). The data include measures of family
demographics, juvenile characteristics, criminal history,
current offense characteristics, recidivism status, and many
other items. The program intake and program discharge
data were collected by program staff who were trained by
staff of the CJRC, using instruments developed by CJRC.
All other data were collected by CJRC staff. Variables
that identified the juvenile subjects were removed from the
database for use by the study researchers. The cases in
ProDES were geocoded (using ArcView GIS 9.2) based
on the home address (and zip code) given at the point
of disposition listed for the juvenile. The success rate for
geocoding was 98% after manually addressing errors such
as misspelled street names. We also restricted our analysis
to cases that had been in the system for at least 6 months,
so as to examine only those cases that had the possibility of
recidivating. More information on this project can be found
at http://www.temple.edu/prodes.

Initial research interest focused on a collection of 45 585
cases and about 1200 variables. Although this study
began with the intent of a case-based analysis of the
data, the entire database proved to be too unwieldy for
modeling or predicting recidivism accurately because cases
were not distinct juveniles. Accordingly, we decided to
study a related question using a juvenile-based approach.
A total of 13 418 juvenile records were selected from
the period between 1996 and 2002—the years when
the data were most complete. The data set was further
reduced by the removal of cases involving females, as
prior research [22–24] (reinforced by our own analysis)
demonstrated a gender difference concerning the predictors
of juvenile delinquency and recidivism. We selected the
first-occurring case for each juvenile and deleted juveniles
with incomplete records. These considerations resulted in
a sample of size 6768 drawn from the all-male juvenile
population who had been remanded to programs within their
communities by the Philadelphia Family Court.

3.2. Outcome Variables

We consider several measures of juvenile delinquency.
The primary such measure is any type of recidivism
(coded as ‘ganypet’); specifically, delinquent juveniles
who commit any type of violation while in a court-
ordered, community-based program or within 6 months
after completion of that program. These violations can
range in severity from a felony criminal offense to a
probation violation. The recidivism rate is defined as the
ratio of the number of recidivating cases to the total number
of delinquent cases within a given area. Offense-specific
measures are defined by the recidivating violation. The

first is personal-offense recidivism (coded as ‘xperson’),
delinquents who recidivate by committing a crime classified
as a personal offense. Personal offenses are violent crimes
committed against a person (e.g., robbery or assault)
and, thus, indicate cases at particular risk. The second
is drug-offense recidivism (coded as ‘xdrug’), delinquents
who recidivate by committing a drug crime. The third is
property-offense recidivism, delinquents who recidivate by
committing a property crime (coded as ‘xproperty’).

To give some idea of where recidivism occurs within
Philadelphia, Fig. 2 shows an annotated map of its 45
nonoverlapping neighborhoods superimposed upon the
residences of the juvenile delinquents in the data set. The
roots of identity for many of the inner-city neighborhoods
date from the 19th and even 18th centuries, while
other neighborhoods represent more recent 1950s and
1960s housing developments. The boundaries of these
neighborhoods are typically major natural and human-
made features, such as rivers and major roads and
highways. One can assume a relatively high level of within-
neighborhood demographic homogeneity, as most urban
neighborhoods contain residents of similar race and class.
This is particularly true in Philadelphia, which remains
highly segregated by race and class, with certain exceptions.
High recidivism rates cluster in Kensington, Richmond,
and Hunting Park, as well as in Wynnefield and around
Pennsport. Low recidivism rates occur mostly along the far
northern tier of the city from Chestnut Hill through Oak
Lane to the far northeast region of the city.

4. NONSTATIONARITY AND CLUSTERING:
ASSESSING TYPES OF JUVENILE DELINQUENTS

Classification of persons or cases is central to studies
of behavior. Reasons for classifying juvenile delinquents
include improving our understanding of delinquent behav-
ior, matching offenders to interventions, managing offender
populations, and improving risk prediction. An undiffer-
entiated examination of delinquency patterns or of indi-
vidual delinquents is likely to mask relevant information
about who is positively or negatively affected by what.
Differences among offenders and their individual circum-
stances will affect responses to specific intervention meth-
ods. Knowing what works and what does not work with
different types of individuals under different circumstances
continues to be the most critical goal of program evaluation
in juvenile corrections and delinquency prevention.

4.1. Input Variables

Most of the original predictor variables were dropped as
input to a cluster analysis based upon considerations from
alternative analyses. The variables used were chosen based
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Fig. 2 Map of Philadelphia neighborhoods. Gray dots indicate the residences of juvenile delinquents in the data set.

upon the juvenile-justice literature, recommendations of
domain experts, and several stages of variable selection and
modeling, including the use of logistic regression, decision
trees, and neural networks [25]. The 27 variables used as
input to a cluster analysis are listed in Table 1. The input
variables were of four types: (i) background characteristics
of the individual juvenile; (ii) the initial offense that the
juvenile committed upon entry to the Family Court system
(referred to as the ‘instant offense’); (iii) indicators of social
disorganization within the neighborhood within which the
juvenile resides; and (iv) indicators of overall delinquency
and recidivism nearby the juvenile’s home (referred to as
‘contagion’ variables). Nineteen of the 27 variables were
descriptors of the juvenile and eight were spatial descriptors
of the local home environment of the juvenile. Variables
describing background characteristics of the individual
juvenile include basic descriptors of age and race. The
juvenile’s family history regarding crime was captured by

a variable indicating whether a parent of the juvenile had
a criminal record. The juvenile’s own delinquency history
was captured using variables that indicated the number of
prior arrests (note that a juvenile may have been previously
arrested but not sent to a court-ordered program), whether
the juvenile was living in an institution (as opposed to
with his family or other living arrangement) immediately
prior to the targeted community-based case, and whether
the juvenile had any prior out-of-home placement. Note
that the ‘lives in an institution’ variable indicates a juvenile
with severe-enough delinquent behavior or other issues for
a judge to decide that it is in the community’s best interests
to remove the juvenile from his home.

The instant offense for each juvenile was coded in the
same manner as the outcome variables. Social disorganiza-
tion of the juvenile’s residential neighborhood was captured
using crime, housing, and socioeconomic data. Block-level
addresses of arrest data for the period 2000–2002 were
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Table 1. The input variables used in the plaid analysis of juvenile recidivism.

Variable Description

Individual characteristics
WhiteDum Is youth white?
HispanicDum Is youth Hispanic?
Probation Was youth on probation at the time of his arrest?
LiveInstitution Did the youth live in an institution?
PriorPersonalChgs Did the youth have prior personal offense charges?
Juvdrgar Did the youth have prior drug arrests?
Prioroutofhomepl Was the youth placed in out-of-home program?
sibarr Did any of the youth’s siblings have an arrest record?
jhismh Did the youth have a history of mental-health problems?
age How old was the youth at the case recording?
AlchoholAbuse Did the youth have a history of alcohol-abuse?
DrugAbuse Did the youth have a history of drug-abuse?
Family history
ParenDeceased Is at least one parent deceased?
ParSubAbuse Did the parents have a history of substance-abuse?
ParentalCrime Does a parent have a criminal history?
Instant offense
sexoff Was the instant offense a sexual offence?
InstantPerson Was the instant offense person-related?
InstantProperty Was the instant offense property-related?
victinj Did the youth injure a victim in the instant offense?
Social disorganization
den_dr_sale Density of drug arrests within 500 m of youth’s home
den_person Density of person offenses within 500 m of youth’s home
Local environment
p_black Percent black in census block
p_vacant Percent of vacant housing in census block
p_spanish Percent Hispanic in census block
p_highsch Percent high-school graduates in census block
Spatial contagion
kcnt_1 km Number of delinquent youths residing within 1 km of the juvenile
Gi (recidivism clustering) z-value of Getis-Ord Gi statistic applied to the neighborhood recidivism rate

acquired from the Philadelphia Police Department as text
addresses and geocoded. We then calculated for each juve-
nile the density of arrests in their home neighborhood by
summing the number of arrests within 500 m of each
juvenile’s home and dividing that number by the area of
the circular neighborhood defined by that 500 m radius.
We focused on two types of police-data arrests, namely,
drug-sale arrests and personal-offense arrests, because both
variables are indicative of social disorganization. We also
included three housing variables (percentage African Amer-
icans, percentage Hispanic, percentage of vacant housing
units) and a socioeconomic variable (the percentage over
the age of 25 with a high-school diploma or equivalent)
derived from US Bureau of the Census 2000 block-level
data. These variables are intended to reflect family organi-
zation, housing infrastructure, and educational attainment at
the neighborhood level. We also considered that the likeli-
hood of a juvenile recidivating may be influenced not only
by his own characteristics, but also by the behavior of juve-
niles living nearby. We generated two ‘spatial contagion’
variables designed to capture this effect: the number of

juvenile delinquents who live within 1 km of the juvenile’s
home and the z-score of the Getis–Ord Gi statistic [26,27]
applied to the juvenile recidivism data.

Define Ni to be a circle of radius d = 1 km centered
at the ith juvenile’s home and set Xi (with value xi) to
be the ratio of the number of recidivating juveniles to the
total number of juveniles within Ni , i = 1, 2, . . . , n, where
n = 6768. Define the (n × n) symmetric weight matrix
W = (wij ) by wij = 1 if the j th juvenile is in Ni , and
0 otherwise. The Getis–Ord Gi statistic is defined as

Gi =
∑n

j=1,j �=i wijXj∑n
j=1,j �=i Xj

, i = 1, 2, . . . , n, (1)

so that Gi ∈ [0, 1] is a measure of local spatial autocorre-
lation that indicates if the values within the spatial neigh-
borhood around the ith juvenile differ significantly from
the data set as a whole. Values of Gi close to 1 indi-
cate a clustering of high values, while Gi values close
to 0 indicate a clustering of low values. Note that Gi

does not include the ith juvenile. It was shown by Getis
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and Ord [26] using a permutation approach that, under
spatial independence, holding xi = 1

n−1

∑n
j=1,j �=i xj , and

s2
i = 1

n−1

∑n
j=1,j �=i (xj − xi)

2 fixed, the mean and variance
of the permutation distribution of Gi are, respectively,

E(Gi) = wi

n − 1
, var(Gi) = wi(n − 1 − wi)

(n − 1)2(n − 2)

(
si

xi

)2

,

(2)

where wi = ∑n
j=1,j �=i wij . When there is no spatial cluster-

ing among the Xi , Zhang [28] showed that the permutation
distribution of Zi = (Gi − E(Gi))/

√
var(Gi) is approxi-

mately Gaussian for large n. (Gaussianity can fail, however,
if d is taken to be either too small or too large, or if
the underlying distribution is substantially skewed.) The
statistic Zi is used here to measure the degree of local spa-
tial clustering of the recidivism rate. A value of Zi > 2.0
indicates a high degree of local spatial clustering of high
recidivism rate (referred to as a ‘hotspot’), while a value of
Zi < −2.0 indicates a high degree of spatial clustering of
low recidivism rate (a ‘coldspot’). For an excellent discus-
sion of hotspots in mapping crime, see ref. 29. After trying
different scaling strategies, all input variables were scaled
before further analysis to have their smallest value −1 and
largest value +1.

4.2. Nonstationarity

It has long been understood [30] that spatial data such as
we have for our study typically do not conform to the usual
nonspatial assumptions of independence, homogeneity, and
stationarity. For such data, neighboring observations are not
independent of each other. While homogeneous data ran-
domly scattered over a number of locations tend to exhibit
stationarity in their distribution of values, spatial data typ-
ically display characteristics of nonstationarity. Indeed, for
such data, we often see high values tend to cluster together
just as low values cluster together, and such similarity
between observations tends to dissipate as the observations
become more distant geographically from one another. We
expect relationships between variables to differ from loca-
tion to location, so that a global model would likely provide
inaccurate estimates of relationship strengths while also
failing to account for important local patterns. Prediction
for our data set is difficult because there are subgroups in
the data for which particular relationships hold between the
variables. In other words, relationships between the vari-
ables differ depending upon the subgroups. Some of this
‘nonstationarity’ is spatial in nature because it is related to
race and class and other characteristics with strong spatial
dependency [31]. But some of the nonstationarity may con-
cern characteristics that are not spatially dependent, such as
parent substance abuse. In our study, all available evidence

points to nonstationarity of recidivism patterns of juveniles,
so that taking nonstationarity into account should improve
predictive power. Our approach first addresses the non-
stationarity issue by clustering the juveniles into different
‘types’ (identified by specific subsets of the variables) and
then developing risk prediction within each type.

4.3. Two-Way Clustering

Classical clustering techniques try to divide up all
the sample individuals into nonoverlapping, homogeneous
groups based upon information on those individuals pro-
vided by a given set of variables; this objective is usually
accomplished by applying one (or more) of a large col-
lection of one-way clustering algorithms to the individuals
in the data; see, for example, Ch. 12 of ref. 32. However,
for some situations, such a one-way partition of the data
may not be the most appropriate technique to apply to the
data. What may be more relevant is to perform a two-way
clustering of the individuals and the variables. This strat-
egy may be carried out by a one-way clustering, first, on
the rows of the data (the individuals), followed by a one-
way clustering of the columns (the variables), and then try
to reconcile the results. This strategy may not yield useful
findings if the rows and columns are dependent upon each
other in some unusual and complex way (as in our study).

The development of two-way clustering algorithms in
which rows and columns can be clustered simultaneously
has been studied extensively in the statistical and com-
puter science literature, and such algorithms have been
dubbed either as ‘co-clustering’ [33–36] or as ‘bicluster-
ing’ [37–44] algorithms. For a detailed review of these
methods, see Section 3.2 of ref. 45. The essential differ-
ences between these types of two-way clustering include
the following: co-clustering clusters all the rows and all
the columns of a data set simultaneously, clusters are
nonoverlapping (in the sense that rows or columns can-
not be members of more than one cluster), and all rows
and columns must be accounted for in the results; biclus-
tering, on the other hand, relaxes the exhaustive nature of
that approach by permitting some rows and some columns
not to be included in any of the clusters (because they may
be redundant or noninformative for the clustering process),
and overlapping clusters are allowed. A bicluster has been
characterized [44] as a submatrix of the data matrix whose
entries satisfy some prespecified condition, whose rows and
columns need not be contiguous, where different submatri-
ces may overlap one another, and some rows and columns
may be omitted from the selection process. General con-
sensus appears to favor biclustering as a better approach
to many scientific problems and, in particular, the ‘plaid’
algorithm is regarded as one of the most useful ways of
discovering biclusters from microarrays and other similarly
structured data.
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4.4. Plaid Biclustering Models and Algorithm

The ‘plaid’ biclustering algorithm [40] has been used
successfully for two-way biclustering of gene-expression
data, nutrition data, financial data, and repeated-measures
data, and is recognized as one of the best biclustering ideas.
See also Section 12.8.2 of ref. 32. Some follow-up work
has started to appear on plaid models; see Turner [45],
Turner et al. [46,47], and, with a Bayesian version of
plaid, Caldas and Kaski [48]. Shabalin et al. [44] studied
a large number of biclustering algorithms and compared
the performances of those algorithms when applied to
both real (gene expression levels) and simulated data; they
found inter alia that Plaid performed very well and was
one of only two such algorithms that could handle large
quantities of data and generalize to higher-dimensional data
arrays. So far, all the published examples illustrating plaid
models have used only continuous variables. In our case,
as with most social-science data, the variables constitute
a mixture of binary-valued and continuous measurements.
Fortunately, the plaid algorithm makes no assumption
(explicit or implicit) that the variables have to be continuous
or have to be generated from a particular probability
distribution. (Compare this with the fact that certain
biclustering algorithms [49] are specifically constructed to
be applied to gene expression levels, which are assumed to
follow a Gaussian distribution.) As we will see, the plaid
algorithm is an iterative version of least-squares, where a
quadratic error function Q is minimized using only calculus
and without any reference to an underlying distribution.
Only if we were interested in significance testing of the
model parameters (which we are not) would we need to
make distributional assumptions.

The plaid model partitions the data into a sequence of
biclusters or ‘layers’. Each layer is formed from a subset
of the rows and a subset of the columns, and can be viewed
as a two-way clustering of the elements of the data array,
except that rows (individuals) and columns (variables)
can be members of different layers or of none of them.
Hence, overlapping layers are allowed. Depending upon
the data and the algorithm settings, the number of layers
can vary quite a bit, from one layer to over 50 layers in
some situations. Although approaches to biclustering with
overlapping layers have appeared in the scientific literature,
this idea appears to be unknown in social-science research.

Let Xij denote the value of the ith juvenile measured
on the j th variable. The plaid model can be written
approximately as a sum of several terms,

Xij ≈ θij0 +
K∑

k=1

θijkρikκjk, (3)

where θij0 is an overall effect term and the terms in the sum
are called ‘layers’. The kth term in the sum refers to the kth

layer and consists of a weight function θijk times the prod-
uct of two indicator functions, ρik and κjk . The indicator
function ρik , is equal to 1 if the ith juvenile is in the kth
layer, and is zero otherwise. The other indicator function,
κjk , is equal to 1 if the j th variable is in the kth layer, and is
zero otherwise. So, a term will only be present in the sum if
both indicator functions equal 1; that is, if both the ith juve-
nile and the j th variable are simultaneously in the kth layer.
The weight function for the kth layer can be expressed in a
variety of different ways, but here we use the two-way addi-
tive representation, θijk = µk + αik + βjk, of a layer effect
(µk) plus a row effect (αik) plus a column effect (βjk),
k = 0, 1, 2, . . . , K , where k = 0 is taken to be a ‘back-
ground’ layer. The plaid model can, therefore, be written as

Xij ≈ (µ0 + αij0 + βjk0) +
K∑

k=1

(µk + αik + βjk)ρikκjk,

(4)

where, to avoid overparametrization, we require
∑

i ρikαik

= ∑
j κjkβjk = 0. An error sum-of-squares criterion,

Q = 1

2

n∑
i=1

r∑
j=1

(
Xij − θij0 −

K∑
k=1

θijkρikκjk

)2

(5)

is used to estimate the various unknown plaid model param-
eters from the data, where each term is the squared error
in using the plaid model to predict the observed entry in a
particular row and column, summed over all r columns and
all n rows. For a large number K of layers, the optimiza-
tion problem quickly becomes computationally infeasible:
each row or column can be in or out of each layer, which
means that there are (2n − 1)(2r − 1) possible combina-
tions of rows and columns to consider. To resolve this
computational problem, the minimization of the criterion
Q is accomplished by an alternating least-squares iterative
process, in which one layer is estimated at a time.

Suppose we have already fitted K − 1 layers, and we
need to identify the Kth layer by minimizing Q. If we let
Eij = Xij − θij0 − ∑K−1

k=1 θijkρikκjk denote the ‘residual’
remaining after fitting the first K − 1 layers, then we can
write Q as

Q = 1

2

n∑
i=1

r∑
j=1

(
Eij − θijKρiKκjK

)2
(6)

= 1

2

r∑
i=1

n∑
j=1

(
Eij − (µK + αiK + βjK)ρiKκjK

)2
. (7)

We wish to minimize Q subject to the identifying conditions
n∑

i=1

αiKρ2
iK =

r∑
j=1

βjKκ2
jK = 0. (8)
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From Eqs. (7) and (8), we set up the usual Lagrangian
multipliers, differentiate with respect to µK , αiK , and βjK ,
set the derivatives equal to zero, and solve. The results give:

µ∗
K =

∑
i

∑
j Eij ρiKκjK(∑

i ρ2
iK

) (∑
j κ2

jK

) , (9)

α∗
iK =

∑
j (Eij − µKρiKκjK)κjK

ρiK

(∑
j κ2

jK

) , (10)

β∗
jK =

∑
i (Eij − µKρiKκjK)ρiK

κjK

(∑
i ρ2

iK

) . (11)

Given the values of ρ
(s−1)
iK and κ

(s−1)
jK from the (s − 1)st

iteration, we use Eqs. (9)–(11) to update θ
(s)
ijK at the sth

iteration. Because updating α∗
iK only requires data for the

ith juvenile, and updating β∗
jK only requires data for the

j th variable, the resulting iterations are very fast. Given
values for θijK , the update formulas for ρiK and κjK are
found by differentiating Eq. (7) wrt ρiK and κjK , setting
the results equal to zero, and solving. This gives:

ρ∗
iK =

∑
j Eij θijKκjK∑

j θ2
ijKκ2

jK

, (12)

κ∗
jK =

∑
i Eij θijKρiK∑

i θ2
ijKρ2

iK

. (13)

The initial values of all the ρs and the κs are set in
(0, 1) (e.g., make them all equal to 0.5). Then, given
values of θ

(s)
ijK and κ

(s−1)
jK , we use Eq. (12) to update ρ

(s)
iK ,

and similarly, given values of θ
(s)
ijK and ρ

(s−1)
iK , we use

Eq. (13) to update κ
(s)
jK . Further details of the algorithm

and suggestions for improving convergence can be found
in ref. 32. At convergence, the estimated parameters for the
kth layer are denoted by µ̂k, α̂ik , and β̂jk, k = 1, 2, . . . , K .

Software. The original plaid program can be down-
loaded from the website http://www-stat.stanford.edu/∼
owen/clickwrap/plaid. An alternative version is available as
BCPlaid in the R package biclust [50] based upon work by
Turner et al. [46], who used instead a binary least-squares
iterative procedure to estimate the plaid parameters.

4.5. The Plaid Model Applied to the Data on
Juveniles

The plaid model was fitted to the data (6768 juveniles,
27 variables) on juvenile recidivism in an unsupervised
learning mode, meaning that we did not include the
response variable that specifically identifies juveniles who
recidivate. The very few missing records were imputed
by the mean for a continuous variable and by the modal

category for a categorical variable. As part of the plaid
setup, we required µ̂k + α̂ik to have the same sign for
all juveniles in the kth layer and µ̂k + β̂jk to have the
same sign for all variables in the kth layer. The plaid
model iterations terminated at 52 layers; see Table 2 for the
plaid biclustering results. These layers were determined as
descriptive tools to aid in identifying subsets of the data that
could be useful in policy making. The number of juveniles
in any layer ranged from 6 to 3357 and the number of
variables in any layer ranged from 1 to 12. Of the 6768
juveniles, 110 were not members of any plaid layer.

4.6. Descriptions of Layers

For each derived layer, we computed the Gi statistic
(Eq. (1)) for each juvenile, but this time the {Xj } were
defined using the results from the plaid analysis. To avoid
any possible confusion for the reader, we emphasize that
the Gi computed here uses a different definition of the {Xj }
than was used previously in the construction of Gi as one of
the input variables to the plaid biclustering algorithm (see
Table 1). Here, we would like to define Xj in such a way
that it can be interpreted as a measure of the j th juvenile’s
strength of membership in the kth layer. The obvious choice
would be to take it to be the effect µ̂k + α̂jk; however, with
that definition, Xj can be either negative or positive, which
violates the definition of Gi . Fortunately, because µ̂k + α̂jk

has the same sign for all j in the kth layer, the numerator
and denominator of Gi will have the same sign. So, we take
Xj = |µ̂k + α̂jk|. This definition of Xj produced a version
of the Gi statistic that was used to see if there were spatial
clusters of juveniles with strong or weak membership in
the layer. This turned out to be very useful because, when
visualizing thousands of points, it is difficult to detect a
spatial pattern visually.

To illustrate some of the more interesting layers, the maps
of layers 1, 3, 5, 6, 8, and 34 are given in Fig. 3. In each
map, a juvenile’s point is colored red (for a hotspot) if
there exists a significant local cluster of high degree of
membership in the layer, blue (for a coldspot) if there is
a significant local cluster of low degree of membership in
the layer, black if the juvenile is in the layer but not in a
significantly high or low local cluster of membership, and
light gray if the juvenile is not included in the layer. Recall
that the neighborhoods are shown in Fig. 2.

Some of the layers had a strong clustering effect,
which suggests neighborhood level causal mechanisms
of recidivism, and these layers had lower-than-average
recidivism rates; see Table 3 for the recidivism rates of all
52 layers. We see this, for example, in layers 1 (African-
American neighborhoods that are generally working- and
middle-class; recidivism rate 0.352), 6 (several disparate
neighborhoods with one thing in common: a mix of
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Table 2. Results from a plaid analysis of the juvenile recidivism data.

Layer
#

Juveniles
#

Variables Variable names

1 3357 3 age, p_highsch, p_black
2 1494 12 jhismh, WhiteDum, Hispanic_Dum, Probation, sexoff, Prioroutofhomepl, ParenDeceased,

ParentalCrime, victinj, PriorPersonalChgs, den_dr_sale, p_spanish
3 2279 2 age, DrugAbuse
4 1637 9 sexoff, ParenDeceased, WhiteDum, jhismh, Prioroutofhomepl, Probation, AlchoholAbuse,

DrugAbuse, den_dr_sale
5 1989 2 LiveInstitution, InstantProperty
6 2385 2 victinj, InstantPerson
7 894 10 Hispanic_Dum, ParentalCrime, sibarr, sexoff, Prioroutofhomepl, InstantPerson, InstantProperty,

p_spanish, den_dr_sale
8 1657 3 Juvdrgar, kcnt_1km, gi
9 443 11 ParSubAbuse, InstantProperty, InstantPerson, Hispanic_Dum, ParentalCrime, Juvdrgar, sexoff,

WhiteDum, jhismh, p_spanish, den_dr_sale
10 213 11 InstantProperty, Juvdrgar, PriorPersonalChgs, ParenDeceased, Probation, WhiteDum, sexoff,

Hispanic_Dum, Prioroutofhomepl, den_dr_sale, p_spanish
11 481 11 PriorPersonalChgs, Juvdrgar, victinj, ParentalCrime, InstantProperty, InstantPerson, Probation,

WhiteDum, jhismh, sexoff, Prioroutofhomepl
12 391 3 p_highsch, LiveInstitution, sibarr
13 691 10 sibarr, InstantProperty, Hispanic_Dum, victinj, Juvdrgar, p_spanish, ParenDeceased, Probation,

den_dr_sale, p-vacant
14 318 6 p_spanish, kcnt_1km, den_person, age, gi, p_highsch
15 641 2 AlcoholAbuse, ParSubAbuse
16 985 10 LiveInstitution, ParSubAbuse, InstantPerson, AlchoholAbuse, Juvdrgar, DrugAbuse,

PriorPersonalChgs, Hispanic_Dum, ParenDeceased, sexoff
17 281 3 PriorPersonalChgs, DrugAbuse, LiveInstitution
18 1172 1 sibarr
19 836 10 ParSubAbuse, InstantProperty, sibarr, InstantPerson, ParentalCrime, victinj, ParenDeceased,

sexoff, WhiteDum, Prioroutofhomepl
20 116 4 Age, p_highsch, WhiteDum, AlchoholAbuse
21 368 2 LiveInstitution, ParentalCrime
22 563 3 age, PriorPersonalChgs, p_highsch
23 335 4 kcnt_1km, gi, p_spanish, PriorPersonalChgs
24 81 12 Victinj, Hispanic_Dum, PriorPersonalChgs, ParentalCrime, Juvdrgar, sibarr, p_spanish, Probation,

WhiteDum, sexoff, AlcoholAbuse, den_dr_sale
25 165 11 Hispanic_Dum, InstantProperty, PriorPersonalChgs, ParentalCrime, Probation, WhiteDum,

p_spanish, ParenDeceased, Prioroutofhomepl, den_dr_sale, p_vacant
26 131 10 Hispanic_Dum, PriorPersonalChgs, victinj, Juvdrgar, LiveInstitution, Probation,

Prioroutofhomepl, sexoff, sibarr, p_vacant
27 341 3 age, p_highsch, WhiteDum
28 263 10 Hispanic_Dum, InstantPerson, jhismh, victinj, PriorPersonalChgs, sexoff, WhiteDum, p_spanish,

InstantProperty, p_vacant
29 536 4 p_black, gi, kcnt_1km, den_person
30 1079 8 LiveInstitution, victinj. AlcoholAbuse, Juvdrgar, sibarr, DrugAbuse, ParentalCrime
31 697 1 LiveInstitution
32 114 5 p_highsch, p_black, ParentalCrime, jhismh, ParSubAbuse
33 108 4 age, p_highsch, p_black, ParenDeceased
34 1202 2 DrugAbuse, AlcoholAbuse
35 285 1 ParSubAbuse
36 65 4 Hispanic_Dum, den_person, gi, kcnt_1km
37 39 6 p_spanish, Hispanic_Dum, den_person, gi, kcnt_1km
38 363 5 Age, Juvdrgar, den_person, p_black, p_highsch
39 114 5 p_spanish, gi, kcnt_1km, Hispanic_Dum, jhismh
40 208 11 InstantPerson, InstantProperty, Juvdrgar, Hispanic_Dum, sibarr, p_spanish, Prioroutofhomepl,

sexoff, WhiteDum, ParenDeceased, AlcoholAbuse
41 226 8 Victinj, ParenDeceased, AlcoholAbuse, WhiteDum, InstantPerson, sexoff, Hispanic_Dum,

Juvdrgar
42 315 2 Kcnt_1km, ParenDeceased
43 424 1 Probation
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Table 2. Continued

Layer
#

Juveniles
#

Variables Variable names

44 306 8 PriorPersonalChgs, Probation, Juvdrgar, ParenDeceased, ParSubAbuse, p_black, InstantProperty,
sexoff

45 111 8 PriorPersonalChgs, Probation, WhiteDum, victinj, AlcoholAbuse, ParSubAbuse, sexoff,
InstantPerson

46 192 4 p_spanish, Hispanic_Dum, gi, kcnt_1km
47 65 10 Prioroutofhomepl, ParentalCrime, sexoff, Probation, Hispanic_Dum, InstantProperty,

ParenDeceased, InstantPerson, den_dr_sale, p_vacant
48 105 2 p_highsch, jhismh
49 347 3 Gi, ParentalCrime, jhismh
50 496 1 PriorPersonalChgs
51 24 6 age, den_person, sexoff, ParSubAbuse, White_Dum, p_highsch
52 6 5 Juvdrgar, p_highsch, age, den_person, Hispanic_Dum

Fig. 3 Hotspot analysis of plaid layers 1 (top left), 3 (top center), 5 (top right), 6 (bottom left), 8 (bottom center), and 34 (bottom
right). For each layer, red dots show hotspots, blue dots show coldspots, black dots show other juveniles in the layer, and gray dots show
juveniles not in the layer. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

white and African-American residents; 0.334), and 29
(the juveniles reside almost exclusively in poor African-
American neighborhoods; 0.330). Other layers exhibited
little spatial clustering, which suggests individual- or
family-level causal mechanisms of recidivism, and these
layers had higher-than-average recidivism rates. We see
this, for example, in layers 3 (all juveniles had a history
of drug abuse; 0.427), 5 (large percentage of juveniles
lived in an institution; 0.401), 8 (all juveniles had a
prior drug arrest; 0.460), 15 (all juveniles had a parent

with a history of substance abuse and a large percentage
of the juveniles had a history of alcohol abuse; 0.410),
18 (all juveniles had a sibling with an arrest record;
0.388), 22 (almost all juveniles had prior personal charges;
0.455), 31 (all juveniles lived in an institution at the time
of their instant offense; 0.428), 34 (all juveniles had a
history of alcohol abuse and a high percentage had a
history of drug abuse; 0.423), 43 (all juveniles were on
probation at the time of their instant offense; 0.481), and
50 (all juveniles had prior personal charges and resided
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Table 3. Recidivism rates for all 52 plaid layers. The overall recidivism rate is 0.387.

Layer
Recidivism

ratio Layer
Recidivism

ratio Layer
Recidivism

ratio Layer
Recidivism

ratio

1 0.352 14 0.387 27 0.343 40 0.351
2 0.364 15 0.410 28 0.502 41 0.478
3 0.427 16 0.322 29 0.330 42 0.365
4 0.379 17 0.459 30 0.330 43 0.481
5 0.401 18 0.388 31 0.428 44 0.356
6 0.334 19 0.408 32 0.368 45 0.414
7 0.389 20 0.362 33 0.491 46 0.349
8 0.460 21 0.454 34 0.423 47 0.385
9 0.451 22 0.455 35 0.379 48 0.381

10 0.404 23 0.430 36 0.400 49 0.360
11 0.403 24 0.420 37 0.333 50 0.450
12 0.486 25 0.352 38 0.433 51 0.417
13 0.388 26 0.374 39 0.421 52 0.000

primarily in African-American neighborhoods; 0.450). For
comparison purposes, we note that the recidivism rate over
all 6768 juveniles was 0.387.

5. NONLINEAR MODELING OF PLAID LAYERS

So far, the plaid layers were constructed without regard
to the recidivism status of each juvenile. The next step
uses a nonlinear model to predict the recidivism rate for
each plaid layer. In addition to the ProDES variables,
we acquired data on community efficacy, socioeconomic
character, and crime from a variety of sources, and we
aggregated US Census Bureau tract data on rates for
individual neighborhoods [25,31]. For this particular study,
we focused on 436 legitimate predictors that might explain
juvenile recidivism. Converting all the categorical variables
to binary dummy variables expanded this number to 839
potential input variables. The 6768 juveniles were reduced
to 6675 by removing all juveniles with more than 20%
missing data. We also removed all variables with more than
30% missing data. All other missing data were imputed.
From the remaining variables, we retained those that were
identified for each plaid layer as the most significant
predictors of recidivism. For each layer, we formed a 2 × 2
table for each variable separately (ignoring dependencies):
the rows for a dummy variable were the two outcomes
0 or 1, while a continuous variable was split into high-
and low-value categories; the columns reflected the state
of recidivism (i.e., whether a juvenile recidivated within 6
months of program discharge); and the cells were the joint
frequencies over all juveniles in that layer. A ‘candidate’
variable was one with a nonzero value of the usual chi-
squared statistic χ2. For each layer, we selected at most
40 of the candidate variables having the largest χ2 values,
dropping redundant variables that had been generated from
other variables and which had very similar χ2 values, and

used the remaining r ≤ 40 variables as input nodes to a
neural network model [51].

Neural networks (see, e.g., ref. 32, Ch. 10) are param-
eterized multivariate statistical models for investigating
nonlinear dependencies between the input and output
variables that are too complicated for methods such as
logistic regression or decision trees. The simplest ‘feed-
forward’ type of neural network has a layer of r input
nodes (Xm, m = 1, 2, . . . , r), a single layer of t hid-
den nodes (Zj , j = 1, 2, . . . , t), and a layer of s output
nodes (Yk , k = 1, 2, . . . , s). Let βmj be the weight of the
connection Xm → Zj with bias β0j , and let αjk be the
weight of the connection Zj → Yk with bias α0k . Let X =
(X1, . . . , Xr)

τ and Z = (Z1, . . . , Zt )
τ . Let Uj = β0j +

Xτ βj and Vk = α0k + Zτ αk , where βj = (β1j , . . . , βrj )
τ

and αk = (α1k, . . . , αtk)
τ . Then,

Zj = fj (Uj ), j = 1, 2, . . . , t, (14)

µk(X) = gk(Vk), k = 1, 2, . . . , s, (15)

where fj (·), j = 1, 2, . . . , t , and gk(·), k = 1, 2, . . . , s, are
activation functions for the hidden and output layers of
nodes, respectively. Putting these equations together, the
value of the kth output node can be expressed as

Yk = µk(X) + εk, (16)

where

µk(X) = gk

α0k +
t∑

j=1

αjkfj

(
β0j +

r∑
m=1

βmjXm

) ,

k = 1, 2, . . . , s, (17)

and εk is the error term, which can be taken as Gaussian
with mean zero and variance σ 2

k . The {fj (·)} and {gk(·)} are
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taken to be nonlinear continuous functions with sigmoidal
shape (e.g., logistic or tanh functions). The number t of
hidden layers depends upon r , s, and the number of
observations. A popular rule that allows easy repetitions
of experiments is to assign t = [(r + s)/2], the average of
the number of input nodes and the number of output nodes,
although there are other recommended guidelines.

The connection weights {βmj } and {αjk} are initialized
using randomly generated starting values and then estimated
through an iterative gradient-descent optimization to mini-
mize the error sum of squares,

ESS =
n∑

i=1

s∑
k=1

(Yik − µk(Xi ))
2, (18)

on learning examples {(Xi , Yi ), i = 1, 2, . . . , n}, where
Yi = (Yi1, . . . , Yis)

τ . If the error term εk is Gaussian, the
resulting estimated weights are maximum-likelihood esti-
mates. The backpropagation algorithm used for optimizing
the connection weights is based upon an efficient compu-
tation of partial derivatives of an approximation function
realized by the network. The learning data are fed through
the network using possibly hundreds or thousands of itera-
tions, calculating an output and adjusting the weights based
upon their estimated influence on the observed errors on a
learning example. The error correction function takes the
partial derivative of the weight matrix to find minima for
the outputs when compared to the output values and adjusts
the weight and bias to calculate this derived value. This
gradient-descent optimization is aimed at reducing the dis-
tance between the network’s estimate and the actual output
value. The effect is gradual and should improve with sub-
sequent iterations until it converges to an optimal set of
estimates for the outputs. Error functions have momen-
tum and learning-rate parameters to control the adverse
effects of erratic updates and local minima. The learning-
rate parameter controls the amount of change that can
occur in any given correction. The momentum parameter
decreases the potential for drastic changes in the connec-
tion weights within the network; it takes into consideration
the previous corrections by nudging the weights toward a
single direction to avoid erratic updates. A weight-decay
parameter is used to decrease the learning rate of the net-
work slightly with each iteration; this stops the network
from diverging from the output value and increases the
network’s performance.

Using our domain expertise and because trying to fit all
52 plaid layers by neural networks turns out to be highly
computationally intensive, we restricted further attention
to what were considered to be the most important layers.
This gives the reader a view of a subset of the layers for
illustrative purposes and enables us to pursue the modeling
process without computational overload. Specifically, we

carried out the modeling computations only for those layers
in Table 2 that consisted of at least 400 juveniles and
at most four variables. Layers with fewer juveniles were
considered to be of little practical interest, while layers
identified by large numbers of variables were considered
to be too complicated for interpretation purposes. There
were 13 layers that satisfied those restrictions; they were
layers 1, 3, 5, 6, 8, 15, 18, 22, 29, 31, 34, 43, and 50.

In the previous section, we ran an unsupervised model in
which plaid layers were obtained without using information
on whether each juvenile recidivated during the duration
of the study. Now, we fit a nonlinear supervised model,
described by Eqs. (16) and (17), to the juveniles from each
plaid layer with the recidivism status of each juvenile as the
output variable, and then we use the resulting fitted model
to predict the recidivism rate for that layer. Following the
analyses described in the beginning of this section, the
number of input variables for modeling each plaid layer was
reduced to r ≤ 40 input variables, where r was different
for different layers. For each plaid layer, there were s = 2
output nodes (the juvenile recidivated or did not recidivate
within six months of program discharge), and the number
of hidden nodes was taken to be equal to t = [(r + s)/2].

6. ACCURACY OF PREDICTIONS

One way of determining the accuracy of predictions
of recidivism would be to fit the nonlinear model to the
set of juveniles in each layer and then apply the fitted
models to post-2004 juvenile delinquents; however, this
was infeasible as such juvenile records were not in the
ProDES database. Instead, we used the notions of learning
set and test set to illustrate how well the models fit the
data. First, we fit the neural network model to all the
juveniles in each layer and then applied the fitted model
for each layer to predict the recidivism status of those
same juveniles. This yielded the apparent error rate or
AER. We call this method the ‘Learn’ method because the
split for each layer was 100% for the learning set and 0%
for the test set. Second, we split up the juveniles in each
plaid layer into two nonoverlapping groups by randomly
assigning each one either to a learning set (80%) or to
a test set (20%), we fitted the nonlinear model to the
learning set from each layer, and then we applied that fitted
model to determine the recidivism status of the juveniles
in the test set only. This yielded the test-set error rate
or TSER. We call this method the “Test” method. The
neural network model for each layer was fit using Weka’s
Multilayer Perceptron software package with learning-rate
parameter set to 0.3, momentum parameter to 0.2, and the
maximum number of iterations to 2000. We also computed
the sensitivity and specificity rates for each layer (and over
all juveniles, ignoring layer identification) for the ganypet,
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xdrugs, xperson, and xproperty outcome variables. The
definitions of sensitivity and specificity are

sensitivity = TP

TP + FN
, specificity = TN

FP + TN
, (19)

where TP is the number of true positives (i.e., # juveniles
who were correctly predicted to recidivate), TN the number
of true negatives (# juveniles who were correctly predicted
not to recidivate), FP the number of false positives (#
juveniles predicted to recidivate, but did not), and FN
the number of false negatives (# juveniles predicted not
to recidivate, but did). Thus, sensitivity measures the
proportion of juveniles who are correctly predicted to
recidivate, while specificity measures the proportion of
juveniles who are correctly predicted not to recidivate. The
results are listed in Table 4.

Because the modeling process was optimized for the
learning set, we expect that the AER would be overly
optimistic and, hence, smaller than the TSER for all layers.
This held for all but one comparison, namely, layer 15 of
xperson. If all types of recidivism are combined (ganypet),
we see that only two of the 13 plaid layers have test-set
error rates lower than that for the overall data set. When
we specialize by type of recidivism, our results improve
substantially. For drug-offense recidivism (xdrugs), eight
plaid layers have test-set error rates lower than that for the
overall data set; for personal-offense recidivism (xperson),
six plaid layers have test-set error rates lower than that for
the overall data set; and for property-offense recidivism
(xproperty), eight plaid layers have test-set error rates
lower than that for the overall data set. These results show
that prediction of juvenile recidivism is substantially more

Table 4. Error rates, sensitivity rates, and specificity rates for (A) ganypet (any type of recidivism), (B) xdrugs (drug recidivism),
(C) xperson (personal-offense recidivism), and (D) xproperty (property-crime recidivism) as derived from neural network modeling of
each of the 13 selected plaid layers. For the ‘Learn’ entries, the test set was identical to the learning set. For the ‘Test’ entries, the juveniles
were split randomly into a learning set (80%) and a test set (20%). AER estimates the apparent error rate for the ‘Learn’ juveniles and
TSER estimates the test-set error rate for the ‘Test’ entries. The ‘All’ row represents the various rates over the entire data set.

Error rates Sensitivity rates Specificity rates

Layer
Learn
(AER)

Test
(TSER) Learn Test Learn Test

(A)

1 0.199 0.365 0.559 0.282 0.933 0.811
3 0.158 0.456 0.675 0.523 0.966 0.561
5 0.201 0.429 0.639 0.556 0.906 0.581
6 0.141 0.357 0.613 0.329 0.982 0.802
8 0.153 0.491 0.733 0.542 0.945 0.480

15 0.020 0.508 0.973 0.321 0.984 0.613
18 0.068 0.509 0.834 0.458 0.994 0.510
22 0.228 0.420 0.874 0.455 0.689 0.702
29 0.136 0.414 0.690 0.471 0.949 0.643
31 0.026 0.425 0.960 0.561 0.985 0.585
34 0.051 0.454 0.917 0.471 0.972 0.605
43 0.195 0.429 0.708 0.634 0.895 0.512
50 0.173 0.500 0.863 0.412 0.798 0.596
All 0.276 0.386 0.408 0.272 0.923 0.847

(B)

1 0.027 0.164 0.762 0.078 0.998 0.917
3 0.057 0.256 0.713 0.281 0.995 0.848
5 0.027 0.140 0.739 0.111 0.998 0.936
6 0.022 0.106 0.744 0.179 1.000 0.939
8 0.085 0.314 0.761 0.361 0.967 0.796

15 0.009 0.164 0.917 0.235 1.000 0.928
18 0.014 0.196 0.900 0.143 1.000 0.923
22 0.032 0.170 0.904 0.000 0.979 0.894
29 0.013 0.087 0.829 0.333 1.000 0.949
31 0.103 0.259 0.762 0.385 0.926 0.823
34 0.018 0.214 0.883 0.308 0.999 0.879
43 0.033 0.226 0.815 0.200 0.994 0.899
50 0.041 0.143 0.677 0.000 1.000 0.944
All 0.077 0.213 0.520 0.138 0.985 0.899
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Table 4. Continued

Error rates Sensitivity rates Specificity rates

Layer
Learn
(AER)

Test
(TSER) Learn Test Learn Test

(C)

1 0.049 0.137 0.542 0.057 0.997 0.958
3 0.060 0.122 0.535 0.159 0.980 0.956
5 0.047 0.175 0.591 0.088 0.994 0.950
6 0.090 0.136 0.338 0.100 0.985 0.976
8 0.067 0.082 0.231 0.000 0.990 0.993

15 0.092 0.086 0.333 0.083 0.977 1.000
18 0.088 0.113 0.270 0.095 0.991 0.967
22 0.102 0.125 0.164 0.067 0.998 1.000
29 0.082 0.125 0.196 0.000 0.996 0.958
31 0.042 0.166 0.588 0.000 0.998 0.928
34 0.029 0.147 0.705 0.143 0.999 0.922
43 0.109 0.167 0.193 0.000 1.000 1.000
50 0.120 0.204 0.132 0.000 1.000 1.000
All 0.051 0.128 0.511 0.078 0.997 0.957

(D)

1 0.033 0.148 0.710 0.151 0.997 0.913
3 0.027 0.171 0.744 0.115 1.000 0.922
5 0.112 0.203 0.366 0.096 0.980 0.904
6 0.025 0.170 0.749 0.023 0.998 0.913
8 0.073 0.076 0.114 0.042 0.998 0.993

15 0.056 0.203 0.593 0.111 0.995 0.909
18 0.037 0.157 0.676 0.053 0.994 0.915
22 0.088 0.170 0.373 0.050 0.986 1.000
29 0.013 0.135 0.877 0.214 1.000 0.967
31 0.091 0.108 0.074 0.000 1.000 0.969
34 0.045 0.160 0.634 0.115 0.998 0.929
43 0.095 0.095 0.359 0.000 0.984 0.987
50 0.108 0.133 0.086 0.071 1.000 1.000
All 0.067 0.160 0.416 0.058 0.996 0.942

accurate by conditioning on type of recidivism rather than
by combining all types into a single category.

Regarding the sensitivity and specificity measures, we
see that the ‘Learn’ sensitivity rates are all higher than the
‘Test’ rates (as one would expect), but this is not always
true for the specificity rates. In general, the specificity rates
are very high, with rates for xdrugs, xperson, and xproperty
being higher than those for ganypet. The sensitivity ‘Test’
rates, on the other hand, are very low, and for most layers
the rates for xdrugs, xperson, and xproperty are lower than
those for ganypet, which are not that high. It appears that
predicting nonrecidivating juveniles is not difficult, but
predicting juveniles who recidivate is extremely difficult,
especially for drug recidivism, personal-offense recidivism,
and property-crime recidivism.

7. DISCUSSION

In this paper, we presented the results of an investigation
into the prediction of juvenile delinquency and recidivism in

an urban setting. The initial stages of the statistical analysis
of this large and complicated data set consisted of extensive
data preprocessing and data-reduction work. In previous
studies [25,31], we showed that because the relationships
between many of the variables were quite weak, the use of
hierarchical linear models, spatial econometric regression
methods, and variable selection methods were not able to
provide satisfactory explanations or predictions of juvenile
recidivism. In this study, we suggest that the presence of
nonstationarity in these data shows such one-step modeling
to be very simplistic. To account for the nonstationarity
in these data, we combined the use of a two-way,
biclustering procedure, which subdivides the collection of
juveniles into ‘types’, with nonlinear modeling applied to
the different ‘types’ of juveniles. This two-step procedure
enabled juvenile recidivism rates to be predicted quite well,
although predicting which juveniles will recidivate is a
much more complicated problem. Furthermore, by breaking
down recidivism by offense categories, we were able to
provide better prediction of juvenile recidivism rates, rather
than by pooling all types of recidivism into a single category
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and then trying to predict general recidivism. The research
described in this paper is unusual in that few other published
studies investigate juvenile recidivism by breaking down
recidivating offenses by offense type, except for studies
that investigate sex offenders who recidivate, and serious,
chronic, and violent reoffenders. Although this study is
focused on juvenile recidivism in Philadelphia, the methods
employed here can be used for any urban setting.

Our measures of recidivism include a period of program
participation and an additional 6 months. Although we
did not include program effects in our models, we do
know from our other research on the same data [25,31]
that program attributes are unrelated to drug re-offending.
However, for person and property offending, there appears
to be a program effect that should be included in future
work. Moreover, there is a large body of program evaluation
research that supports the view that programs can reduce
re-offending [52]. It would also be interesting to consider
longitudinal analyses, such as changes in offending patterns
with respect to age or experience, and any further analysis
would benefit from including measures of parent–child
relationships, as well as neighborhood-family interactions.
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