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Abstract 

A construct ive  learning algori thm dynamical ly  cre- 
ates a problem-specific neural  ne twork  architecture 
rather  t h a n  learning o n  a pre-specified architecture. 
W e  propose a parallel vers ion  of our  recently presented 
construct ive  neural  ne twork  learning algori thm.  Par-  
allelization provides  a computat ional  speedup by a fac-  
t o r  of O ( t )  where t is t h e  number  of training ezam-  
ples. Distributed and parallel implementa t ions  u n d e r  
p4 using a ne twork  of Workstat ions and a Touchstone 
D E L T A  are examined.  Ezper imenta l  results indicate  
tha t  algori thm parallelization m a y  result n o t  only  in 
improved computat ional  t i m e ,  but also in better pre- 
dict ion quality. 

1 Introduction 

A neural  ne twork  is a weighted graph of simple pro- 
cessing units (or neurons) .  The interconnection graph 
of a feed-forward network is acyclic with processing 
units arranged in multiple layers consisting of input, 
zero or more hidden, and output layers. All units in 
any layer are fully connected to the succeeding layer. 
Units compute an act ivat ion f u n c t i o n  of their weighted 
input sum. Here we consider binary neural  ne tworks  
where the activation function of each unit is of the 
form g ( z )  : R + (0, l}, 

0 if z < t  
1 if z 2 t .  

Traditional neural networks learning (e.g. back- 
propagation [12]) involves modification of the inter- 
connection weights between neurons on a pre-specified 
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network. Determining the network architecture is a 
challenging problem which currently requires an  ex- 
pensive trial-and-error process. In selecting an  ap- 
propriate neural network topology for a classification 
problem, there are two opposing objectives. The net- 
work must be large enough to be able to adequately 
define the separating surface and should be small 
enough to generalize well [7]. Rather than learning 
on a pre-specified network topology, a construct ive  al- 
gor i thm also learns the topology in a manner specific 
to the problem. The advantage of such constructive 
learning is that  it automatically fits network size to  the 
data  without overspecializing which often yields better 
generalization. Examples include the tiling algorithm 
of Mizard and Nadal [9] and the cascade-correlation 
algorithm of Fahlman and Lebiere [4]. Our goal is 
to explore the use of distributed and parallel systems 
in constructively learning a single hidden layer binary 
neural network architecture. We argue that a parallel 
approach improves computational efficiency and gen- 
eralization quality. 

In a single hidden layer feed-forward binary neural 
network, each hidden unit with fan-in k is a represen- 
tation of a k-1  dimensional hyperplane. The hyper- 
plane corresponding to the hidden unit may be deter- 
mined through solution of the equation system defined 
by k points on the hyperplane. Our work is inspired by 
a constructive algorithm proposed by Baum [l] where 
a sequence of oracle queries are used in conjunction 
with training examples to find these k points. Here 
the learner is allowed to ask an oracle for the correct 
class associated with arbitrary points in the problem 
domain in addition to using the training examples pro- 
vided. The hyperplanes are sequentially determined 
by partitioning the problem domain space using train- 
ing examples and queries. The hidden units of a single 
hidden layer feed-forward binary neural network and 
corresponding connections are then created from the 
hyperplanes. The connection weights from the hid- 
den layer to the output layer are determined by an 
algorithm which separates the hidden layer represen- 
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Figure 1: First unknown region 

tation of the problem by a single hyperplane (e.g. the 
perceptron algorithm [ll]) .  

In Section 2 we describe our constructive learning 
algorithm which does not require oracle queries. In 
Section 3 a new parallel approach to this algorithm 
is explored with analysis and experimental results fol- 
lowing in Section 4. 

2 Sequential hidden layer construction 

While Baum’s algorithm is applicable where an  or- 
acle for the classification of any given point exists, in 
many cases such an  oracle is not available or may be 
too expensive for practical use. In [5] we proposed 
a modification of Baum’s algorithm which does not 
assume the availability of such an oracle and incre- 
mentally constructs the neural network from exam- 
ples alone. In this modification, approximations of 
the points on the hyperplane are found by repeatedly 
interpolating between example points of the various 
classes TI and Tz in the training set T .  The interpo- 
lation begins by selecting positive and negative exam- 
ples m E TI, n E T2. The unknown region between 
m and n is then searched for the nearest point q E T 
to the midpoint of m and n. The unknown region is 
defined as the the circle centered at the midpoint of m 
and n with a diameter of the distance between m and 
n, as shown in Figure 1. If q is found, the search is 
then repeated in the smaller unknown region between 
q and m or q and n respectively depending on whether 
q is positive or negative (Figure 2). 

If no point from T is found in the current unknown 
region, its midpoint p1 is the closest approximation to 
a point on the separating hyperplane. If p1 is deter- 
mined to be within a specified tolerance of an existing 
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Figure 2: Next unknown region 

hyperplane, a new pair of points is selected and the 
search is repeated. The remaining points p2 through 
pk that  define the hyperplane are found by taking a 
random vector from p1 to  a point v E T (Figure 3 )  
and interpolating between either m and v or n and v 
to pi based on the class of U .  The interpolated points 
from T and the generated hyperplane are shown in 
Figure 4. 

As in Baum’s algorithm, the connection weights 
from the hidden layer to  the output layer units must 
be computed once the hidden unit layer has been gen- 
erated. In the modified algorithm, the hidden layer 
units are generated from examples alone, and so may 
not correspond to the optimal separating hyperplanes. 
As such, the hidden layer problem representation of 
the generated network with the same number of hid- 
den units as in the minimal network may not be lin- 
early separable. In order to  account for this possi- 
bility, hidden units continue to be generated beyond 
the minimal architecture; for example, until the da ta  
is exhausted, a number of data points have been ex- 
amined without generating a new hidden unit or a 
predetermined number of units have been created. 

The pocket algorithm [6] is a single-layer neural net- 
work learning algorithm that finds the optimal separa- 
tion under a given topology for problems that are not 
linearly separable. The algorithm keeps the best set of 
weights in the “pocket” while the perceptron is trained 
incrementally. A practical modification of the pocket 
learning algorithm is proposed in [lo] which is faster 
and still has the same guarantee for convergence to 
the optimal separating hyperplane. This parallel dy- 
namic algorithm is used to  determine the output layer 
weights in the constructed network. 
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Figure 4: Separating hyperplane 

Output Unit 

Figure 3: Random vector 

n 
Hidden Units 

(Constructed From 
Separating Hyperplanes) 

Input Units 

Figure 5: Hidden layer construction 

3 Parallel hidden layer construction 

While the sequential algorithm provides good gen- 
eralization, significant computational resources are re- 
quired. Here we propose a speedup by a paralleliza- 
tion that distributes the computational load across a 
number of processors. In order for parallelization to 
be efficient, an  appropriate partitioning of the input 
space is required. This is accomplished by assigning 
the example points of one class evenly across the avail- 
able processors. Given training set T of t examples 
belonging t o  classes 2'1 and 2'2 let tl and t z  (tl 2 t z )  
be the number of examples in each class respectively. 
In a system with P + 1 processors each of P slave 
processors (1 5 P 5 t l )  is assigned rtl/P1 examples 
of class TI. Each slave processor examines the input 
subspace formed by pairing its assigned examples of 
TI with all examples in 2'2. A system with a balanced 
computational load is obtained by this partitioning of 
the initial pairs. 

Figure 6 shows the proposed parallel architecture. 
Each processor may be either a workstation in a dis- 
tributed environment or a processor on a parallel ma- 
chine. One processor is responsible for the master 
process. This master process distributes the train- 
ing data  at initialization and creates neural network 
hidden layer units from the determined separating hy- 
perplanes. All slave processors search for separating 
hyperplanes as described in Section 2 starting from the 
initial pairs in their assigned data  partitions. When 
such a separating hyperplane is found, it is commu- 
nicated to the master process. The master process 
then compares the hyperplane to those that currently 
exist. If it is not sufficiently similar to an  existing 
hyperplane, a new hidden unit corresponding to the 
hyperplane is generated (Figure 5). 

Hidden layer construction is completed when a pre- 
determined number of hidden units have been gener- 
ated, the input space has been exhaustively searched, 
or a number of initial pairs have been examined with- 

176 



Master 
Processor 

0 . .  
Slave 

Processors 

Figure 6: Parallel architecture 

out determining a new separating hyperplane. Finally, processors. 
the master process performs the relatively simple task 

of Section 2. 

In learning problems w.1.o.g. we can assume that 

to be well represented in the training set. With 
oftraining the output layer weights as in the algorithm both tl  and t2  are of order O ( t )  as both classes have 

4 Analysis and Experimental Results 

The total running time of our algorithm depends 
primarily upon the time required to  determine if a sep- 
arating hyperplane can be constructed starting from 
a given pair of training examples. Search for a point 
on the hyperplane takes O(1ogt) interpolation steps 
since each interpolation removes at least half of the 
t training examples. In each interpolation step, find- 
ing the nearest training example to the center of an 
unknown region can be determined in time O(1ogt) 
through use of the k-d tree of Bentley [2]. Thus, the 
worst case time required to  search for one point on 
the hyperplane is O(log2 t ) .  A hyperplane is defined 
by k points, and so the total time to  determine if a 
hyperplane can be found starting from a given pair of 
training examples is O ( ~ C  log2 t ) .  

In the sequential algorithm an  exhaustive data  
partitioning starting from all t l t 2  training pairs of 
examples can be performed in worst case time of 
O(kt l t2  log2 t) .  In the parallel algorithm an initial 
overhead of O(t )  is required for data  distribution. A 
minimal overhead of O ( k )  is incurred for transfer of 
generated hyperplane data  from the slave to the mas- 
ter processor. Since tl + t 2  = t the worst case paral- 
lel time for an exhaustive data  partitioning is thus 
O((ktl t210g2t)/P) where P is the number of slave 

that assumption the worst case parallel comput- 
ing time of the maximal distributed system ( P  = 
max(t1, t 2 ) )  is O(kt  log2 t )  compared to a sequential 
time of ( k t 2  log2 t) .  Algorithm parallelization thus 
provides a computational speedup by a factor of O ( t ) .  

The algorithm was implemented using p 4  [3]. De- 
veloped a t  Argonne National Laboratory, p 4  supports 
parallel programming for both distributed environ- 
ments and highly parallel computers. Two implemen- 
tation platforms were used: a distributed system of 19 
DECStations and a Touchstone DELTA. The Touch- 
stone [8] is an Intel high-speed concurrent multicom- 
puter, consisting of 576 nodes in a 19 x 36 mesh. Of 
these, 64 nodes were allocated for our experiments. 
Implementation under p 4  allowed the same code to  be 
used for the Touchstone as for the DECStation net- 
work. 

Experiments were performed using the MONK’S 
problems [13] to compare the quality of generalization 
between the sequential and parallel implementations. 
The MONK’S problems consist of three six-feature bi- 
nary classification problems which represent specific 
challenges for standard machine-learning algorithms, 
such as the ability to learn data  in disjunctive normal 
form, parity problems and performance in the pres- 
ence of noise. To allow the random vector to search 
equally in each dimension, the input data  is normal- 
ized to points on a hypersphere. 



Processors 
Accuracy 

Sequential Distributed Parallel 
1 19 64 

Train I Test Train I Test Train I Test 

Table 1: Percentage Accuracy on the MONK’s Problems 

Problem 1 100.00 
Problem 2 81.07 
Problem 3 96.72 

The generalization ability of the sequential and par- 
allel implementations is compared in Table 1. It is in- 
teresting to note that in the more complex problems 
2 and 3 the generalization of the parallel algorithm 
exceeds that of the sequential algorithm. This im- 
provement may be due to  the fact that  as the number 
of processors increases, a greater diversity in the input 
space will be searched. 

While these results are promising, the principles de- 
scribed here are being further evaluated on the large- 
scale problem of predicting protein structure. 

85.42 100.00 81.02 100.00 81.71 
70.37 85.80 72.45 91.72 75.23 
72.92 99.18 77.08 100.00 78.94 

5 Conclusions 

Neural networks efficiency and prediction quality 
depends significantly on how we select network archi- 
tecture, learning algorithm and initial set of weights. 
The constructive learning algorithm of Section 2 ef- 
ficiently learns not just connection weights but also 
creates the required architecture. A parallel version 
proposed in Section 3 provides a significant speed-up 
in the construction of the hidden layer and a greater 
diversity in the input space searched, also resulting in 
improved generalization quality. 
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