
Parallel and Distributed Systems for
Constructive Neural Network Learning*

J. Fletcher Z. Obradovitt

School of Electrical Engineering and Computer Science
Washington State University

Pullman WA 99164-2752

Abstract

A construct ive learning algori thm dynamical ly cre-
ates a problem-specific neural ne twork architecture
rather t h a n learning o n a pre-specified architecture.
W e propose a parallel vers ion of our recently presented
construct ive neural ne twork learning algori thm. Par-
allelization provides a computat ional speedup by a fac-
t o r of O (t) where t is t h e number of training ezam-
ples. Distributed and parallel implementa t ions u n d e r
p4 using a ne twork of Workstat ions and a Touchstone
D E L T A are examined. Ezper imenta l results indicate
tha t algori thm parallelization m a y result n o t only in
improved computat ional t i m e , but also in better pre-
dict ion quality.

1 Introduction

A neural ne twork is a weighted graph of simple pro-
cessing units (or neurons) . The interconnection graph
of a feed-forward network is acyclic with processing
units arranged in multiple layers consisting of input,
zero or more hidden, and output layers. All units in
any layer are fully connected to the succeeding layer.
Units compute an act ivat ion f u n c t i o n of their weighted
input sum. Here we consider binary neural ne tworks
where the activation function of each unit is of the
form g (z) : R + (0, l},

0 if z < t
1 if z 2 t .

Traditional neural networks learning (e.g. back-
propagation [12]) involves modification of the inter-
connection weights between neurons on a pre-specified

*Research sponsored in part by the NSF Industry / Univer-
sity Cooperative Center for the Design of Analog-Digital ASICs
(CDADIC) under grant NSF-CDADIC-90-1 and by Washington
State University Research Grant 1OC-3970-9966.

t Also affiliated with the Mathematical Institute, Belgrade,
Yugoslavia.

0-8186-3900-8/93 $3.00 0 1993 IEEE

_ _ _ ~ ~~~

network. Determining the network architecture is a
challenging problem which currently requires an ex-
pensive trial-and-error process. In selecting an ap-
propriate neural network topology for a classification
problem, there are two opposing objectives. The net-
work must be large enough to be able to adequately
define the separating surface and should be small
enough to generalize well [7]. Rather than learning
on a pre-specified network topology, a construct ive al-
gor i thm also learns the topology in a manner specific
to the problem. The advantage of such constructive
learning is that it automatically fits network size to the
data without overspecializing which often yields better
generalization. Examples include the tiling algorithm
of Mizard and Nadal [9] and the cascade-correlation
algorithm of Fahlman and Lebiere [4]. Our goal is
to explore the use of distributed and parallel systems
in constructively learning a single hidden layer binary
neural network architecture. We argue that a parallel
approach improves computational efficiency and gen-
eralization quality.

In a single hidden layer feed-forward binary neural
network, each hidden unit with fan-in k is a represen-
tation of a k-1 dimensional hyperplane. The hyper-
plane corresponding to the hidden unit may be deter-
mined through solution of the equation system defined
by k points on the hyperplane. Our work is inspired by
a constructive algorithm proposed by Baum [l] where
a sequence of oracle queries are used in conjunction
with training examples to find these k points. Here
the learner is allowed to ask an oracle for the correct
class associated with arbitrary points in the problem
domain in addition to using the training examples pro-
vided. The hyperplanes are sequentially determined
by partitioning the problem domain space using train-
ing examples and queries. The hidden units of a single
hidden layer feed-forward binary neural network and
corresponding connections are then created from the
hyperplanes. The connection weights from the hid-
den layer to the output layer are determined by an
algorithm which separates the hidden layer represen-

174

_ _

+
0

+ 0 0
t

+

+ + ‘fin t t

I 0
0

+

0

t

Figure 1: First unknown region

tation of the problem by a single hyperplane (e.g. the
perceptron algorithm [ll]) .

In Section 2 we describe our constructive learning
algorithm which does not require oracle queries. In
Section 3 a new parallel approach to this algorithm
is explored with analysis and experimental results fol-
lowing in Section 4.

2 Sequential hidden layer construction

While Baum’s algorithm is applicable where an or-
acle for the classification of any given point exists, in
many cases such an oracle is not available or may be
too expensive for practical use. In [5] we proposed
a modification of Baum’s algorithm which does not
assume the availability of such an oracle and incre-
mentally constructs the neural network from exam-
ples alone. In this modification, approximations of
the points on the hyperplane are found by repeatedly
interpolating between example points of the various
classes TI and Tz in the training set T . The interpo-
lation begins by selecting positive and negative exam-
ples m E TI, n E T2. The unknown region between
m and n is then searched for the nearest point q E T
to the midpoint of m and n. The unknown region is
defined as the the circle centered at the midpoint of m
and n with a diameter of the distance between m and
n, as shown in Figure 1. If q is found, the search is
then repeated in the smaller unknown region between
q and m or q and n respectively depending on whether
q is positive or negative (Figure 2).

If no point from T is found in the current unknown
region, its midpoint p1 is the closest approximation to
a point on the separating hyperplane. If p1 is deter-
mined to be within a specified tolerance of an existing

0
t 0 0

t +

0 0

+ * 0 + I t 0 0 0

i t +
0

I o

Figure 2: Next unknown region

hyperplane, a new pair of points is selected and the
search is repeated. The remaining points p2 through
pk that define the hyperplane are found by taking a
random vector from p1 to a point v E T (Figure 3)
and interpolating between either m and v or n and v
to pi based on the class of U . The interpolated points
from T and the generated hyperplane are shown in
Figure 4.

As in Baum’s algorithm, the connection weights
from the hidden layer to the output layer units must
be computed once the hidden unit layer has been gen-
erated. In the modified algorithm, the hidden layer
units are generated from examples alone, and so may
not correspond to the optimal separating hyperplanes.
As such, the hidden layer problem representation of
the generated network with the same number of hid-
den units as in the minimal network may not be lin-
early separable. In order to account for this possi-
bility, hidden units continue to be generated beyond
the minimal architecture; for example, until the da ta
is exhausted, a number of data points have been ex-
amined without generating a new hidden unit or a
predetermined number of units have been created.

The pocket algorithm [6] is a single-layer neural net-
work learning algorithm that finds the optimal separa-
tion under a given topology for problems that are not
linearly separable. The algorithm keeps the best set of
weights in the “pocket” while the perceptron is trained
incrementally. A practical modification of the pocket
learning algorithm is proposed in [lo] which is faster
and still has the same guarantee for convergence to
the optimal separating hyperplane. This parallel dy-
namic algorithm is used to determine the output layer
weights in the constructed network.

t

+ +

+

+

t

+

t
t

i t

+

I

I
I

I
!

I t +

I t +
I
+ +

+

I +

0 0

0
0

+ +

t

t

+

0

0

Figure 4: Separating hyperplane

Output Unit

Figure 3: Random vector

n
Hidden Units

(Constructed From
Separating Hyperplanes)

Input Units

Figure 5: Hidden layer construction

3 Parallel hidden layer construction

While the sequential algorithm provides good gen-
eralization, significant computational resources are re-
quired. Here we propose a speedup by a paralleliza-
tion that distributes the computational load across a
number of processors. In order for parallelization to
be efficient, an appropriate partitioning of the input
space is required. This is accomplished by assigning
the example points of one class evenly across the avail-
able processors. Given training set T of t examples
belonging t o classes 2'1 and 2'2 let tl and t z (tl 2 t z)
be the number of examples in each class respectively.
In a system with P + 1 processors each of P slave
processors (1 5 P 5 t l) is assigned rtl/P1 examples
of class TI. Each slave processor examines the input
subspace formed by pairing its assigned examples of
TI with all examples in 2'2. A system with a balanced
computational load is obtained by this partitioning of
the initial pairs.

Figure 6 shows the proposed parallel architecture.
Each processor may be either a workstation in a dis-
tributed environment or a processor on a parallel ma-
chine. One processor is responsible for the master
process. This master process distributes the train-
ing data at initialization and creates neural network
hidden layer units from the determined separating hy-
perplanes. All slave processors search for separating
hyperplanes as described in Section 2 starting from the
initial pairs in their assigned data partitions. When
such a separating hyperplane is found, it is commu-
nicated to the master process. The master process
then compares the hyperplane to those that currently
exist. If it is not sufficiently similar to an existing
hyperplane, a new hidden unit corresponding to the
hyperplane is generated (Figure 5).

Hidden layer construction is completed when a pre-
determined number of hidden units have been gener-
ated, the input space has been exhaustively searched,
or a number of initial pairs have been examined with-

176

Master
Processor

0 . .
Slave

Processors

Figure 6: Parallel architecture

out determining a new separating hyperplane. Finally, processors.
the master process performs the relatively simple task

of Section 2.

In learning problems w.1.o.g. we can assume that

to be well represented in the training set. With
oftraining the output layer weights as in the algorithm both tl and t2 are of order O (t) as both classes have

4 Analysis and Experimental Results

The total running time of our algorithm depends
primarily upon the time required to determine if a sep-
arating hyperplane can be constructed starting from
a given pair of training examples. Search for a point
on the hyperplane takes O(1ogt) interpolation steps
since each interpolation removes at least half of the
t training examples. In each interpolation step, find-
ing the nearest training example to the center of an
unknown region can be determined in time O(1ogt)
through use of the k-d tree of Bentley [2]. Thus, the
worst case time required to search for one point on
the hyperplane is O(log2 t) . A hyperplane is defined
by k points, and so the total time to determine if a
hyperplane can be found starting from a given pair of
training examples is O (~ C log2 t) .

In the sequential algorithm an exhaustive data
partitioning starting from all t l t 2 training pairs of
examples can be performed in worst case time of
O(kt l t2 log2 t) . In the parallel algorithm an initial
overhead of O(t) is required for data distribution. A
minimal overhead of O (k) is incurred for transfer of
generated hyperplane data from the slave to the mas-
ter processor. Since tl + t 2 = t the worst case paral-
lel time for an exhaustive data partitioning is thus
O((ktl t210g2t)/P) where P is the number of slave

that assumption the worst case parallel comput-
ing time of the maximal distributed system (P =
max(t1, t 2)) is O(kt log2 t) compared to a sequential
time of (k t 2 log2 t) . Algorithm parallelization thus
provides a computational speedup by a factor of O (t) .

The algorithm was implemented using p 4 [3]. De-
veloped a t Argonne National Laboratory, p 4 supports
parallel programming for both distributed environ-
ments and highly parallel computers. Two implemen-
tation platforms were used: a distributed system of 19
DECStations and a Touchstone DELTA. The Touch-
stone [8] is an Intel high-speed concurrent multicom-
puter, consisting of 576 nodes in a 19 x 36 mesh. Of
these, 64 nodes were allocated for our experiments.
Implementation under p 4 allowed the same code to be
used for the Touchstone as for the DECStation net-
work.

Experiments were performed using the MONK’S
problems [13] to compare the quality of generalization
between the sequential and parallel implementations.
The MONK’S problems consist of three six-feature bi-
nary classification problems which represent specific
challenges for standard machine-learning algorithms,
such as the ability to learn data in disjunctive normal
form, parity problems and performance in the pres-
ence of noise. To allow the random vector to search
equally in each dimension, the input data is normal-
ized to points on a hypersphere.

Processors
Accuracy

Sequential Distributed Parallel
1 19 64

Train I Test Train I Test Train I Test

Table 1: Percentage Accuracy on the MONK’s Problems

Problem 1 100.00
Problem 2 81.07
Problem 3 96.72

The generalization ability of the sequential and par-
allel implementations is compared in Table 1. It is in-
teresting to note that in the more complex problems
2 and 3 the generalization of the parallel algorithm
exceeds that of the sequential algorithm. This im-
provement may be due to the fact that as the number
of processors increases, a greater diversity in the input
space will be searched.

While these results are promising, the principles de-
scribed here are being further evaluated on the large-
scale problem of predicting protein structure.

85.42 100.00 81.02 100.00 81.71
70.37 85.80 72.45 91.72 75.23
72.92 99.18 77.08 100.00 78.94

5 Conclusions

Neural networks efficiency and prediction quality
depends significantly on how we select network archi-
tecture, learning algorithm and initial set of weights.
The constructive learning algorithm of Section 2 ef-
ficiently learns not just connection weights but also
creates the required architecture. A parallel version
proposed in Section 3 provides a significant speed-up
in the construction of the hidden layer and a greater
diversity in the input space searched, also resulting in
improved generalization quality.

References

[l] E. B. Baum. Neural net algorithms that learn
in polynomial time from examples and queries.
IEEE Transactions on Neural Networks, 2(1):5-
19, January 1991.

[2] J. L. Bentley. Multidimensional binary search
tree used for associative searching. Communi-
cations of the ACM, 18(9):509-517, September
1975.

[3] R. Butler and E. Lusk. User’s Guide to the p 4
Parallel Programming System, November 1992.

[4] S . Fahlman and C. Lebiere. The cascade-
correlation learning architecture. In D. Touret-

zky, editor, Advances in Neural Information PTO-
cessing Systems, volume 2, pages 524-532, Den-
ver 1989, 1990. Morgan Kaufmann, San Mateo.

[5] J. Fletcher and Z. Obradovid. Creation of neu-
ral networks by hyperplane generation from ex-
amples alone. In Neural Networks for Learning,
Recognition and Control, page 23, Boston, 1992.

Perceptron-based learning algo-
rithms. IEEE Dansactions on Neural Networks,
1(2):179-191, June 1990.

[6] S. I. Gallant.

[7] S. Geman, E. Bienstock, and R. Doursat. Neural
networks and the bias / variance dilemma. Neural
Computation, 4(1):1-58, 1992.

[8] Intel Supercomputer Systems Division, Beaver-
ton, OR. Touchstone Delta System User’s Guide,
October 1991.

[9] M. Mizard and J.-P. Nadal. Learning in feed-
forward layered networks: The tiling algorithm.
Journal of Physics A , 22:2191-2204, 1989.

[lo] Z. Obradovid and R. Srikumar. Dynamic evalua-
tion of a backup hypothesis. In Neural Networks
for Learning, Recognition and Control, page 71,
Boston, 1992.

[ll] F. Rosenblatt. Principles of Neurodynamics.
Spartan, New York, 1962.

1121 D. Rumelhart, G . Hinton, and R. Williams.
Learning internal representations by error propa-
gation. In D. Rumelhart and J. McClelland, ed-
itors, Parallel Distributed Processing, volume 1,
chapter 8, pages 318-362. MIT Press, Cambridge,
1986.

[13] S. B. Thrun et al. The MONK’s problems: A per-
formance comparison of different learning algo-
rithms. Technical Report CMU-CS-91-197, De-
partment of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 1991.

