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Abstract— High false alarm rates in intensive care units
(ICUs) cause desensitization among care providers, thus risking
patients’ lives. Providing early detection of true and false
cardiac arrhythmia alarms can alert hospital personnel and
avoid alarm fatigue, so that they can act only on true life-
threatening alarms, hence improving efficiency in ICUs. How-
ever, suppressing false alarms cannot be an excuse to suppress
true alarm detection rates. In this study, we investigate a cost-
sensitive approach for false alarm suppression while keeping
near perfect true alarm detection rates. Our experiments on two
life threatening cardiac arrhythmia datasets from Physionet’s
MIMIC 1II repository provide evidence that the proposed
method is capable of identifying patterns that can distinguish
false and true alarms using on average 60 % of the available time
series’ length. Using temporal uncertainty estimates of time
series predictions, we were able to estimate the confidence in
our early classification predictions, therefore providing a cost-
sensitive prediction model for ECG signal classification. The
results from the proposed method are interpretable, providing
medical personnel a visual verification of the predicted results.
In conducted experiments, moderate false alarm suppression
rates were achieved (34.29% for Asystole and 20.32% for
Ventricular Tachycardia) while keeping near 100% true alarm
detection, outperforming the state-of-the-art methods, which
compromise true alarm detection rate for higher false alarm
suppression rate, on these challenging applications.

I. INTRODUCTION

Suppressing high false alarm rates from bedside monitors
in intensive care units (ICUs) has been a topic of special
interest in the last decade [1]-[5]. Alarm fatigue among
care providers inside ICUs due to the high percentages of
bedside monitor false alarms, has been identified as one of
the top 10 medical hazards [6]. Alarm fatigue results in
desensitization among care providers, which ultimately can
lead to lower standards of care to patients and also result in
fatal consequences [7]. Artifacts, noise and missing values
are some primary factors that corrupt the physiological data
from bedside monitors, causing high false alarm rates.

Different approaches have been applied to reduce false
alarm rates. One direction is to determine the quality of
the ECG signal, based on the fact that noisy signals are
more prone to trigger false alarms. For example, Behar
et al. [3] proposed several novel ways of measuring ECG
signal quality. Another direction consists of data fusion
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TABLE I
WEIGHTED ACCURACY COMPARISON BETWEEN THE PROPOSED APPROACH TO THE
STATE-OF-THE-ART ON ASYSTOLE CARDIAC ALARMS (ASYS) AND VENTRICULAR

TACHYCARDIA ALARMS (VTACH)

Dataset | Behar et al. [3] | Our approach
ASYS 45.96+14.33 65.05£7.55
VTACH 32.80+£8.32 48.56+7.41

methods where extra non-ECG waveform data, such as
invasive arterial blood pressure (ABP) and photoplethys-
mogram (PPG) [2], [8] are incorporated. These non-ECG
waveforms are assumed to be highly correlated to ECG,
and consequently could be used to identify the alarm types.
Recently, several methods were developed to suppress false
ventricular tachycardia alarms without the need for additional
non-ECG waveforms, which resulted in reduction of true
alarm detection [3], [4]. Their approach is based on features
extracted from the ECG signal 20 seconds prior to a triggered
alarm. All aforementioned methods extract statistical features
from the ECG signals and feed them to a classifier, which
often results in a black-box approach. However, in medical
applications, it is important not only to provide accurate
prediction but also to provide interpretable results, such that
medical experts get insights about the prediction.

In this study we characterize a cost-sensitive classification
model for early and interpretable prediction of life threat-
ening arrhythmia alarms. The objective of our prediction
model is to suppress false alarms while keeping true alarm
detection rates high. In addition, by identifying alarms early,
the response time of the medical personnel can be improved
in the event of life-threatening arrhythmia alarms, and the
alarm fatigue problem can be reduced among care providers.
In Table I, we show the effectiveness (weighted accuracy in
Equation 7) of our approach to suppress a large percentage
of false alarms for two datasets as compared with the current
state-of-the-art method.

Our Contribution: To the best of our knowledge this is
the first reported application of time series early classification
framework in the realm of suppressing false arrhythmia
alarms. The contribution of this paper, summarized in Ta-
ble II, is the following: 1) We characterize a classification

TABLE I
PROPERTIES (INTERPRETABILITY, EARLINESS, UNCERTAINTY, AND FLASE ALRAM

SUPPRESSION (FAS)) USED TO CATEGORIZE THE METHODS

Li et al. [2] Behar et al. [3] EDSC [9] Our approach

Intrepretabilty X X v v
Earliness X X v v
Uncertainty X X X v
FAS v v X v



model to provide more accurate prediction (high true alarm
detection and false alarm suppression) than the state-of-the-
art methods on arrhythmia alarms. 2) We provide inter-
pretable results in order to explain the rationale of the predic-
tion, whereas all other published methods are black-box. 3)
We provide early prediction before the alarm happens, which
helps the practitioners to respond early to the alarm, whereas
all other methods provide prediction at the time when alarms
happen. 4) We provide a cost-sensitive model to achieve the
desired level of false alarm suppression rates.

II. BACKGROUND
A. Early Classification of Time Series

In the field of time series classification, early classifica-
tion of time series has gained popularity [10], especially
in application areas where critical time sensitive decision
making is required, such as early warning of diseases [11].
The principal objective of early classification models for time
series is to predict the label of the alarm as the ECG signal is
progressively recorded and before the alarm happens. If the
observed signal is insufficient to make an accurate prediction,
more ECG signal data are used and the process is repeated
until the time when the alarm happens. Early prediction of
life-threatening cardiac alarms would allow care providers
inside ICUs to be alert at the time of (or even before)
true arrhythmia alarm events, and at the same time would
automatically suppress false arrhythmia alarms.

B. Interpretable Early Classification Model

Medical experts tend to favor interpretable methods
which provide visual clarification of prediction results rather
than black-box methods. A method called early distinctive
shapelet classification (EDSC) was proposed to provide inter-
pretable early classification results [10]. The method extracts
local discriminative patterns from the time series in order
to characterize the target class locally. These discriminative
local patterns, known as shapelets [12], are effective for early
classification. An example of such shapelets is shown in
Fig. 1. The patterns extracted from the two classes of the
time series are discriminative, hence, a new signal can be
classified as soon as a match between the signal and any of
these extracted shapelets is found. In this way, the method
is able to justify the prediction of the new signal as red
(blue), because the new signal has a pattern that is similar
to a pattern observed previously in the red (blue) class. For
more details about EDSC, the reader is referred to [10].

In cases where signals from different classes are similar to
each other, especially in the early phases of the signals, the
shapelets extracted from these classes might exhibit similar
patterns, which might mislead the prediction. For example,
a true alarm signal might match a false alarm shapelet;
in this case, the EDSC method would predict the signal
as false alarm as soon as the match is found regardless
of how reliable the match is. In other words, the EDSC
method does not provide uncertainty estimates on the match
between the signal and shapelet and depends only on the
distance measurement (match) for the prediction of label of
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the time series. This drawback was addressed by Ghalwash et
al. [13] where the EDSC method was extended to produce
interpretable early classification of time series with uncer-
tainty estimates, known as MEDSC-U. The uncertainty for
the predicted label was used to decide the class membership
of the time series signal. In this paper we investigate the
MEDSC-U method for ECG signal classification and use the
uncertainty estimates to decide the alarm class membership
for ECG signals. The estimated uncertainties are used to
develop a cost-sensitive decision algorithm for early alarm
prediction using ECG signals.

III. MODEL DESCRIPTION

We begin by briefly describing the modified early distinc-
tive shapelet classification method for uncertainty estimation
(MEDSC-U) [13]. Given a time series dataset D, where each
time series example is an ECG signal of 20 seconds prior
to the alarm event, each signal is associated with a label
(true or false alarm). The task is to correctly classify the
ECG signal as early as possible. The MEDSC-U extracts
all shapelets of different lengths for early classification. For
each shapelet a distance threshold is learned such that the
shapelet discriminates between classes. Then, MEDSC-U
ranks the shapelets using a utility function that incorporates
earliness and accuracy of the shapelet. The shapelets are then
pruned by selecting the top performing shapelets that cover
the entire dataset and finally the method classifies unknown
time series based on the most confident matching shapelets.
In Section III-C, we show how to characterize this method
in order to suppress a large fraction of false alarms while
keeping near-perfect true alarm detection rates.

A. Learning Phase

The MEDSC-U method has three steps to extract all
discriminative shapelets for early classification.

1. Shapelet Extraction: The shapelet is defined as
S = (s,l,0,¢) where s is a time series subsequence of
length [, ¢ is the alarm label of the shapelet (true or false
alarm), and ¢§ is a distance threshold which needs to be
learned. The distance threshold is estimated by computing
the distances between the subsequence s and all time
series in the dataset. To compute the distance between a
subsequence s of length / and a time series T of length L
(where [ < L), a window of length [ is slide over the time
series T to extract all subsequences {hi, ho,...,hp_;41} of



length /. Then, the distance can be computed as

dist(s,T) = min

dist(s, h; 1
Vie{1,2,...,.L—1+1} ist(s, hi) M

where dist(s,h;) is the Z-normalized Euclidean distance,
which is computed as

1 (s I h L 2
dist(s, h;) = 7 Z ( J i Jgh > (2)

=1 i

where p and o are the mean and standard deviation of
the subsequence. In both [10] and [13] the distance was
computed using Euclidean distance without Z-normalization,
however, we use the Z-normalized Euclidean distance due to
different variances of the ECG signal examples. The distance
threshold ¢ is computed such that the shapelet discriminates
between the two alarm classes. Then, the MEDSC-U method
iterates over all time series in D to extract all subsequences
of length /, where [/ is the length of the potential shapelet.
The method varies [ between minL and maxL which are user-
defined parameters.

2. Ranking shapelets: MEDSC-U assigns a score to each
shapelet that incorporates both the earliness and the accuracy.
The earliness defines how early, on average, the shapelet
matches the target time series (the shapelet S matches the
time series 7 if dist(s,T) < ¢). Then, the shapelets are
sorted in descending order based on their scores.

3. Prunning Phase: The process begins from the highest
ranked shapelet S. The MEDSC-U method removes all time
series from the dataset that are covered by the shapelet S.
This shapelet is stored along with all other shapelets that
have the same score as .S (equal-performance shapelets as .S).
Then, the next ranked shapelet is considered. If the shapelet
covers any of the remaining time series, the shapelet and all
other equal-performance shapelets are added to the extracted
list and all covered time series are removed. The method
iteratively does so until all time series in the dataset are
covered.

B. Testing Phase

When an ECG signal T" with unknown label (true or false
alarm) is encountered, the distance between the observed
signal and all extracted discriminative shapelets is computed.
When the shapelet S = (s, (, 0, ¢) matches T (i.e. the distance
dist(s,T) between T and S is less than or equal to J) then
T is classified as class c. Since ECG signals from bedside
monitors are often contaminated with artifacts and noise
which cause false alarms. The distance between 7" and S
contains uncertainty in itself. To account for that uncertainty,
the distance is defined as a random variable d

d=dist(s,T)+¢ (3)

where € is some random variable with 0 mean and standard
deviation equal to o.

If the shapelet S matches 7', the confidence C§ of clas-
sifying T' as class ¢ can be estimated by computing two

components: 1) confidence in the fact that d is less than a
threshold ¢ and 2) confidence in the ability of shapelet S to
accurately classify time series T. Therefore, C§ is defined as

Cé = Cg(d < 6|S matches T)Cs(class(T) = ¢|S matches T')

The first component is defined as

(6 — dist(s,T))?
o2+ (6 — dist(s, T))?
The closer dist(s,T) is to 0, the lower the confidence is.
Also, larger 0 means lower confidence. More details about

the derivation of Equation 4 can be found in [13]. The second
component is computed as

Cs(class(T) = ¢|S matches T') = Precision(S) (5)

Cs(d < 8|S matches T) = “)

where Precision is the fraction of the matched time series
that are from class ¢ [13]. Thus the lower bound of the class
confidence estimate of the prediction C'§ is calculated as

: 2
e > 2(5 — dzstgs,T)) i

o2+ (6 — dist(s,T))
Since both terms in this product take value between 0 and 1,
the highest value of the C§ is 1.

Equation 6 computes the confidence of predicting the time
series T as class ¢ using the shapelet S. So, for any time
series T, the distance dist(s,T) between the time series and
the shapelet is computed. If the distance is less than or equal
to the threshold, then the confidence C'§ is computed using
Equation 6. If the distance is greater than the threshold,
the confidence is not computed, Hence, the confidence is
computed only when the shapelet matches the time series.

When multiple shapelets match 7" over time, the overall
confidence of the prediction increases as more evidences
are gathered for the particular time series. For more details
regarding computing the class confidence when multiple
shapelets match, the readers are encouraged to read [13].

C. One-Sided MEDSC-U (1-MEDSCU)

We describe how to adapt MEDSC-U for the task of
suppressing false alarm while keeping high true alarm de-
tection rates. Since missing true alarm could lead to fatal
consequences and risking patients’ lives, the naive method
is to predict every alarm as a true alarm. In this case, the
true alarm detection (sensitivity) is 100% but false alarm
suppression (specificity) is 0%.

To ensure that no true alarms is missed, we provide cost-
sensitive alarm detection by comparing the computed C§ to
a predefined confidence threshold value. In particular, we
set the confidence threshold for predicting true alarm as
very low and for false alarm as very high (99%). Therefore,
when a true alarm shapelet (shapelet extracted from true
alarm signals) matches the time series, the signal is classified
immediately as a true alarm. On the other hand, when a false
alarm shapelet (shapelet extracted from false alarm signals)
matches the time series, we check the estimated confidence at
that particular time point. If the estimated confidence is less
than the predefined confidence threshold (no strong evidence

x Precision(S)  (6)



yet that the signal is a false alarm), we delay our prediction
task and look at a larger signal in the hope that the confidence
estimate will increase with access to more data. If at the end
of the time series the conditions failed to satisfy (no confident
true or false alarm shapelets match so far), we classify the
ECG signal as a true alarm.

Setting high confidence threshold for false alarm predic-
tion ensures that a signal can be predicted as false alarm only
if the confidence in our prediction is more than 99%, thus
ensuring high true alarm detection rates. This approach in
decision making ensures we do not miss any true alarm. On
the other hand, we predict the signal as a true alarm as soon
as a match is found so that we provide an early alert for
every true alarm. Our approach could be viewed as a hybrid
approach between MEDSC-U and EDSC methods, where it
utilizes high confidence level for predicting false alarm and
predicts a true alarm as soon as a match is found. We call
our approach One Sided MEDSC-U (1-MEDSCU).

IV. DATA DESCRIPTION AND PRE-PROCESSING

Two different critical alarm datasets were extracted from
PhysioNet’s MIMIC II version 3 repository [14] [15]. The
database is a multiparameter ICU repository containing pa-
tient records of up to eight signals from bedside monitors
in ICUs. The signals are sampled at 125 Hz. The extracted
datasets contains the time stamps and human-annotated true
and false asystole and ventricular tachycardia alarms. We
extracted a subset of patient’s records which contained only
signal from lead ECG II, because it was identified as the
sensor which contained the least number of missing values
across the patients. For each alarm a 20-second window prior
to the alarm event was extracted similar to [4]. Few alarm
events contained missing values, which we ignored in this
study. Finally, we ended up with 261 asystol (ASYS) alarms
and 629 ventricular tachycardia (VTACH) alarms. Details
about distribution of true and false alarms in the individual
datasets are explained in Table III.

The raw signals extracted from MIMIC II was very noisy
with high frequency signal components. In order to obtain
a smooth signal, the ECG signal was passed through a low
pass filter to remove the white noise. A 20-second analysis
window prior to the alarm event was considered in our
algorithm. However, each 20-second ECG signal contained
2500 data points in the time series, which increased the
computational cost in our pattern extraction algorithm. Thus,
we down-sampled each ECG signal from 125 Hz to 12.5 Hz,
resulting in 250 temporal points in each signal.

V. EXPERIMENTAL SETUP
Assume that the number of true alarms is N. We partition
the true alarm dataset into four distinct partitions, hence,
each partition has N/4 true alarms. For each partition, we
TABLE III

DATASETS DESCRIPTION

Dataset Total alarms | True Alarms (%) | False Alarms (%)
ASYS 261 40 (15.3%) 221 (84.7%)
VTACH 629 227 (36.09%) 402 (63.91%)

randomly select N/4 false alarms from the false alarm
dataset to ensure balanced training data. We train our method
(and the baseline methods) using the training data (of size
N/2) and test them on the remaining examples. In addition,
we repeat the entire process 20 times (each time has 4
distinct partitions on true alarm) which results in 80 different
combination of training data.

We used 4 evaluation measures: True alarm detection
(TAD) rate, which is sensitivity; False alarm suppression
(FAS) rate, which is specificity; and Earliness, which is the
fraction of the time points used for classification. However,
since missing true alarm (positive class) is more severe
than missing false alarm (negative class), different errors
incur different weights. The balanced accuracy (the average
between sensitivity and specificity) considers similar weights
for different errors. To account for this, false negative is
penalized more than false positive by 1+ 32, where higher /3
penalizes false negative more than false positive. Therefore,
the weighted balanced accuracy (WAcc) is computed as:

WAce = (WSens + Spec)/2 (7
where

WSens = TP/(TP + (1+ B*)FN)

Spec = TN/(TN + FP)

where T'P, TN, F'P, F'N is the number of true positives, true
negatives, false positives, and false negatives, respectively.

We compared our method to three baseline models. (1)
BeharRaw: Behar et al. [3] was applied on the raw ECG
signals. (2) BeharFiltered: Behar et al. [3] was applied on the
filtered ECG signals. (3) EDSC [10] with the Z-normalized
version of distance measuring (Equation 2). The original
EDSC method resulted in O sensitivity, thus we did not
include it as a baseline method.

VI. DISCUSSION
A. Accuracy performance

The evaluation of each method is shown in Table IV.
Clearly, our method has near optimal TAD rate, while all
other methods have much less TAD rate. For example,
on ASYS dataset, BeharFiltered has comparable TAD rate
(92.37%) to our method (99.12%), however, it has lower FAS
rate (18.97%) compared to I-MEDSCU (34.29%). EDSC has
better FAS rate (74.16%) than ours but on the cost of TAD
rate (83.62%). This shows that our method has moderate FAS
rates while keeping high TAD rate, which is an extremely
challenging task. The same conclusion applies on VTACH.
However, we claim that we can obtain the desired level of
FAS by adjusting the confidence threshold of the method,
which will reduce TAD rate but will still be comparable to
other methods. This is explained in the next section.

In addition to TAD and FAS, it is clear that our method
has better weighted accuracy WAcc than all other methods.
There is a statistically significant difference (pvalue is shown
in the last column of Table IV) between our method and all
other methods using significance level 0.05, except for EDSC
on ASYS at 5 = 2.



TABLE IV
EVALUATION OF THE MODELS IN TERMS OF TRUE ALRM DETECTION RATE (TAD), FALSE ALARM SUPPRESSION RATE (FAS), EARLINESS (100 -

EARLINESS) AND WEIGHTED ACCURACY (WACC). LARGER VALUE HAS BETTER PERFORMANCE. PVLAUE IS COMPUTED BETWEEN OUR METHOD AND

THE BEST BASELINE METHOD ON THE CORRESPONDING EVALUATION MEASURE

Behar (Raw) Behar (Filtered) EDSC 1-MEDSCU pvalue
TAD 84.62+11.46 92.37+11.27 83.62+15.19 99.12+ 3.25
n FAS 35.03+7.64 18.97+7.24 74.16+£9.41 34.29+12.36
; 100-Earliness 0 0 62.84+6.27 38.3949.05
< WAcc (B = 2) 47.11£11.13 49.16£10.84 66.12+11.55 65.68+6.32 0.74
WAce (B = 3) 41.9413.7 45.96£14.33 59.75£13.39 65.05+7.55 1.20e-03
TAD 86.22+8.69 52.60425.27 64.78+23.16 95.67+8.81
5 FAS 31.18+5.7 51.07+24.75 65.07+£14.77 20.32+13.43
ﬁ 100-Earliness 0 0 59.94+11.71 39.9649.34
> WAce (B =2) 44.49+3.11 37.204+5.99 48.65+2.47 52.85+5.52 4.72e-09
WAce (B =3) 36.34+2.91 32.80+8.32 42.58+3.39 48.56+7.41 3.13e-09

B. Controlling False Alarm Suppression Rate

Our method has advantage over other methods in control-
ling the balance between TAD and FAS. In other words,
the false alarm confidence threshold used in 1-MEDSCU
controls the sensitivity of the model to predict true and
false alarm. When a test ECG signal matches a false alarm
shapelet (blue shapelet as in Figure 1), the method computes
the confidence of the match. If the estimated confidence is
greater than the false alarm confidence threshold, then 1-
MEDSCU predicts the signal as a false alarm. Increasing
the false alarm confidence threshold guarantees that no true
alarm is incorrectly predicted as a false alarm but at the
same time decreases the false alarm suppression rate. In
the previous results, we used 99% false alarm confidence
threshold to ensure near-optimal TAD rates. By varying the
confidence level we can obtain FAS rate comparable to other
method but still with higher (but not near-optimal) TAD rates.
The results of varying the false alarm confidence threshold
is shown in Fig. 2.

The blue dotted (red dashed) line represents the varying
FAS (TAD) rates for different false alarm confidence thresh-
olds (x-axis), respectively. The blue marks (star, circle, and
diamond) indicate the FAS rates, while the red marks show
the TAD rates achieved by the three baseline models. It is
clear that, our model can achieve similar FAS rates as the
baseline methods with comparable or even higher TAD rate.
For example, in order to achieve FAS rate similar to EDSC
(blue star) we can achieve a TAD rate of 83 (the vertical
line that touches the blue star, touches the red dashed line
at 83%) by setting false alarm confidence threshold to 4.9%.
So, we achieve comparable TAD rates as to EDSC (red star).
Comparing to BeharRaw, it has 35% FAS (blue diamond) and
85% TAD (red circle), while 1-MEDSCU can achieve 99%
TAD at 35% FAS, significantly outperforming BeharRaw.

Therefore, by varying the confidence threshold, we can
achieve the desired level of FAS with comparable or even
better TAD rates.

C. Earliness

The results of earliness of the methods are shown in Table
IV. 1-MEDSCU not only provide accurate results (as shown
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Fig. 2. Varying false alarm confidence threshold for ASYS. The red line

shows increasing true alarm detection with increasing false alarm confidence
threshold. The blue line show decreasing false alarm suppression with
increasing false alarm confidence threshold. The red and blue marks indicate
TAD and FAS respectively achieved by the baseline methods

in the previous sections) but also provide these results early.
So, the prediction takes place even before the actual alarm
alerts, whereas all other methods, except EDSC, provide
results at the time when the alarm happens. The prediction
of our method is provided, on average, using around 60%
of the time points (8 seconds before the actual alarm) at
a false alarm confidence threshold of 99%. Although, it is
evident that EDSC has better earliness performance than
1-MEDSCU, our method outperforms EDSC in terms of
TAD as in Table IV. By varying the false alarm confidence
threshold, the earliness of 1-MEDSCU improves as shown
in Fig. 3. At 4.9% confidence threshold, the prediction of
our method were provided using only 40% of time series’
length, comparable to EDSC.

From Fig. 2 and 3, we conclude that by lowering the false
alarm confidence threshold we obtain earlier predictions and

100 - Earliness

20
o 10 20 30 40 50 60 70 80 90 100
False alarm confidence threshold (20)

Fig. 3. Trend of Earliness with varying false alarm confidence threshold
(100 - Earliness) on ASYS. Larger the value, the earlier the prediction



higher FAS rates but on the cost of reducing TAD rates.
Therefore, a proper trade-off has to decided by hospital
administrators between earliness, FAS and TAD.

D. Interpretability: Case Study

We present an example to show the effectiveness of our
proposed interpretable method that utilizes the confidence
levels to produce more accurate results. In Figure 4, a true
alarm signal matches a false alarm shapelet (solid blue
segment) with confidence 1% at time point 4 (so 16 seconds
before the alert). EDSC would classify that example at that
time as false alarm. However, I-MEDSCU does not classify
the signal at that time because the confidence is less than the
false alarm confidence threshold (99%), therefore, delays the
decision. At time 4.9 second, another false alarm shapelet
(dotted blue) matches the signal resulting in confidence
8%. 1-MEDSCU continues until time 16 where the signal
matches a true alarm shapelet (red shapelet). The method
immediately classifies the signal correctly as a true alarm,
because the method does not require confidence to predict
the signal as a true alarm. It is clear that the signal can be
mistakenly classified as a false alarm because two evidences
(two shapelets) were found in the early phases of the signal.
However, since the evidences are not strong enough the
method continues until either a very strong evidence to
classify as a false alarm is found or any evidence to classify
it as a true alarm is found, thus ensuring high TAD rates.

VII. CONCLUSION AND FUTURE WORK

In this paper, we address the problem of suppressing
high cardiac false alarms using univariate ECG signals. The
objective of this paper is to reduce false alarms as much
as possible without compromising TAD performance. We
have achieved this objective in the proposed (1-MEDSCU)
model by keeping high confidence threshold for false alarm
predictions to ensure high TAD. We were able to suppress
a moderate percentage of FAS while keeping high rate of
early TAD predictions. We show that the proposed early
alarm detection approach has outperformed the state-of-the-
art methods on both datasets in terms of weighted accuracy.
In addition, we showed that we can control the FAS rate on
the cost of TAD rate, nevertheless, the method achieved bet-
ter suppression rate than other methods keeping comparable
TAD rate. In addition, we showed that our method provides
not only accurate results but also provides interpretable
results early.

Red shapelet
- Confidence = 90%b -

Blue shapelet
Confidence = 1%

.
Bfue shapelet
Confidence = 8%

1 5 10 15 20
Time(in secs)

Fig. 4. True alarm example wrongly classified as false alarm by EDSC at
time 4, however, correctly classified as true alarm by I-MEDSCU at time 16

Currently, 1-MEDSCU works for univariate time series. In
future we will extend it for multivariate time series [16] in
order to improve the performance of the model. We will also
investigate the problem of false alarm suppression in other
medical domains.
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